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1. INTRODUCTION

Context-aware computing applications examine and react to
a user’s changing context in order to help promoting and me-
diating people’s interaction with each other and their envi-
ronments [1, 2]. But, what is context? In [3], it is defined
as “the set of environmental states and settings that either de-
termines an application’s behavior or in which an application
event occurs and is interesting to the user” and it is divided into
four categories:

(i) computing context, such as network connectivity and

nearby resources (printers, displays, etc.);

(ii) user context, such as the user’s profile, location, or peo-
ple nearby;

(iii) physical context, such as lighting, temperature, or traf-
fic conditions;

(iv) time context, such as time of a day, week, or season of
the year.

Location estimation or positioning is therefore essential
information for context-aware or ubiquitous computing sys-
tems, as it can provide a lot of valuable context information.
Positioning has a great potential in areas such as architec-
ture, data-mining, security, or tourism. The most obvious
location-based service is the one answering questions like
“where is the main hall?,” but much more complex services
can be implemented, such as network security based on the

physical location of the users, emergency services, or smart
buildings that automatically turn off the lights when an em-
ployee goes home.

There are two basic approaches for this kind of systems.
The first approach is to develop a signalling system and a net-
work infrastructure of location sensors focused primarily on
positioning applications. The second approach is to use an
existing wireless network infrastructure to locate the mobile
terminals (MT). The advantage of the first approach is that
physical specification, and consequently the quality of the lo-
cation estimation results, is under control of the designer, so
a high accuracy can be achieved. The advantage of the second
approach is that it avoids expensive and time-consuming de-
ployment of infrastructure: location is a value-added service
that should not imply any additional hardware once the com-
munication technology has been deployed, so no initial in-
vestment is necessary. Both approaches have their own mar-
kets but we will focus on the second one as a way to pro-
vide context-aware computing capabilities to existing wire-
less communication systems.

There are different promising wireless LAN (WLAN) or
wireless PAN (WPAN) communication technologies to sup-
port location estimation applications such as Bluetooth, Wi-
Fi, Zigbee, Wi-Max, or even Ultra Wideband. However, due to
the commercial boom of Wi-Fi systems, we will consider the
IEEE 802.11-based WLAN systems. Nevertheless, results can
be easily extended to other wireless network technologies.
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Indoor WLAN positioning systems should employ at
least one of the available physical attributes of the medium
for estimation. The typical features that might be used are the
received signal strength (RSS) of communication, the angle
of arrival (AOA) of the signal, and the time difference of ar-
rival (TDOA). Among them, RSS is the only parameter that
is measurable with reasonably priced currently existing com-
mercial hardware. Previous work [4—16] has shown the fea-
sibility of location estimation WLAN systems based on RSS
measurements.

In this paper, we present a new algorithm for location es-
timation with WLAN systems. We first discuss the proposed
system architecture and problem formulation to obtain the
design parameters. Then we introduce the linear discrimi-
nant functions (LDFs) and hidden Markov models (HMM:s)
to develop an algorithm that improves the location perfor-
mance compared to the already existing ones. In order to test
our algorithm against previous systems for different environ-
ments, we have designed a software model that simulates the
main system parameters.

This paper is organized as follows: in Section 2, we
present the system architecture and the location stack and
discuss the main characteristics of indoor location estima-
tion systems. In Section 3, we describe the location problem
in the specific environment, with an emphasis on the chan-
nel model. In Section 4, we comment previous work in RSS
location estimation, and in Section 5, we present a new posi-
tioning method based on LDF and HMM. Numerical results
are provided under different sets of parameters in Section 6.
Finally, we present in Section 7 the main conclusions about
the algorithm and further research proposals.

2. LOCATION SYSTEM ARCHITECTURE
AND CHARATERERISTICS

2.1. Location system classification

Location systems can be classified according to how the lo-
cation estimation process is distributed between the MT and
the rest of the system components. First, the RSS can be ob-
served by either the MT or the network access points (APs);
second, the estimation can be performed by the element that
senses the RSS or by another. Consequently, there are four
basic configurations shown in Table 1.

