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A dual-step approach for speaker localization based on a microphone array is addressed in this paper. In the first stage, which
is not the main concern of this paper, the time difference between arrivals of the speech signal at each pair of microphones is
estimated. These readings are combined in the second stage to obtain the source location. In this paper, we focus on the second
stage of the localization task. In this contribution, we propose to exploit the speaker’s smooth trajectory for improving the current
position estimate. Three localization schemes, which use the temporal information, are presented. The first is a recursive form
of the Gauss method. The other two are extensions of the Kalman filter to the nonlinear problem at hand, namely, the extended
Kalman filter and the unscented Kalman filter. These methods are compared with other algorithms, which do not make use of
the temporal information. An extensive experimental study demonstrates the advantage of using the spatial-temporal methods. To
gain some insight on the obtainable performance of the localization algorithm, an approximate analytical evaluation, verified by an
experimental study, is conducted. This study shows that in common TDOA-based localization scenarios—where the microphone
array has small interelement spread relative to the source position—the elevation and azimuth angles can be accurately estimated,
whereas the Cartesian coordinates as well as the range are poorly estimated.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION AND PROBLEM FORMULATION

Determining the spatial position of a speaker finds a grow-
ing interest in video conference scenarios where automated
camera steering and tracking are required. Acoustic source
localization might also be used as a preprocessor stage for
speech enhancement algorithms, which are based on micro-
phone array beamformers.

Usually, methods for speaker localization are comprised
of two stages. In the first stage, which is not the main con-
cern of this paper, microphone array is used for extracting
the time difference between arrivals of the speech signal at
each pair of microphones. These readings are then processed
by the second stage to obtain the source position. This pa-
per focus is on the second algorithmic stage of the two-step
approaches.

In the first algorithmic stage, the time difference of ar-
rival (TDOA) is estimated using spatially separated micro-
phone pairs. The classical method for performing this task is
the generalized cross-correlation (GCC) algorithm [1].Many
improvements of this method for the reverberant case exist.
Brandstein and Silverman used a robust estimate of the cross-
power spectral density phase [2]. A cepstrum-based prefilter
applied to the received signals prior to the application of the

cross-correlation is proven by Stéphene and Champagne to
be beneficial [3]. Benesty [4] and Doclo and Moonen [5] are
using subspace tracking methods for performing the desig-
nated task. Recently, Dvorkind and Gannot [6–8] proposed a
method for TDOA estimation, based on the nonstationarity
of the speech signal, which was proven to be superior to the
other methods in tracking scenarios.

During the second algorithmic stage, the noisy TDOA
readings are combined to produce the source location esti-
mate. The locus of speaker positions associated with a given
microphone pair, from which we have extracted a TDOA
measurement, forms one half of a hyperboloid of two sheets.
By intersecting hyperboloid surfaces, one can estimate the
speaker position [9]. However, this formulation is hard to
compute in 3-dimensional space and tends to be noise sensi-
tive (since small measurement errors can divert the intersec-
tion curve significantly). Another approach is useful in far-
field applications, where the hyperboloid is approximated by
a cone (centered at the midpoint of the microphone pair).
By intersecting the bearing lines associated with such cones,
location estimate can be derived by properly weighting the
potential source locations according to the likelihood of the
measurement. Brandstein et al. denote this method by linear
intersection estimate [10].
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By manipulating the measurement model, as will be
shown in the sequel, the hyperbolic equations can be recast
into a spherical form. The obtained equation set is shown to
be nonlinear. Since the number of equations increases with
the number of microphones, the noisy case can be solved by
applying the (nonlinear) least squares (LS) approach.

The nonlinear LS problem yields a cumbersome expres-
sion. This difficulty might be alleviated in several ways. Three
methods provide a closed-form solution, which differ in the
way they mitigate the nonlinearity. The spherical intersection
(SX)method was proposed by Schau and Robinson [11]. The
spherical interpolation (SI) was proposed by Smith and Abel
[12], while Huang et al. proposed the one-step least squares
(OSLS) method [13]. Dealing with the differences between
these methods is beyond the scope of this short survey.

Recently, Huang et al. [14] addressed the same nonlin-
ear equation set and solved it by using Lagrange multiplier.
Since a polynomial of degree six is involved in the proposed
method, no closed-form solution exists. Thus, the iterative
secant method [15] was used for the root search. The two-
step approach is referred to as linear correction least squares
(LCLS) approach. We will elaborate more on this method
while formulating the problem.

Direct maximum likelihood-based algorithms are widely
used in the localization task. Maximum likelihood (ML) pro-
cessors require a priori knowledge of the joint probabil-
ity density function of the errors in the TDOAs, and need
search-based algorithms for determining the maximizer. Yao
et al. [16] proposed a frequency-domain, one-step, approx-
imate ML estimator for extracting both the source location
and the received signal spectrum. They also proposed an it-
erative method for dealing with multiple source scenarios.
Chen et al. further developed this concept and presented the
Cramér-Rao lower bound (CRLB) for the localization prob-
lem in [17]. When the microphones locations are not known
exactly, a two-stage estimation procedure is proposed, where
iterations are performed between the ML estimation stage
and a calibration stage. In the ML context, Segal et al. work
should be mentioned, in which the estimate-maximize (EM)
procedure is applied (in the frequency domain) for estimat-
ing both the position of several sources and their respective
parameters [18]. Birchfield and Gillmor [19] utilized Bayes
rule to obtain an ML estimator for the source location. In
a simplified, reverberant-free room, the proposed method
is shown to be more robust against additive noise than the
conventional beamformer. Chen et al. [17] proposed the
use of two beamformers with several look directions for ex-
tracting several candidate azimuth angles. A majority-based
rule is then used for estimating the azimuth angle of the
source.

