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The reconstruction of an unknown continuously defined function f (t) from the samples of the responses of m linear time-
invariant (LTI) systems sampled by the 1/mth Nyquist rate is the aim of the generalized sampling. Papoulis (1977) provided
an elegant solution for the case where f (t) is a band-limited function with finite energy and the sampling rate is equal to 2/m
times cutoff frequency. In this paper, the scope of the Papoulis theory is extended to the case of bandpass signals. In the first part, a
generalized sampling theorem (GST) for bandpass signals is presented. The second part deals with utilizing this theorem for signal
recovery from nonuniform samples, and an efficient way of computing images of reconstructing functions for signal recovery is
discussed.
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1. INTRODUCTION

Amultichannel sampling involves passing the signal through
distinct transformations before sampling. Typical cases of
these transformations treated in many works are delays [2–
6] or differentiations of various orders [7]. A generalization
of both these cases on the assumption that the signal is repre-
sented by a band-limited time-continuous real function f (t)
with finite energy was introduced in [1] and developed in
[8].

Under certain restrictions mentioned below, a similar
generalization can be formed for bandpass signals repre-
sented by a function f (t) whose spectrum F(ω) is assumed
to be zero outside the bands (−ωU ,−ωL) and (ωL,ωU) as de-
picted in Figure 1(a) while its other properties are identical
as in the case of bandpass signals.

If a signal is undersampled (i.e., a higher sampling order
is used), then its original spectrum components and their
replicas overlap and the frequency intervals (ωL,ωU) and
(−ωU ,ωL) are divided into several subbands, whose number
depends for given frequencies ωU and ωL on the sampling
frequency ωS, [4, 9].

For the introduction of GST, the number of overlapped
spectrum replicas has to agree with the sampling order m,
with the number of subbands inside the frequency ranges
(ωL,ωU) and (−ωU ,−ωL), and with the number of linear
systems. As presented in [9], to meet the above demands,
m must be an even number and the sampling frequency
ωS = 2π/TS, where TS is the sampling period, and bandwidth

ωB = ωU − ωL has to meet the following conditions:

ωL

ωU − ωL
= ωL

ωB
= k0

m
, (1)

where k0 is any positive integer number, and

ωS

ωB
= 2

m
. (2)

An example of a fourth-order sampled signal spectrum
in the vicinity of positive and negative original spectral com-
ponents, if conditions (1) and (2) are fulfilled, is shown in
Figure 1(b) and Figure 1(c).

Figure 2 shows a graphical interpretation of the sampling
orders m = 2 to 6 in the plane ωS/ωB versus ωC/ωB, where
ωC = (ωU + ωL)/2, if the common case of bandpass signal
sampling is assumed (i.e., frequency ωS for given ωB and ωC

is chosen arbitrary) [4, 9]. Odd orders correspond to the grey
areas, whereas even orders correspond to the white ones. The
solutions of (1) and (2) for k0 = 0, 1, 2, . . . when m = 2 and
m = 4 are marked by black points.

2. GENERALIZED SAMPLING THEOREM FOR
BANDPASS SIGNALS

This expansion deals with the configuration shown in Figure
3. Function f (t) is led into m LTI prefilters (channels) with
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Figure 1: (a) Spectrum of bandpass signal, spectrum of sampled
responses gi(t) at the output of LTI prefilters in the vicinity of (b)
positive and (c) negative original spectrum components.

system functions

H1(ω),H2(ω), . . . ,Hm(ω). (3)

The output functions of all prefilters

gi(t) = 1
2π

∫ −ωL

−ωU

F(ω)Hi(ω)e jωtdω

+
1
2π

∫ ωU

ωL

F(ω)Hi(ω)e jωtdω

(4)

are then sampled at 1/mth Nyquist rate related to the cut-
off frequency ωB. If mutual independence of the prefilters
is assumed and if no noise is present in the system, func-
tion f (t) can be exactly reconstructed from samples gi(nTS),
where TS = mπ/ωB.

For this purpose, the following system of equations has
to be formed:

HY = R, (5)

where matrix H and vectors Y and R are of the following
form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1(ω), H2(ω), · · · Hm(ω)

H1
(
ω + ωS

)
, H2

(
ω + ωS

)
, · · · Hm

(
ω + ωS

)
...

...
...

H1

(
ω +

(
m

2
− 1
)
ωS

)
, H2

(
ω +

(
m

2
− 1
)
ωS

)
, · · · Hm

(
ω +

(
m

2
− 1
)
ωS

)

H1

(
ω +

(
m

2
+ k0

)
ωS

)
, H2

(
ω +

(
m

2
+ k0

)
ωS

)
, · · · Hm

(
ω +

(
m

2
+ k0

)
ωS

)

H1

(
ω +

(
m

2
+ k0 + 1

)
ωS

)
, H2

(
ω +

(
m

2
+ k0 + 1

)
ωS

)
, · · · Hm

(
ω +

(
m

2
+ k0 + 1

)
ωS

)

...
...