In a terminal-based architecture, the MT estimates its
position without any uplink communication. Nevertheless,
the network can broadcast some data, such as calibration

information. This architecture presents two very important
features: privacy and scalability, which will be commented
below. If the MT needs to communicate with the network
to receive the RSS information, it would be a network assisted
architecture, and scalability would be lost. In a network-based
system, the APs obtain the RSS and the network performs the
location estimation, whereas in a terminal assisted system, the
RSS is obtained by the MT, which sends it to the network for
the estimation process.

If the network senses the RSS, two situations could arise:
one is the hearability problem, that is, if the MT, in order
to have the minimum power consumption, adjusts its signal
strength to reach only the closest AP, the signal might not
be received by other APs. The second problem is the perfor-
mance asymmetry; APs are usually connected to a permanent
power source and therefore their transmitted power levels
are roughly constant. However, RSS coming from the MTs
show more variability, as a consequence of the use of bat-
teries and the heterogeneity among devices and manufactur-
ers.

Additionally, terminal-based estimation offers two ad-
vantages already mentioned: it makes the system easily scal-
able, as the network does not perform the estimation pro-
cess, and it provides users with total privacy about their po-
sitions. Privacy is a great concern in a location system, and
most users ask for the control to decide whether their loca-
tion is transmitted to the network or not [16, 17].

Some authors have presented network-based or assisted
systems because they prefer to sacrifice some privacy and
scalability to improve performance (such as the LEASE sys-
tem in [18]) or because privacy is not a problem at all (as it
happens in [19]). For all the reasons exposed above, and spe-
cially to ensure privacy and scalability, we have decided our
architecture to be a terminal-based one.

2.2. Thelocation stack

Intel PlaceLab project has presented a proposal for the stack
of protocols in a location-aware computing paradigm, sim-
ilar in spirit to the seven-layers open system interconnect
(OSI) model in computer networks [20, 21]. This proposal
is known as the location stack and is represented in Figure 1.

The location estimation algorithm presented in this pa-
per should be placed at layers 2 (measurements) and 3 (fu-
sion). Layer 2 imports the raw RSS values from the WLAN
card (layer 1) and it exports estimated position, an integer
from 1 to ¢ (number of possible positions). Layer 3 imports
these data and exports a more refined location estimation
(related to a coordinate system) and more complex infor-
mation such as derivatives (speed, acceleration), positional
histories, and even user identification.

We are therefore splitting our problem into two separate
ones:

(1) positioning: obtaining an initial estimation from the
RSS data;

(2) tracking: refining the estimation and building the MT’s
trajectory.
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FiGure 1: The seven-layer location stack for location-aware com-
puting systems.

2.3. Location estimation system characteristics

Once the system architecture has been established, we should
analyze how this affects its design parameters and character-
istics [6, 22]. Here we briefly discuss some of them.

Granularity

The calibration points are usually collected on a grid of
key-positions within the building. The spacing between grid
crossings influences the granularity of the position estimate.
If grid spacing is too small, RSS from adjacent points is sim-
ilar, so they cannot be distinguished; if it is too large, it dras-
tically reduces accuracy. Usual and practical grid spacing for
offices ranges from 1 to 3 meters.

Accuracy

Accuracy can be measured by two parameters: the average
error distance and the success probability. In this paper, we will
focus on the latter, as commented in Section 6.

Fault tolerance

The system should be able to keep on operation even if some
APs are disabled.

Computation time

As the location algorithms should run in the core of MTs,
processor performance should not be drastically reduced.
System load is therefore an important constraint to its fea-
sibility and it is also related to the battery life.

Calibration

In order to work properly, location systems need to be pre-
viously calibrated. As manual calibration reduces the flex-
ibility of the system (because every time a change in the

Ficure 2: Office building floor that we have considered. Its total
surface is 1200 m?. We defined ¢ = 70 possible locations.

environment happens, a recalibration is needed), it is desir-
able to find a location algorithm that can work well with a
small number of calibration samples, to make the recalibra-
tion process easier and faster. It could even make possible to
substitute on-site real calibration by any suitable ray-tracing
technique, such as [23].