All the prementioned methods exploit the spatial in-
formation obtained by different microphone pairs, but do
not exploit the temporal information available from adjoint
speaker position estimates. The speaker smooth trajectory
can be used to obtain a more robust localization estimate.
Bayesian estimation procedures were previously proposed by
Ward et al. [20] and Vermaak and Blake [21]. In the former,
a particle filter is used in conjunction with a beamformer to
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Figure 1: Microphone array. Speaker location at time instant t is
s(t) with azimuth angle φs(t) and elevation angle θs(t). Microphone
position notated bymi; i = 0, . . . ,M.

estimate the speaker position in a one-stage procedure. In
the latter, the reverberation model is considered through a
bimodal distribution of the noisy measurement around the
true TDOA. Utilizing this distribution and giving a first-
orderMarkov process model for the speaker trajectory, a par-
ticle filter is derived and applied to the problem at hand.
Lehmann and Williamson [22] also used the particle fil-
ter. However they incorporate the importance sampling (IS)
concept, in which particles are generated in each time step,
based on the previous time step and the current measure-
ment. The importance function is implemented based on a
delay-and-sum beamforming results. Bechler et al. [23] pro-
posed the use of a two-stage algorithm. In the first, the TDOA
readings are used by the OSLS method [13] to obtain an
initial estimate of the speaker position. These estimates are
spatially smoothed by using three parallel linear Kalman fil-
ters. Each of the filters is using a different state transition
model, namely, static, constant velocity, and constant accel-
eration. The three Kalman filters are weighted according to
their a posteriori probability given the measurements. Klee
and McDonough [24] showed by simulation results that the
intermediate stage, in which source is localized by the SX
method before applying the Kalman filter, deteriorates the
overall performance. They proposed instead to apply the it-
erated extended Kalman filter directly on the TDOA read-
ings.

In [25] we introduced two methods for exploiting the
speaker’s smooth trajectory for improving the tracking abil-
ity of source localizers, namely, a recursive Gauss (RG)
method and the extended Kalman filter (EKF). These meth-
ods were compared with several nontemporal methods. In
[26] the use of the unscented Kalman filter (UKF) for the
problem at hand was proposed. The current contribution,
which is an extension of the ideas presented in both [7, 26],
includes a more detailed exposition of the ideas and a com-
prehensive comparative experimental study.

We turn now to an exact formulation of the localization
problem. Consider an M + 1 microphones array as depicted
in Figure 1. The microphones are placed at the Cartesian
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coordinates mi � [xi yi zi]T ; i = 0, . . . ,M. To simplify
the exposition, the location of a reference microphone m0

is set as the axes origin m0 = [0 0 0]T . (·)T stands for the
transpose operation. Define the source coordinates at time
instant t by s(t) � [xs(t) ys(t) zs(t)]T . Each of the M mi-
crophones, combined with the reference microphone, is used
at time instant t to extract a TDOA measurement τi(t); i =
1, . . . ,M [8]. Denote the ith range difference measurement
by ri(t) = cτi(t), where c is the sound propagation speed (ap-
proximately 340m/s in air). It can be easily verified from sim-
ple geometrical considerations (see Figure 1) that this range
difference is related to the source and the microphone loca-
tion by the nonlinear equation

ri(t) =
∥
∥s(t)−mi

∥
∥− ∥∥s(t)∥∥, i = 1, . . . ,M, (1)

where the fact that the reference microphone is positioned at
the origin was used.

Usually, only an estimate of the real TDOA is available.
Thus, concatenating M estimates of the quantity in (1), a
nonlinear measurement model is obtained:

r̂(t) =

⎡

⎢
⎢
⎢
⎣

∥
∥s(t)−m1

∥
∥− ∥∥s(t)∥∥
...

∥
∥s(t)−mM

∥
∥− ∥∥s(t)∥∥

⎤

⎥
⎥
⎥
⎦
+ v(t) � h

(

s(t)
)

+ v(t).

(2)

Here, vT(t) = [v1(t) v2(t) · · · vM(t)] is a vector of mea-
surement errors, depicting the nonperfect estimate of the
range differences. The goal of the localization task is to ex-
tract the speaker’s trajectory s(t) from the measurements
vector r̂(t). Any estimation procedure (e.g., [1, 4, 5] or [8])
could be used for the TDOA estimation. The methods intro-
duced in this contribution, constituting the second stage of
the localization procedure, are independent of the choice of
the first stage.

Following the derivation presented in [11–14], a practical
approach for solving the nonlinear problem can be derived.
Defining the distance between the speaker and the ith micro-
phone as Di(t) � ‖s(t)−mi‖ (see Figure 1), we get

D2
i (t) =

∥
∥s(t)−mi

∥
∥
2 = ∥

∥s(t)
∥
∥
2 − 2mT

i s(t) +
∥
∥mi

∥
∥
2
. (3)

However, using (1), the estimated distance is given by

D̂i(t) = r̂i(t) +
∥
∥s(t)

∥
∥, i = 1, . . . ,M. (4)

An estimator of the speaker location is derived by minimiz-
ing the error between the estimated and the true squared

distance:

εi(t) � 1
2

(

D̂2
i (t)−D2

i (t)
)

=mT
i s(t) + r̂i(t)

∥
∥s(t)

∥
∥

− 1
2

(∥
∥mi

∥
∥
2 − r̂2i (t)

)

, i = 1, . . . ,M.

(5)

Concatenating the equations in (5), we have

ε(t) = A(t)g
(

s(t)
)− b(t), (6)

where

A(t) �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 y1 z1 r̂1(t)

x2 y2 z2 r̂2(t)

...

xM yM zM r̂M(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

b(t) � 1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∥
∥m1

∥
∥
2 − r̂21 (t)

∥
∥m2

∥
∥
2 − r̂22 (t)

...
∥
∥mM

∥
∥
2 − r̂2M(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

g
(

s(t)
)

�

⎡

⎢
⎢
⎢
⎢
⎣

xs(t)

ys(t)

zs(t)
∥
∥s(t)

∥
∥

⎤

⎥
⎥
⎥
⎥
⎦

, ε(t) �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε1(t)
ε2(t)
...

εM(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(7)

The estimation problem is thus converted into a minimiza-
tion problem of the quantity εT(t)ε(t) with respect to the
nonlinear functional g(s(t)). Since the fourth component of
the vector g(s(t)) is related to the first three, the minimiza-
tion problem becomes a constrained LS problem.