...

H1
(
ω +

(
k0 +m− 1

)
ωS
)
, H2

(
ω +

(
k0 +m− 1

)
ωS
)
, · · · Hm

(
ω +

(
k0 +m− 1

)
ωS
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1(ω, t)

Y2(ω, t)

· · ·
· · ·
· · ·
· · ·

Ym−1(ω, t)

Ym(ω, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

exp
(
jωSt

)
...

exp
(
j
(
m

2
− 1
)
ωSt
)

exp
(
j
(
m

2
+ k0

)
ωSt
)

exp
(
j
(
m

2
+ k0 + 1

)
ωSt
)

...

exp
(
j
(
k0 +m− 1

)
ωSt
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)
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Figure 2: Graphical interpretation of the sampling orders.

In the above formulae t is any number andω ∈ (−ωU ,−ωU+
ωS). This system definesm functions

Yi(ω, t),Y2(ω, t), . . . ,Ym(ω, t) (8)

of ω and t because the coefficients in matrix H depend on ω
and the right-hand side depends on t. Functions Hi(ω) are
on the one hand general, but on the other hand they cannot
be entirely arbitrary: they must meet the condition that the
determinant of the matrix of coefficients differs from zero for
every ω ∈ (−ωU ,−ωU + ωS).

Since the sampled responses gsi (t) are of the form

gsi (t) = gi(t)
∞∑

n=−∞
δ
(
t − nTs

)
, i = 1, 2, . . . ,m, (9)

the function f (t) at the output of the multichannel sampling
configuration can be described by the following formula:

f (t) =
m∑
i=1

gsi (t)∗ yi(t) =
m∑
i=1

∞∑
n=−∞

gi
(
nTs
)
yi
(
t − nTs

)
,

(10)

where

yi(t) = Ts

2π

∫ −ωU+ωS

−ωU

Yi(ω, t)e jωtdω, i = 1, . . . ,m. (11)

The GST ((5), (10), and (11)) can be proven in a similar
way as published in [1].

If we assume that k0 = 0 and put it into (1), then we
obtain ωL = 0. It means that the bandpass function turns
into the band-limited function with cutoff frequency ωB and
the above sampling theorem turns into a generalized sam-
pling expansion [1]. We can say that [1] is a special case of
the above GST.
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Hm(ω)

Y1(ω, t)

Y2(ω, t)

Ym(ω, t)

f (t) f (t)

g1(t)
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gs1(t)

gs2(t)

gsm(t)

f1(t)

f2(t)

fm(t)

+

×

×

×

...
...

∑
n δ
(
t − nTs

)

Figure 3: Multichannel sampling configuration.

3. FUNCTION RECOVERY FROMNONUNIFORM
SPACED SAMPLES

As one of the typical applications of the GST, the reconstruc-
tion of a signal f (t) from periodically repeated groups of
nonuniform spaced samples can be considered [2–5]. It can
be obtained if the following formulae hold:

Hi(ω) = e jαiω,

Hi
(
ω + qωs

) = Hi(ω)e jαiqωs ,
(12)

where αi denotes time delay in ith branch, that is, the distance
between ith sample and the centre of the group.

Substituting (12) into (6), a set of linear equations is ob-
tained, which can be solved by Cramer’s rule [10]. For this
purpose, (m+1) determinants of the following types have to
be solved:

D =
m∏
i=1

Hi(ω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

s1, s2, . . . sm

s21, s22, . . . s2m

...
...

...
...

sm/2−1
1 , sm/2−1

2 , . . . sm/2−1
m

s(m/2+k0)
1 , s(m/2+k0)

2 , . . . s(m/2+k0)
m

s(m/2+k0+1)
1 , s(m/2+k0+1)

2 , . . . s(m/2+k0+1)
m

...
...

...
...

s(m/2+k0−1)
1 , s(m/2+k0−1)

2 , . . . s(m/2+k0−1)
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(13)

where si = e jαiωs , i = 1, 2, . . . ,m. Then (11) and consequently
(10) are applied to the resulting set of functions Y(t,ω).

The calculation of (13) using some of the classical meth-
ods (e.g., the Laplace expansion [10]) can be difficult for
large values ofm. One of the ways leading under several con-
ditions to a simplification is based on the fact that (13) is of
a similar form to Vandermonde’s one [10]. However, there is
a difference between them, which is hidden in the fact that a
jump change in the power for the value of k0 appears in the
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lower part of determinant. Finding systematic results, which
can be explored for reconstruction, is problematic. A possi-
bly way for m > 2 and k0 ≥ 1 consists in transformation
of (13) into Vandermonde’s form by appending the auxiliary
terms X1, X2, X3, and S2:

DV =
m∏
i=1

Hi(ω)

∣∣∣∣∣∣∣
X1, S1
X2, S2
X3, S3

∣∣∣∣∣∣∣ =
m∏
i=1

Hi(ω)�, (14)

where

�

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1, . . . 1, 1, . . . 1

x1, . . . xk0 , S1, . . . Sm
...