Table size

When a mobile user connects to the network, it receives the
calibration information table (CIT), that is, the initial set of
data that allow the estimation of positions in the grid. These
data have been gathered in the calibration phase and pre-
processed by the network according to the location algo-
rithm, before being broadcasted to the MT. The CIT should
be transmitted through the wireless link and stored at the
memory of the device. Therefore, the greater the table is, the
greater the transmission overhead and the memory occupa-
tion.

These are the main design parameters that determine the
performance of our location algorithm: it should be fast,
fault tolerant, and with acceptable error probability. Besides,
it should require a small number of calibration samples and
a small CIT to reduce the transmission overhead.

3. GENERAL MODEL OF THE SYSTEM

3.1. Problem description

We consider a floor in a typical office building as the one
presented in Figure 2. The total surface can go from 500 to
2000 m?. Employees can work either in cubicles or in separate
rooms. The average surface of a worker’s vital space ranges
from 5 to 10 m?. Assuming a 30-60% of common space, that
is, space shared by all employees (like corridors, stairs, eleva-
tors, bathrooms, etc.), there would be a potential number of
positions ¢ from 20 to 280. Each position will be described by
a 2-D position vector (or 3-D if location estimation is possi-
ble in different floors).

We also consider that a WLAN network has been de-
ployed, with d APs. We will use the existing WLAN in-
frastructure for our location estimation services. User ter-
minals can be laptop or desktop computers, PDA, or even
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UMTS/Wi-Fi cell phones. The location service is very simple;
each user should be able to continuously have knowledge of
his/her position i, which shows the office/desk where he/she
is located. To ensure privacy, location estimation should be
terminal based. Both the terminals and the network should
have previously installed the location software. Every time a
terminal connects to the network, it receives the calibration
information. Terminals store that information and use it to
locate themselves by analyzing the RSS from the surrounding
Wi-Fi antennas.

The calibration information is obtained in the calibra-
tion phase when m calibration samples are taken per posi-
tion and are stored in the CIT Y. The calibration phase can
be real, with measurements taken in different positions, or
simulated with a ray-tracing model of the floor. Calibration
should be repeated whenever a major change happens in the
floor distribution.

Every time an MT performs a measurement, it obtains an
RSS vector x,

x! = [x1,%,. ..

,xd]s (1)
where xy is the RSS from the kth AP. Additionally, RSS vec-
tors obtained during the calibration phase are defined as'y,

YT: [yl)yZ)u-)yd]; (2)

and their position denoted as position i, i = 1,...,c. We de-
fine n as the number of training samples y and let Y be the
n-by-d matrix of training samples, which we assume to be
partitioned as

with the samples from position i comprising the rows of Y;.
Location estimation can be therefore defined as obtaining the
position i that corresponds to a received RSS vector x.

In order to compare our algorithm with the previous
ones, we have implemented a software model that simulates
different environments. The model builds a square floor with
¢ positions, surrounded by a circumference where the APs are
equally distributed, as it is shown in Figure 3. Each position
corresponds to a position vector and it denotes a vital space
of 9m?. We consider that an error has occurred when we lo-
cate a user who is at position i as if he were at j. We cannot
provide further accuracy inside a vital space.

Our approach based on vital spaces is different to the
usual grid-oriented one. Vital spaces are related with the
physical configuration of the environment and should be de-
fined when the software is installed. Vital spaces therefore al-
low a higher accuracy in the most important areas for the
system administrator, but they require more human interac-
tion than grids, which can be fully automatized.

FIGURE 3: General building model for ¢ = 25, d = 3. Each square
corresponds to a vital space of 9 m?.

3.2. Properties of indoor RSS in WLAN system

Indoor signal propagation is difficult to predict due to the
strong multipath and propagation effects such as reflection,
diffraction, and scattering [6]. Multipath attenuation makes
the signal fluctuate over its mean value for a given position.
Received signal is usually modeled as the combination of the
large-scale and small-scale fading effects [24]. Large-scale fad-
ing, that models the attenuation effects due to walls and fur-
niture and predicts the RSS average value depending on the
position, is widely accepted to follow a log-normal distribu-
tion [24, 25]. Small-scale fading reflects the signal fluctua-
tions due to multipath attenuation; it is usually modeled as a
Rician distribution if there is a line-of-sight path (LOS) and
as a Rayleigh if there is no line-of-sight path (NLOS). De-
spite the fact that there are several small-scale fading models
such as [26-28], they are mainly focused on describing signal
properties from a communication perspective and they do
not properly describe the RSS properties. The research car-
ried out in [29, 30] is the most exhaustive one we have found
about RSS properties.