In [14] this problem was solved by using the Lagrange
multipliers technique yielding

ĝ
(

s(t)
) = (

AT(t)A(t) + λΣ
)−1

AT(t)b(t), (8)

where Σ � diag[1 1 1 −1]1 and λ is the Lagrange mul-
tiplier, imposing the (quadratic) constraint on g(s(t)) struc-
ture. It can be shown that λ is obtained by finding the roots of
a polynomial of degree six. Due to the complexity of the poly-
nomial equation, numerical methods for root finding should
be used. Therefore it is proposed in [14] to first solve the
unconstrained LS problem and then use a linear correction

1 We denote by diag(m1,m2, . . .) a diagonal matrix with m1,m2, . . . on its
main diagonal.
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in the second phase. The method was hence denoted by the
LCLS approach. We note that this approach lacks the tempo-
ral information as it makes no use of the fact that an estimate
of s(t) should be spatially close to the estimate obtained dur-
ing the previous time instant.

The organization of the rest of the paper is as follows.
In Section 2 we derive a solution to the nonlinear problem
using Gauss iterations. We proceed by approximating this
batch solution by a recursive version applicable for track-
ing scenarios. The obtained RG solution constitutes our first
spatial-temporal solution to the localization problem. Other
spatial-temporal solutions can be derived by introducing a
Bayesian framework for the problem at hand. The first so-
lution, discussed in Section 3, is the well-known EKF, com-
monly applied to nonlinear optimal filtering problems. Less
known nonlinear extension of the Kalman filter is intro-
duced in Section 4, where the recently proposed UKF is ap-
plied to the speaker tracking problem. The CRLB on the
position estimate is calculated in Section 5 for the simple
unimodal noise model. In a typical TDOA-based localiza-
tion scenario, the microphone array has small interelement
spread relative to the source position. An approximate calcu-
lation shows that while the Cartesian coordinate estimation
bound might become extremely high, the polar coordinates
estimation bound is relatively small. We conclude this work
in Section 6 by presenting an extensive simulation study for
several test scenarios, showing the advantage of the spatial-
temporal methods over the spatial-only methods.

2. GAUSS AND RECURSIVE GAUSS
ALGORITHMS

The solution to the nonlinear problem in (6), presented by
[14], involves several iterations for finding the Lagrangemul-
tiplier, due to the resulting sixth-order polynomial equation.
We suggest an alternative method to mitigate the nonlinear-
ity by using the Gauss method.

2.1. Gauss solution

Starting again from (6) we can state the nonlinear weighted
LS (WLS) problem

min
s(t)

[

b(t)− A(t)g
(

s(t)
)]T

W
[

b(t)− A(t)g
(

s(t)
)]

(9)

with an arbitrary weighting matrix W . Note that (9) be-
comes a (nonlinear) LS problem if the number of micro-
phone pairs fulfills M > 3, that is, if there are more equa-
tions than unknowns. This nonlinear set can be solved by
applying the Gauss method rather than following [14]. The
Gauss method, which is an iterative procedure for solving the
nonlinear LS problem, is presented in Appendix A. Define
f(ŝ(l)(t)) � A(t)g(ŝ(l)(t)) and the associated gradient matrix
F(ŝ(l)(t)) � ∇s(t)f(ŝ(l)(t)) calculated at the current iteration
(l). Gauss iterations for obtaining s(t) take the well-known

form (see Appendix A):

ŝ(l+1)(t) = ŝ(l)(t) +
[

FT
(

ŝ(l)(t)
)

WF
(

ŝ(l)(t)
)]−1

× FT
(

ŝ(l)(t)
)

W
[

b(t)− f
(

ŝ(l)(t)
)]

.
(10)

This solution, as the solution in [14], only exploits the spatial
information obtained by the separated microphone pairs at
a specific time instant, but does not consider the temporal
information.

2.2. RG procedure

Exploiting the temporal information embedded in the track-
ing problem necessitates the derivation of a recursive version
of the Gauss method. We begin by concatenating (6) at all
available measurements at time instances 1 ≤ τ ≤ t:

ε(1) = A(1)g
(

s(1)
)− b(1) = f

(

s(1)
)− b(1),

ε(2) = A(2)g
(

s(2)
)− b(2) = f

(

s(2)
)− b(2),

...

ε(t) = A(t)g
(

s(t)
)− b(t) = f

(

s(t)
)− b(t).

(11)

Note that each of the equations is referring to a distinct un-
known source location s(τ); τ = 1, . . . , t, and can be in-
dependently solved by using the iterative Gauss method of
Section 2.1. However, since we assume that the source posi-
tion s(t) is slowly varying with time, a more efficient, recur-
sive solution can be derived. Linearizing each of the equa-
tions in (11) around s∗(τ), as in Appendix A, one obtains

ε(1) � b(1)− f
(

s∗(1)
)− F

(

s∗(1)
)(

s(1)− ŝ∗(1)
)

,

ε(2) � b(2)− f
(

s∗(2)
)− F

(

s∗(2)
)(

s(2)− s∗(2)
)

,

...

ε(t) � b(t)− f
(

ŝ∗(t)
)− F

(

s∗(t)
)(

s(t)− ŝ∗(t)
)

.

(12)

Assuming slow movement of the speaker, an initial guess for
the speaker location at each time instant τ can be taken from
its estimated location at the previous time instant. Namely,
the recursion s∗(τ) = ŝ(τ − 1) can be used. As no significant
movement of the speaker is expected from one time instant
to another, only one more Gauss iteration suffices for obtain-
ing a new estimate. By this stochastic approximation, we ob-
tain a fast adaptation procedure but yet taking into account
past measurements for stabilizing the estimate.

Then, a recursive speaker location estimate is obtained by
solving the linearized WLS problem:
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ŝ(t) = argmin
s(t)

∥
∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎢
⎣

F
(

ŝ(0)
)

...