...
...

...
...

...

x(m/2−1)
1 , . . . x(m/2−1)

k0
, S(m/2−1)

1 , . . . S(m/2−1)
m

x(m/2)
1 , . . . x(m/2)

k0
, S(m/2)

1 , . . . S(m/2)
m

...
...

...
...

...
...

x(m/2+k0−1)
1 , . . . x(m/2+k0−1)

k0
, S(m/2+k0−1)

1 , . . . S(m/2+k0−1)
m

x(m/2+k0)
1 , . . . x(m/2+k0)

k0
, S(m/2+k0)

1 , . . . S(m/2+k0)
m

x(m/2+k0+1)
1 , . . . x(m/2+k0+1)

k0
, S(m/2+k0+1)

1 , . . . S(m/2+k0+1)
m

...
...

...
...

...
...

x(m+k0−1)
1 , . . . x(m+k0−1)

k0
, S(m+k0−1)

1 , . . . S(m+k0−1)
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(15)

and in using of Vandermonde’s rule

DV =
m∏
i=1

Hi(ω) ·
m−1∏
i=1

m∏
j=i+1

(
s j − si

)

·
k0∏
i=1

m∏
j=1

(
s j − xi

) ·
k0−1∏
i=1

k0∏
j=i+1

(
xj − xi

)
.

(16)

The intermediate term can be rewritten in the following
form:

k0∏
i=1

m∏
j=1

(
s j−xi

)=

(
s1 − x1

) (
s2 − x1

) · · · (
sm − x1

)
·(s1 − x2

) (
s2 − x2

) · · · (
sm − x2

)
...

·(s1 − xk0
) (

s2 − xk0
) · · · (sm − xk0

)

=

[
xm1 − σ1x

m−1
1 + σ2x

m−2
1 − · · · + (−1)mσm

]
·[xm2 − σ1x

m−1
2 + σ2x

m−2
2 − · · · + (−1)mσm

]
...

·[xmk0 − σ1x
m−1
k0

+ σ2x
m−2
k0

− · · · + (−1)mσm
]
,

(17)

where σk are symmetric polynomials consisting of products
of all the permutations of k = 1, 2, . . . ,m terms s1, s2, . . . , sm.
That is,

σ1 = s1 + s2 + · · · + sm,

σ2 = s1s2 + s1s3 + · · · + s1sm

+ s2s3 + · · · + s2sm + · · · + sm−1sm,

...

σm = s1s2 · · · sm.

(18)

Finally, we assume that determinant Δ in (14) is ex-
panded according to the intermediate band of X2, S2 using
the Laplace expansion. Because the desired determinant (13)
(terms S1 and S3) is an algebraic complement of term X2, it
can be revealed as a factor in every multiplication of all the
permutations of k0 terms of block X2 in the result of (17).
Therefore, only one product corresponding to the main di-
agonal or an adjacent one of the subdeterminant X2 is suffi-
cient. For the final expression of result, special cases of sym-
metric polynomials have to be defined. They are σ0 = 1 and
σk = 0 for k < 0 and k > m.

In this way, determinant (13) is obtained in the form

D =
m∏
i=1

Hi(ω) ·
m−1∏
i=1

m∏
j=i+1

(
s j − si

)

· (−1)k0(k0−1)/2

∣∣∣∣∣∣∣∣∣∣∣∣

σm/2−k0+1, σm/2−k0+2, · · · σm/2

σm/2−k0+2, σm/2−k0+3, · · · σm/2+1

...
...

...
...

σm/2, σm/2+1, · · · σm/2+k0−1

∣∣∣∣∣∣∣∣∣∣∣∣
.

(19)

In a similar way, the determinants Di, i = 1, 2, . . . ,m,
which can be formed by replacing the ith column vector
with the right-hand side vector R, can be computed. Finally,
the desired functions Yi(ω, t) can be obtained from the ratio
Di/D.

The determinant in (19) is called the per-symmetric de-
terminant. In the case k0 ≥ m, it contains nonzero terms only
near the secondary diagonal.