User’s orientation

Because the resonance frequency of water is at 2.4 GHz and
the human body consists of 70% water, the RSS is absorbed
when the user’s obstructs the signal path and causes an extra
attenuation. Already mentioned in [4], this effect can be a
very significant source of distortions [29].

Large-scale fading

Although the signal mean value can usually be modeled as
stated above, there are some conflicting results. The mea-
surement of the large-scale fading distributions shown in
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FIGURE 4: Histogram of the simulated RSS fluctuations for position
(0,0), or = —17dB, oy = 5dB, 8000 samples, c = 49, d = 1.

[26, 31] follow asymmetric distributions that do not fit the
traditional log-normal. Additionally, their standard devia-
tions seem to decrease with the distance between the MT and
the AP.

Overlapping

RSS from two positions are grouped in different clusters. In
[29], it is suggested that only two APs are sufficient to dis-
tinguish between locations for a system with small number
of positions and coarse location granularity. Increasing the
number of APs is one way to further separate two-location
clusters.

Stationarity and independence

RSS from multiple APs can be considered uncorrelated. Sta-
tionarity can be assumed for small time scales.

Following these assumptions, our simulator models the
RSS as the combination of two distributions: the mean value
of the RSS between different locations is given by a log-
normal of parameter oy, and the difference between power
samples at a given location is considered to follow a Rayleigh
distribution of parameter oy, as shown in Figure 4. We also
consider that the receiver averages the received samples to re-
duce the impact of noise and distortion.

4. PREVIOUS WORK
4.1. k-nearest neighbor methods

In the last years, a number of different algorithms have been
proposed to solve the RSS location estimation problem. One
of the most important is the k-nearest neighbor (KNN) algo-
rithm [4-6], which is based on estimating the position i de-
pending on the average (in physical space) of the coordinates
of the k closest calibration points to the received RSS vector

x (in RSS space). The generalized vector distance d(x,y’) can
be defined as

1 d 1 1/p
iy L _i|P
dey) = 5(S o in-nl?) @
where p=2 denotes the euclidean distance and p = 1 the

Manhattan one. The weight wy can be used to bias the dis-
tance by a factor that indicates how reliable the calibration
sample y’ is, but the improvement is not very significant [6].

The algorithm main problem is the size of the CIT, which
also makes the system slower due to the search times. One
possible solution is to average the calibration points from ev-
ery given position, thus reducing the CIT size.

In [7] a different KNN algorithm is proposed, denoted
Weighted k-nearest neighbors, where once we have found the
k-closest calibration points, the average of coordinates is
weighted by the distance in the RSS space,

| S (o y) + do)ly .
LS Wdxy) +dy)

where 1; are the physical coordinates of position j (with cali-
bration vectors y/) and dy is a small real constant to avoid di-
vision by zero. Traditional KNN is a special case of (5) with-
out using distance-dependent weights.

Results show that WKNN achieves low estimation error,
the size of the CIT and the computation time being their
main drawbacks [7].

4.2. Bayesian decision methods

Bayesian decision algorithms employ the Bayes theorem to
estimate the position [8—12]. Position i is calculated as

P(x | i)P(i)
P(x)

where P(x | i) is the probability of receiving a sample from
position i and P(i) is the probability of an MT being at this
position, which initially can be considered as uniform in the
location area. P(x | i) is calculated from the CIT Y. There-
fore, the location estimation problem becomes a standard
maximization problem,

i = argmax, P(x | i)P(i). (7)