F
(

ŝ(t − 1)
)

⎤

⎥
⎥
⎥
⎦
s(t)−

⎡

⎢
⎢
⎢
⎣

b(1)− f
(

ŝ(0)
)

+ F
(

ŝ(0)
)

ŝ(0)
...

b(t)− f
(

ŝ(t − 1)
)

+ F
(

ŝ(t − 1)
)

ŝ(t − 1)

⎤

⎥
⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

W

(13)

with ŝ(0) being the initial estimate for the parameter set. Re-
calling that f(s(t)) = A(t)g(s(t)) and using the definitions of
A(t) and g(s(t)), we calculate the derivative matrix to be

F
(

ŝ(τ)
) = ∇s(τ)f

(

ŝ(τ)
)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

mT
1 + r̂1(τ)

ŝT(τ)
∥
∥ŝ(τ)

∥
∥

mT
2 + r̂2(τ)

ŝT(τ)
∥
∥ŝ(τ)

∥
∥

...

mT
M + r̂M(τ)

ŝT(τ)
∥
∥ŝ(τ)

∥
∥

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, τ = 0, 2, . . . , t − 1.

(14)

For solving this WLS problem recursively, we further choose
the weighting matrix to be2

W = blkdiag
{

diag
(

αt, . . . ,αt
)

; diag
(

αt−1, . . . ,αt−1
)

; . . . ;

diag(α, . . . ,α); diag(1, . . . , 1)
}

,
(15)

with parameter 0 < α ≤ 1. Note that an equal weight is given
to all measurement in each time instant, hence all micro-
phone readings have the same weight, while past measure-
ments are reweighted by a factor of α, hence exponentially
discarding the history. By using this weighting matrix, a re-
cursive least squares (RLS) [27] algorithm is easily derived.

Another practical issue concerns the computational bur-
den. At each time instant newM equations become available
(relating to the number of microphones M), resulting in an
M ×M matrix inversion at each RLS iteration. However, by
properly varying the forgetting factor within the well-known
RLS algorithm, the computational complexity can be further
reduced. This procedure is described in Appendix B.

3. THE EXTENDED KALMAN FILTER

The source location problem can be stated in the Bayesian
framework as well. In this framework a dynamic model for
the source trajectory should be given. As the actual track is
unknown, a simplified random walk model is used instead.

s(t + 1) = Φs(t) +w(t), (16)

2 We denote by blkdiag(M1,M2, . . .) a block-diagonal matrix with the ma-
tricesM1,M2, . . . on its main diagonal.

w(t) is the coordinate-wise temporally white driving noise
with covariance matrix Q(t), Φ is a transition matrix as-
sumed to be close to the identity matrix. A nonlinear mea-
surement model was given in (2). Note that in this frame-
work we are using the original hyperbolic model without us-
ing the spherical exposition. The measurement model is re-
peated here for the clarity of the exposition:

r(t) =

⎡

⎢
⎢
⎢
⎣

∥
∥s(t)−m1

∥
∥− ∥∥s(t)∥∥
...

∥
∥s(t)−mM

∥
∥− ∥∥s(t)∥∥

⎤

⎥
⎥
⎥
⎦
+ v(t) � h

(

s(t)
)

+ v(t),

(17)

where v(t) is a temporally white measurement noise signal
with covariance matrix R(t). Note that we are treating here
r(t) as a measured process rather than estimates of the true
range difference. For that sake we have omitted the estima-
tion notation from the equation.

Equations (16) and (2) constitute the state-space model
of the problem at hand. Since this model is nonlinear (due to
the measurement equation), the classical Kalman filter can-
not be used for estimating the state vector. Hence, nonlinear
extensions thereof are called upon. Therefore, we propose to
use the EKF. This procedure only gives a suboptimal solution
to the problem at hand.We note that the usage of similar EKF
formulation was also suggested in [28] where the localization
problem was addressed in the context of multipath problems
in wireless communication.

We give here, for the completeness of the exposition, the
calculations involved in the EKF aiming to solve the localiza-
tion problem. The EKF is essentially a Kalman filter in which
the nonlinearity is mitigated by linearizing the transition
and measurement matrices in each time instant (a complete
derivation of the EKF can be found in many textbooks, e.g.,
[27]). Note that, in our case, (16) is already linear. However
the measurement model in (2) still needs to be linearized.

Assume that an estimate ŝ(t − 1 | t − 1) of the speaker
location at time instant t − 1 is known, as well as its corre-
sponding error-covariance matrix, P(t− 1 | t− 1). Then, re-
calling that the transition matrix is linear, the EKF recursion
takes the following form.

(i) Propagation equations:

ŝ(t | t − 1) = Φŝ(t − 1 | t − 1),

P(t | t − 1) = ΦP(t − 1 | t − 1)ΦT +Q(t).
(18)
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Figure 2: UKF: (a) UT, (b) propagation equations, (c) inverse UT,
and (d) update equations.

(ii) Update equations:

ŝ(t | t) = ŝ(t | t − 1) + K(t)
(

r(t)− h
(

ŝ(t | t − 1)
))

,

H(t) � ∇s(t)h
(

ŝ(t | t − 1)
)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(

ŝ(t | t − 1)−m1
∥
∥ŝ(t | t − 1)−m1

∥
∥
− ŝ(t | t − 1)
∥
∥ŝ(t | t − 1)

∥
∥

)T

...
(

ŝ(t | t − 1)−mM
∥
∥ŝ(t | t − 1)−mM

∥
∥
− ŝ(t | t − 1)
∥
∥ŝ(t | t − 1)

∥
∥

)T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

P(t | t) = (

I − K(t)H(t)
)

P(t | t − 1).
(19)

(iii) Kalman gain:

K(t) = P(t | t − 1)HT(t)
(

H(t)P(t | t − 1)HT(t) + R(t)
)−1

(20)

with the initialization ŝ(0 | −1) and its respective covariance
P(0 | −1).

4. THE UNSCENTED KALMAN FILTER

The EKF is not the only possible procedure for mitigating
the nonlinearity in recursive optimal estimation. Julier and
Uhlmann [29] proposed to use the UKF rather than the EKF
for nonlinear recursive estimation problems and showed that
an improved performance may be obtained.