The efficiency of the described method depends on the
values k0 and m. It is very high in the case k0 < m, be-
cause the order of the determinant that has to be computed
is lower than the order of determinant (13), and the result-
ing expression of (19) contains a large amount of products
(s j − si), some of which vanish due to divisions Di/D. Func-
tions Yi(ω, t) are then obtained in a very simple form. If k0
increases, the determinant order in (19) also increases while
the efficiency decreases. In the case k0 >> m, the order ap-
proaches the value 2k0. Although the determinant contains
the majority of zero terms, the result is more complicated
compared to the result of the classical methods of computing
the determinants.
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4. EXAMPLE OF GST APPLICATION

Although a band-limited function with finite energy is as-
sumed in paragraph 1, in reality most the signals can be re-
garded as time-unlimited. A simple example (m = 2) of a sig-
nal with infinite-energy recovery is shown below. By choos-
ing H1(ω) = 1 and H2(ω) = e jαω and substituting them into
(10), we obtain

[
1, e jαω

1, e jα[ω+(k0+1)ωs]

]
·
[
Y1(ω, t)

Y2(ω, t)

]
=
[

1

e jα(k0+1)ωst

]
. (20)

The images of reconstructing functions Y1(ω, t) and Y2(ω, t)
can be found in the form

Y1(ω, t) = e j((k0+1)/2)ωst
sin
[((

k0 + 1
)
/2
)
ωs(t − α)

]
sin
[(
k0 + 1

)
ωsα/2

] ,

Y2(ω, t) = e j((k0+1)/2)ωst(t−α)e jωα
sin
[(
k0 + 1

)
ωst/2

]
sin
[(
k0 + 1

)
ωsα/2

] .
(21)

By evaluating (11) under the condition that ωS = ωB, the
reconstructing functions can be expressed as

y1(t) = − sin c

(
πt

Ts

)
sin
[(
k0 + 1

)
π
(
t − α

)
/Ts
]

sin
[(
k0 + 1

)
πα/Ts

] ,

y2(t) = sin c

[
π(t − α)

Ts

]
sin
[(
k0 + 1

)
πt/Ts

]
sin
[(
k0 + 1

)
πα/Ts

] ,
(22)

where sinc(x) = sin(x)/x. The final reconstruction (10) from
a limited number of sample groups n can be rewritten in the
form

fr(t) =
∑[

f
(
nTs
)
y1
(
t − nTs

)
+ f

(
nTs + α

)
y2
(
t − nTs

)]
.

(23)

In accordance with (1) and (2), the bandwidth, sampling fre-
quency, carrier frequency, and coefficient k0 are chosen as
follows: ωB = π/2 rad/s, ωS = π/2 rad/s, ωC = 2π rad/s, and
k0 = 7.

Let function f (t) be given by the formula f (t) = [1 +
0.5(sinω1t + sinω2t)] cos 2πt. The spectrum of f (t) is then
composed of five Dirac pulses at the frequencies 2π±ω1, 2π±
ω2, and 2π. To demonstrate the reconstruction of a function
whose spectrum is inside or partially outside the frequency
interval (ωL,ωU), the modulation frequencies of f (t) were
chosen as follows: ω1 = 0.2 rad/s,ω2 = 0.6 rad/s, and ω2 =
0.85 rad/s.

Reconstructing functions y1(t) and y2(t) are shown in
Figure 4. The relation between spectrum F(ω) and the spec-
trum of sampled common responses Gs

i(ω) is shown in Fig-
ure 5.

−10 −5 0 5 10

t, s

−1

0

1

y1(t)
y2(t)

α = 0.25 s

Figure 4: Reconstructing functions y1(t) and y2(t).
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(b)

F
(ω

)

4 4.5 5 5.5 6 6.5 7 7.5 8

ω, rad/s

ωS = 6.4 rad/s, ω1 = 0.3 rad/s, ω2 = 0.85 rad/s

(c)

Figure 5: (a) Spectrum of sampled responses in the vicinity of pos-
itive original spectrum component form = 2. Spectrum of f (t) for
both cases of modulation frequencies ω1 and ω2(b), (c).

Function f (t) and its reconstruction fr(t) from seven
groups of samples n ∈ [−3, 3] are plotted in Figure 6. It is
obvious that in the case of an aliasing occurrence Figure 6(b),
the reconstruction exhibits a measurable error.

5. CONCLUSION

A generalized sampling theorem for time-continuous band-
pass signal and the application of this theorem to signal re-
covery from nonuniform samples have been presented. An
efficient method of computing the Fourier images of recon-
structing functions for signal recovery from periodically re-
peated groups of nonuniform spaced samples has then been
discussed. Asmentioned above, themethod presented is suit-
able for lower values of k0 (wideband applications). Finding
a simplification similar to (19) in the case k0 >> m (narrow-
band applications) is very difficult and the classical methods
of computing the determinant seems to be the best approach.
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Figure 6: Function f (t) and its reconstruction fr(t) in cases that
spectrum of f (t) is (a) inside or (b) outside frequency interval
(ωL,ωU). (TS = 4 s,n ∈ [−3, 3],α = 0.25 s.)

Note that in the case of frequency-limited signal recov-
ery (k0 = 0), the determinant of symmetrical polynomials is
equal to one and the solution is very simple.
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