(6)

i = argmax,P(i | x) = arg max,

The main drawback of these algorithms is the large number
of calibration samples necessary to construct the distribution
P(x | i). One possible approach to reduce the number of cal-
ibration samples is clustering, as proposed in [10]. Another
approach is assuming that the RSS signals from different APs
are independent,

d
P(x | i) = []P(x | ), (8)
k=1
so the problem of estimating the joint probability distribu-
tion function (pdf) becomes the problem of estimating the
marginal ones [11].
As pdfs are usually discretized, Bayesian methods are also
called histogram methods.
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4.3. Kernel methods

Kernel methods are related with Bayesian ones, as they try to
simplify the P(x | i) estimation by assuming that it is a linear
combination of m pdfs

M=

P(x|i) = K(xyl), )

1
m
i

Il
—

where K(-; y{) denotes the kernel function [9, 13]. One widely
used kernel function is the Gaussian kernel

Klyl) = (x—y)*
xXy]) = S|~ , (10)

where ¢ is an adjustable parameter that determines the kernel
amplitude. When ¢ approaches zero, this method becomes a
KNN.

4.4. Support vector machines methods

A very interesting approach to location estimation is to apply
support vector machines (SVM) to the RSS space, increasing
the number of dimensions and employing linear discrimi-
nant functions in an optimization problem, as described in
[14].

Results in [14] also show that SVM methods present a
performance similar to WKNN, both in time and accuracy,
outperforming the other techniques (Bayesian, KNN, and
neural networks).

4.5. Neural networks methods

A multilayer perceptron (MLP) can also be applied to RSS lo-
cation estimation, as discussed in [15]. The transfer function
for the hidden layers is the sigmoidal function

flx) = . (11)

Results in [15] show that the MLP is the fastest algorithm
and that its accuracy is only inferior to WKNN and SVM
methods. The main drawback of neural networks methods
is that they require a high number of calibration samples,
which is very undesirable as already commented.

4.6. Triangulation or multilateralization methods

All methods commented above are known as fingerprinting
methods, because the system tries to find the position that
best “matches” the calibration information. Triangulation
however works in a different way. Instead of constructing the
RSS space from the calibration samples, the MT uses the RSS
to estimate its distance with the AP [16]. Once the distance
has been estimated, the MT applies traditional triangulation
methods to estimate its position [32].

The relationship between distance and power is usually a
nonlinear one in an indoor environment and it changes de-
pending on the position. Therefore, despite that these sys-
tems are computationally light, they are not very accurate, as
commented in [6].

5. ALOCATION METHOD BASED ON LDF AND HMM
5.1. Overview

As commented in Section 2, the design parameters force our
system: (i) to be fast in order to reduce as less as possible
the MT performance, (ii) to use small number of calibration
samples to make the system flexible, and (iii) to employ small
CIT to avoid transmission overheads and memory occupa-
tion. It was also commented that our system works in two-
layer architecture: layer 2 (measurements) should be fast and
require few calibration samples to produce initial location es-
timation, whereas layer 3 (fusion) should be accurate and try
not to increase too much the computational time.

Methods presented in Section 4 are potential candidates
to implement in layer 2, whereas layer 3 can employ HMM or
Kalman filters, as commented in [33]. However, we proposed
here a new algorithm which combines a fast and simple Ho-
Kashyap procedure for layer 2 combined with a robust HMM
in layer 3, in order to improve the system capabilities, as de-
scribed below.

5.2. Layer 2: application of LDF to positioning

As commented above, location estimation can be defined as
obtaining the position i that corresponds to a received RSS
vector x. It is possible to train the system to map the RSS
space in ¢ decision region, each decision corresponding to a
position i. Consequently, once an RSS vector x is received,
it is directly assigned to a physical location depending on its
decision region. This decision is taken through the discrimi-
nant functions g;(x), so we assign x to an estimated position
iif

Vi=1,...

gi(x) > g;(x) cj# i, (12)

or equivalently
i = argmax; g;(x). (13)

An interesting particular case is when g;(x) are linear
(LDF)

&(x) =&l +ag = a/x, (14)
where x" is defined as the d’ x 1 vector (d' = d + 1),
x'T = [x1,%,...,%4,1]. (15)

To simplify notation, from now on, we will denote x" as x.