Figure 2 summarizes the steps involved in the UKF. The
method consists of calculating the mean and covariance of
a state vector, undergoing a known nonlinear transform by
using the unscented transform (UT). For details on the UT,
the reader is referred to Appendix C.

Denote by ŝ(t − 1 | t − 1) the current source position
estimate and by Pss(t − 1 | t − 1) its respective covari-
ance. The method is comprised of four stages. In stage (a),
ŝ(t − 1 | t − 1) is split into σ-points S(t − 1 | t − 1) ap-
proximating the probability density function of the state vec-
tor (see [29]). By using this method, the mean and covari-
ance propagate through the nonlinearities better than in the
EKF method. However, no claims of optimality hold. Then,
in stage (b), each of the σ-points is undergoing the known
nonlinearity yielding the σ-points of the predicted state vec-
tor, S(t | t − 1). The σ-points of the predicted noisy mea-
surement, R(t | t − 1), are calculated as well. In step (c), the
σ-points are collected together yielding the predicted values
ŝ(t | t − 1) and r̂(t | t − 1). This concludes the propaga-
tion stage of the UKF. In step (d), similar to the conventional
filter, the Kalman gain is calculated by K(t) = Psr(t)P−1rr (t).
Note that the covariance matrices estimates are obtained by
the UT. Finally, the update stage is implemented by properly
weighting the predicted values and the current measurement
yielding the new source location estimate ŝ(t | t) and its re-
spective covariance Pss(t | t).

Similar to the EKF, (16) and (2) constitute the state and
measurement equations for the UKF. As the nonlinearity is
known, the UKF can be applied for solving the localization
problem.

5. THE CRAMÉR-RAO LOWER BOUND

Calculating a bound for the performance of the localizer in
the dynamic case is a cumbersome task. To get a rough es-
timate of the predicted performance, following [14], we as-
sume a simplified model of the source locations. Specifically,
we assume that the true range difference readings in the mea-
surement equation (2) are contaminated by Gaussian dis-
tributed noise with zero-mean and covariance matrix Cv.
Note that the existence of directional interferences and rever-
beration phenomenon might cause high level of noise cor-
relation between microphone pairs and across time. More-
over, in high noise level the TDOA estimation algorithm
might produce readings related to the directional noise
source, causing multimodal noise distribution. Nevertheless,
for simplicity, we start by assuming (like Huang et al. [14])
that the noise is unimodal (Gaussian) distributed spatially
and temporally white. Now, CRLB for unbiased estimation
of the source position can be calculated.
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Huang et al. [14] calculated the CRLB in Cartesian coor-
dinates:

J
(

s(t)
) = GTC−1v G, (21)

where

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(

s(t)−m1
∥
∥s(t)−m1

∥
∥
− s(t)
∥
∥s(t)

∥
∥

)T

...
(

s(t)−mM
∥
∥s(t)−mM

∥
∥
− s(t)
∥
∥s(t)

∥
∥

)T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (22)

Note that as no temporal information was used, the obtained
result is time independent. When temporal information is
used, the calculations become too complex to be evaluated

analytically. However, we may assume that the obtainable
bound should be lower.

It is interesting to evaluate the CRLB in polar coordi-
nates. Define the transformation from the Cartesian coor-
dinates s(t) = [xs(t) ys(t) zs(t)]T to the polar coordinates
sp(t) � [φs(t) θs(t) ρs(t)]T as

ρs(t) =
√

x2s (t) + y2s (t) + z2s (t),

φs(t) = cos−1

⎛

⎜
⎝

xs(t)
√

x2s (t) + y2s (t)

⎞

⎟
⎠,

θs(t) = sin−1
(

zs(t)
ρs(t)

)

.

(23)

The Jacobian of the transformation (in Cartesian coordinates
terms) can be easily verified to be

P
(

s(t)
) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− ys(t)
x2s (t) + y2s (t)

xs(t)
x2s (t) + y2s (t)

0

− zs(t)xs(t)
(

x2s (t) + y2s (t) + z2s (t)
)√

x2s (t) + y2s (t)
− zs(t)ys(t)
(

x2s (t) + y2s (t) + z2s (t)
)√

x2s (t) + y2s (t)

√

x2s (t) + y2s (t)

x2s (t) + y2s (t) + z2s (t)

xs(t)
√

x2s (t) + y2s (t) + z2s (t)

ys(t)
√

x2s (t) + y2s (t) + z2s (t)

zs(t)
√

x2s (t) + y2s (t) + z2s (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(24)

Therefore, the CRLB in polar coordinates is given by

J
(

sp(t)
) = P

(

s(t)
)

J
(

s(t)
)

P
(

s(t)
)T
. (25)

In a typical TDOA-based localization scenarios, the mi-
crophone array has small interelement spread relative to
the source position. As the microphone separation distance
is relatively small, it allows for an efficient calculation of
the TDOA readings. In such circumstances, as we will also
demonstrate by our simulative study of Section 6, the ob-
tainable performance in polar coordinates (concerning only
the estimate of the azimuth and the elevation angles in far-
field scenario) is superior to the obtainable performance
in Cartesian coordinates. For that reason we will present
throughout this work the results transformed into polar co-
ordinates.

6. EXPERIMENTAL STUDY

In this section we compare the performance obtained by the
various localizationmethods presented in this work.We start

by evaluating the CRLB for a simplified unimodal scenario.
This calculation leads us to a conclusion that the mean-
ingful information lies in the azimuth and elevation angles
rather than in the Cartesian coordinates or the range infor-
mation. Fortunately, these angle estimates are sufficient for
camera steering applications. We proceed by assessing the
performance of five localization methods presented in this
work. Namely, the two nontemporal methods (LCLS and
Gauss iterations) and the three spatial-temporal methods
(RG, EKF, and UKF). The methods are first assessed by using
artificially contaminated true TDOA readings, in which the
speaker is moving along a helix-shaped trajectory. We then
proceed with a more realistic scenario for which the available
data are estimated TDOA readings obtained from alternating
speakers. The TDOA readings are extracted by a previously
proposedmethod, which exploits speech nonstationarity [8].
It was shown that this method (notated RS1 in [8]) outper-
forms other state-of-the-art algorithms.

6.1. Test scenario

A set of eight microphones is placed on a sphere of radius
0.9m around a reference microphone placed at the origin,
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Figure 3: Speaker trajectory, noise position, and microphones po-
sitions.

mT
0 = [0 0 0], at the following positions:3

mT
1 =

[

0.9 0 0
]

, mT
2 =

[

0.45 0.7794 0
]

,

mT
3 =

[

−0.45 0.7794 0
]

, mT
4 =

[

−0.9 0 0
]

,

mT
5 =

[

−0.45 −0.7794 0
]

, mT
6 =

[

0.45 −0.7794 0
]

,

mT
7 =

[

0 0 0.9
]

, mT
8 =

[

0 0 −0.9
]

.

(26)

The speaker trajectory is set to a helix with a radius of R =
1.5m, given in Cartesian coordinates by (27) and shown in
Figure 3:

xs(t) = R
(

cos
(
t

R

)

+ 2.5
)

,

ys(t) = R
(

sin
(
t

R

)

+ 2.5
)

,

zs(t) = t

10
− 1.5.

(27)

The main axis of the helix is parallel to the z-axis, 3.75m
away from the origin. The speaker completes one full circle,
2πR meters long, in 2πR seconds, hence its tangent speed is
1m/s. The speaker speed along the z-axis is set to 1/10m/s.
The time span of the trajectory is t ∈ [0,T] and the total
duration of the movement is T = 30 s. The entire scenario is
depicted in Figure 3.

3 All dimensions are in meters.

6.2. The CRLB evaluation

We now calculate the CRLB for the tested scenario. We as-
sume that the true range difference (or, equivalently, the
TDOA) readings are contaminated by a unimodal Gaussian
distributed noise signal, with zero mean and standard devi-
ation (STD) of σv = 0.2m in each coordinate. This STD is
equivalent to 4.7 samples at a sample rate of Fs = 8000Hz.
Under these conditions, the CRLB is calculated for both
Cartesian and polar coordinates using the derivations in
Section 5. The resulting bound (in meters for the Cartesian
coordinates and the range, and in degrees for the azimuth
and elevation angles) is depicted in Figure 4. The CRLB nat-
urally depends on the source position. Using (27), we give
the CRLB as a function of the time instant, as it completely
parameterizes the speaker’s trajectory. Note that the Carte-
sian coordinates, as well as the range, cannot be accurately
estimated in this scenario. Actually, the obtainable STD ren-
ders the estimated quantity useless. However, the azimuth
and elevation angles may be estimated in high accuracy. For-
tunately, for camera steering applications, estimation of the
azimuth and elevation angles suffices. Note also that the pre-
sented CRLB serves as a bound to the nontemporal methods
alone, since past measurements are disregarded at each time
instant.

Finally, we comment that the CRLB can be dramati-
cally reduced to an acceptable level (especially, for the Carte-
sian coordinates and range) if, for instance, we set the ra-
dius of the array to 5m instead of 0.9m. The new micro-
phone constellation and the associated CRLB is shown in
Figure 5. However, the larger dimensions of the array impose
huge computational burden on the first stage of the localizer,
namely, the TDOA extraction. In this work, we will concen-
trate on the more practical scenario, where the speaker dis-
tance from the microphones is significantly larger than the
array dimensions.

6.3. Artificially contaminated range difference

The setup presented in Section 6.1 is evaluated by five local-
ization methods. The true range differences are assumed to
be contaminated by spatially and temporally white Gaussian
noise with covariance matrix Cov{v(t)} = σ2v I , σv = 0.2m.

The first localization algorithm is the LCLS method, pre-
sented by Huang et al. [14]. The second is the batch Gauss
method (denoted BG) with three iterations at each time in-
stant. The third is the RG with forgetting factor α = 0.85.
We emphasize that no attempt to optimize this quantity was
made. The value of α = 0.85 was set as a compromise be-
tween fast adaptation requirements and stable estimation.
The fourth is the EKF method evaluated with random-walk
model having driving noise with a STD of 0.5m along each
Cartesian coordinate, that is, Q(t) = 0.52I3. This value was
chosen to be compatible with the assumed changing rate
of the speaker’s position. The performance was found to
be robust to a wide region of this parameter values. Exact
prior knowledge of the measurement noise is not assumed as
well, and the measurement covariance matrix is deliberately
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Figure 4: CRLB results for position estimate along the speaker trajectory for the scenario in Figure 3 with array radius set to 0.9m. (a)
Cartesian coordinates and range. (b) Azimuth (φ) and elevation (θ) angles.

overestimated to R(t) = 10σ2v I ; σv = 0.2m. To allow a
slight decay of past estimates, we set the transition matrix
to the value Φ = 0.99I . The fifth tested method is the UKF
method using the same setup as the EKF. No attempt was
made to adapt the parameters of the filters to a given sce-
nario. One thousand Monte Carlo trials are performed to
obtain a meaningful evaluation of the root mean square er-
ror (RMSE) of the angles estimate. The results for this setup
are depicted in Figure 6.

We have also repeated this experiment with an additional
point noise source which is placed at the [0.5 4 1.5]T co-
ordinate (see Figure 3). By replacing 20% of the range dif-
ference readings by readings associated with the point noise
location rather than the speech source position, we aim to
simulate a scenario where, due to the directional interferer,
the first localization stage, that is, the estimation of TDOA
values, is disrupted by the point noise source.4 Results for
this scenario are depicted in Figure 7. As can be seen, for both
scenarios, the LCLS method has better performance than the
Gauss iterations method. However the RG which exploits the
temporal information obtains better results. The EKF and
the UKF methods remarkably outperform the other meth-
ods, with slight advantage to the latter. Overall, the results
of the Kalman filter-based methods demonstrate acceptable
performance even in these harsh conditions. By comparing
Figures 6 and 7, we see that the obtainable performance in
the first, anomaly-free case is better than that of the latter
scenario. We also remark, that no advantage was gained by
directly estimating the polar coordinates rather than trans-

4 We note that the 80% true range difference readings are still corrupted by
the white Gaussian noise, as in the previous scenario.

forming the estimates of Cartesian coordinates into polar co-
ordinates.

We conclude this section by presenting in Figure 8 a typ-
ical realization for the tracking ability of both the EKF and
UKFmethods for the directional interference case. The small
bias depicted in the figure is probably due to the fact that the
Kalman-based localizers cannot track the fast maneuvering
speaker in this specific setup.

6.4. Switching scenario

We proceed by testing a more realistic scenario. Consider the
following simulation which is typical to a video conference
scenario. Two speakers located at two different and fixed lo-
cations alternately speak. The camera should be able to ma-
neuver from one person to the other. For this scenario, simu-
lation is conducted with one speaker located at the polar po-
sition [φ=(π/4) rad θ=(π/4) rad R=1.5m] and the other
at [φ = (3π/4) rad θ = (π/3) rad R = 1.5m]. A directional
interference is placed at the position [φ = (π/2) rad θ =
(π/4) rad R = 1.0m]. Six microphones were mounted at the
following positions (in meters), relative to the reference mi-
crophone (which is at the axes origin):

mT
1 =

[

0.3 0 0
]

, mT
2 =

[

−0.3 0 0
]

,

mT
3 =

[

0 0.3 0
]

, mT
4 =

[

0 −0.3 0
]

,

mT
5 =

[

0 0 0.3
]

, mT
6 =

[

0 0 −0.3
]

.

(28)

For this scenario, rather than adding white Gaussian noise to
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Figure 5: CRLB results. (a) Test scenario with array radius set to
5m. (b) Cartesian coordinates and range. (c) Azimuth (φ) and ele-
vation (θ) angles.

the true range differences, estimated TDOA values (equiva-
lently, range differences) were used.We note that anymethod
for TDOA extraction can be used in conjunction with our lo-
calization algorithm. However, to give specific simulations,
we used TDOA readings, extracted from the noisy micro-
phone data, by the RS1 algorithm described in [7, 8]. For
that estimation stage, room reverberation (set to reverbera-
tion time of Tr = 0.25 s) and the directional interferer were
taken into account. Room reverberation was simulated by the
image method [30]. Mean SNR level was set to 10 dB. The
same setup for the localization methods is applied here as
well. Namely, the EKF and UKF localizers still use the ran-
dom walk model though a better choice might have been as-
serted.

Figure 9 presents the azimuth angle estimates obtained
by the five methods. Figure 10 presents the respective ele-
vation angle estimates. As can be seen from the plots, the
temporal methods, especially the EKF and UKF algorithms,
clearly outperform the other methods. The transition in-
stances are the main cause of errors in this scenario. While
the batch methods (Gauss and LCLS) demonstrate unsta-
ble behavior in these regions, the recursive methods demon-
strate smooth transition curves due to their inherent mem-
ory. Although the Kalman-based methods are not using a
valid state-space model, their performance is obviously bet-
ter than the nonrecursive methods. The UKFmethod obtains
slightly better results than the EKF method in wide range
of parameters’ value selection. The computational burden of
both methods is comparable.

7. CONCLUSIONS

We presented both nontemporal and temporal algorithms
for talker localization and tracking. The nontemporal meth-
ods are commonly used in speech localization applica-
tions. Among the two batch methods, the LCLS method
outperforms the Gauss method. Three temporal methods
were derived. One is within a non-Bayesian framework
(RG algorithm) and the other two are within the Bayesian
framework, namely, the EKF andUKF algorithms. Both these
Kalman filter-based methods are known to be computa-
tionally simpler than the particle filter. The UKF method
marginally outperforms the EKF method for a wide range
of parameters’ values. Nevertheless, the imposed computa-
tional burden is almost equivalent. Evaluation of the CRLB
showed that for a microphone array with a small interele-
ment spread relative to the source position, angle estimates
might be obtained reliably (as opposed to the Cartesian co-
ordinates estimates). This justifies the use of polar coordi-
nates rather than Cartesian coordinates in our simulations.
Empirical results demonstrate the effectiveness of using the
temporal information. Finally, we emphasize that only a sim-
plified model was used in the Kalman-based methods and
no attempt was made to optimize their parameters. However,
we demonstrated that even with this simple model and with-
out any optimization of the parameters, the temporal meth-
ods outperform the commonly used nontemporal methods.
A more accurate model, in conjunction with the nonlinear
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Figure 6: RMSE results averaging 1000 trials with white Gaussian noise. (a) Azimuth angle (φ). (b) Elevation angle (θ).

extensions of the Kalman filter, might be able to improve the
tracking ability of the algorithms, in particular, at the abrupt
changes instances.

APPENDICES

A. GAUSSMETHOD

Consider the weighted nonlinear LS problem:

min
s(t)

[

b(t)− f
(

s(t)
)]T

W
[

b(t)− f
(

s(t)
)]

, (A.1)

whereW is an arbitrary weighting matrix. Expanding f(s(t))
to a Taylor series around s∗(t) and taking only first-order ap-
proximation, we obtain

f
(

s(t)
) � f

(

s∗(t)
)

+∇s(t)f
(

s∗(t)
)(

s(t)− s∗(t)
)

. (A.2)

Define the error term ε(t) � b(t)− f(s(t)). Then

ε(t) � b(t)− f
(

s∗(t)
)−∇s(t)f

(

s∗(t)
)(

s(t)− s∗(t)
)

= b(t)− f
(

s∗(t)
)−∇s(t)f

(

s∗(t)
)

s(t)

+∇s(t)f
(

s∗(t)
)

s∗(t)

= b̃(t)−∇s(t)f
(

s∗(t)
)

s(t),
(A.3)

where b̃(t) = b(t) − f(s∗(t)) +∇s(t)f(s∗(t))s∗(t). Using the

gradient matrix definition, F(s∗(t)) = ∇s(t)f(s∗(t)), we ob-
tain a linearized LS problem:

min
s(t)

[

b̃(t)− F
(

s∗(t)
)

s(t)
]T
W
[

b̃(t)− F
(

s∗(t)
)

s(t)
]

.

(A.4)

The LS solution is given by

ŝ(t) = [

FT
(

s∗(t)
)

WF
(

s∗(t)
)]−1

FT
(

s∗(t)
)

×W
[

b(t)− f
(

s∗(t)
)

+ F
(

s∗(t)
)

s∗(t)
]

= s∗(t) +
[

FT
(

s∗(t)
)

WF
(

s∗(t)
)]−1

FT
(

s∗(t)
)

×W
[

b(t)− f
(

s∗(t)
)]

.

(A.5)

Since this solution is valid for any s∗(t), we can use it itera-
tively to obtain the Gauss method:

ŝ(l+1)(t) = ŝ(l)(t) +
[

FT
(

ŝ(l)(t)
)

WF
(

ŝ(l)(t)
)]−1

× FT
(

ŝ(l)(t)
)

W
[

b(t)− f
(

ŝ(l)(t)
)]

(A.6)

starting from an initial guess ŝ(0)(t).

B. RLS FORMULTIPLE READINGS

Assume a scenario in which for each time instant we have K
scalar measurements z(τ) ∈ RK related to an unknown p×1
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Figure 7: RMSE results averaging 1000 trial with white Gaussian noise and 20% anomaly. (a) Azimuth angle (φ). (b) Elevation angle (θ).
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Figure 8: One realization of tracking results with white Gaussian noise and 20% anomaly for EKF and UKF. (a) Azimuth angle (φ). (b)
Elevation angle (θ).

parameter vector θ ∈ Rp by a linear K × p transformation
H(τ):

z(τ) ≈ H(τ)θ. (B.1)

The approximation is due to the fact that the measurements
are noisy or due to slight modelling errors. τ = 1, 2, . . . , t

time instants can be augmented to a matrix form z(1 : t) ≈
H(1 : t)θ where

z(1 : t) �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

z(1)

z(2)
...

z(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, H(1 : t) �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H(1)

H(2)
...

H(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (B.2)
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Figure 9: Azimuth angle φ estimation results. The method’s name is presented in the title of each plot.
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Figure 10: Elevation angle θ estimation results. The method’s name is presented in the title of each plot.
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The WLS solution for θ using nonnegative weight matrix
W(1 : t) (of size Kt × Kt) is given by

θ̂ = (

H(1 : t)TW(1 : t)H(1 : t)
)−1

H(1 : t)TW(1 : t)z(1 : t).
(B.3)

Our goal is to evaluate (B.3) recursively. If the parameters
slowly change, a common approach is to apply a diagonal
weight matrix W(1 : t) with powers of a forgetting factor
0 < α ≤ 1 along its diagonal. Note that for measurements
associated with the same time instant, we wish to apply the
same factor, since equations of the same time instant have
equal importance. Such weight matrix can be represented re-
cursively as

W(1 : t) =
[

αW(1 : t − 1) O
OT I

]

, W1:1 = I , (B.4)

where I and O stand for the identity and zero matrices of
sizes K × K and (t − 1)K × K , respectively. At first glance it
seems that a recursive solution to (B.3) necessitates (K ×K)-
matrix inversion in each RLS iteration. However, in practice,
the complexity can be further reduced. This is obtained by
applying the well-known RLS algorithm with a minor twist.
Consider a single equation. If this equation belongs to one of
the K equations constituting the current time instant (but
not the first one), a forgetting factor of 1 should be used.
However, if this equation is the first at the new time instant τ,
a forgetting factor α ≤ 1 must be used instead. Thus, in order
to derive a recursion, where the update stage considers only
a single equation, the forgetting factor should vary. Notating
the time instant by τ (τ = 1, 2, . . .) and the sequential num-
ber of the equation by (τ − 1)K + k (where k ∈ {1, . . . ,K}),
the forgetting factor becomes

forgetting factor =
⎧

⎨

⎩

α, k = 1,

1, otherwise.
(B.5)

It is easily verified that a matrix inversion is not necessary in
this case.

C. THE UNSCENTED TRANSFORM

Let x be an L-dimensional random vector with mean x̄ and
covariance matrix Pxx. Let y = f (x) be a nonlinear transfor-
mation from the random vector x to another random vector
y. The first- and second-order statistics of the vector y should
be calculated. We briefly summarize the method proposed in
[29]. The mean and covariance of x can be presented by the
2L + 1 σ-points

X0 = x̄,

Xl = x̄ +
(√

(L + λ)Pxx
)

l
, l = 1, . . . ,L,

Xl+L = x̄ −
(√

(L + λ)Pxx
)

l
, l = 1, . . . ,L,

(C.1)

where (
√

(L + λ)Pxx)l is the lth row or column of the corre-
sponding matrix square root and λ = α2(L + κ) − L. α de-
termines the spread of the sigma points. α = 1 was used

throughout our simulations. κ is a secondary scaling parame-
ter. The choice κ = 3−Lmaintains the kurtosis of a Gaussian
vector. Throughout our simulations, κ is set to 0.

Define the weights

W (m)
0 = λ/(L + λ),

W (c)
0 = λ/(L + λ) +

(

1− α2 + β
)

,

W (m)
l =W (c)

l = 1/2(L + λ), l = 1, 2, . . . , 2L,

(C.2)

where β is used to incorporate prior knowledge of the distri-
bution (β = 2 for Gaussian distributions). A proper choice of
these parameters and its influence on the obtainable perfor-
mance is still an open topic. Then themean and covariance of
the vector y can be calculated using the following procedure.

(1) Construct x σ-points: Xl, l = 0, . . . , 2L.
(2) Transform each point to the respective y σ-points:

Yl = f (Xl), l = 0, . . . , 2L.

(3) Use weighted averaging ȳ ≈ ∑2L
l=0W

(m)
l Yl to estimate

y mean.

(4) Use weighted outer product Pyy≈
∑2L

l=0W
(c)
l (Yl−ȳ)(Yl−

ȳ)T to estimate y covariance and Pxy ≈
∑2L

l=0W
(c)
l (Xl−

x̄)(Yl− ȳ)T to estimate the cross-covariance between x
and y.

The benefits of using the UT are presented in [29, 31].
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