The decision rule is therefore reduced to find the maxi-
mum of ¢ vector products. We cannot assure that the LDFs
are optimal for all the possible environments, especially if the
distributions P(x | i) are multimodal, which is very strange
in location problems. As already commented, in layer 2 it
is worth sacrificing some performance to gain simplicity, so
LDFs are potential candidates to implement it.

Minimum square error (MSE) procedures can be em-
ployed to calculate the LDFs when the calibration samples
show a nonseparable behavior [34]. We seek a weight vector
al that is the MSE solution to the equations

aly' = aly/ =0 j#i (16)
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As commented in Section 3, we let Y to be the n-by-d" matrix
of training samples, which we assume to be partitioned as

Y,

yo |2 (17)

Y.
Similarly, let A be the d’-by-c matrix of weight vectors

A= [al a - - ac] (18)

and let B be the n-by-c matrix

where all of the entries of B; are zero except those in the ith
column, which are unity. (16) can be expressed as

YA = B, (20)

and if we compute matrix A to minimize the square-error-
matrix

lell> = e’e = (YA — B)” x (YA - B), (21)
then A yields
A= (Y'Y) 'Y'B = Y'B, (22)

and consequently A is an MSE solution to (16).

It is important to notice that, as the number of sam-
ples approaches infinity, the solution (22) yields discriminant
functions g;(x) that provide a minimum MSE approximation
to the Bayes discriminant function

gi(x) = P(i [ x), (23)

and the solution of (13) would be equivalent to the Bayesian
one of (6).

Equation (22) can be calculated directly or by a gradient
descent procedure. The second approach has two advantages
over merely computing the pseudoinverse: (i) it avoids the
problems that arise when Y'Y is singular, and (ii) it avoids
the need for working with large matrices. There are differ-
ent gradient descent procedures suitable for a nonseparable
behavior, such as the LMS rule.

The problem of the LMS rule is that, although it con-
verges whether the calibration samples are separable or not,
there is no guarantee that the resulting LDFs are separating
functions in a separable case. To avoid this problem, we can
use the Ho-Kashyap procedure, which works both in the sep-
arable and nonseparable cases [34].

The Ho-Kashyap is an iterative procedure where both A
and B are estimated. We first initialize By with the values
commented above and every step s, the calculations are

A, =Y'B,
€ = YAS - Bsa (24)
Bs1 = Bs + 7’](5)(65 + Abs [es]))

where 7(s) is a positive scale factor or learning rate that sets
the step size. Abs[-] is the positive part function.

The use of LDF greatly simplifies the location estimation
problem. Bandwidth efficiency is guaranteed by sending A, a
d’-by-c matrix, as the CIT instead of Y, an n-by-d’ as in pre-
vious methods, with n > ¢. Computation time is optimized
by substituting the search in the probability distribution ta-
ble (in Bayesian methods) or directly in Y (in KNN ones) by
¢ products alx, especially for high dimensionality environ-
ments.

5.3. Layer 3: application of HMM to tracking

Position accuracy can be greatly improved if a series of layer
2 estimations is available unless the MT is moving with very
high speed or the time interval between measurements is very
long. Such a series of estimations from layer 2 allow layer 3
to keep track of the MT as a function of time and to present
derivative parameters such as speed, acceleration, or user’s
profile. HMM, which have been successfully applied in a wide
range of applications, are convenient to model the tracking
problem [33]. A very good HMM tutorial can be found in
[35].
An HMM is characterized by the following.

(1) The number of states in the model, which in our prob-
lem is equal to the number of possible positions ¢. We
denote the individual states as L = {l1,l,...,[.} and
the state at time t is ¢;.

(2) The number of distinct observation symbols per state,
which is also ¢, discrete alphabet size exported from
layer 2.

(3) The state transition probability distribution P = {p;;},
where

pij = Plqi1 =1 | q: = 1i]. (25)

This probability can be unknown a priori, but we can
infer some of its parameters. p;; are zero for nonadja-
cent positions or for positions separated by obstacles,
such as walls. The rest of the parameters should be es-
timated taking into consideration the user’s profile and
they will be updated during the session.

(4) The observation symbol probability distribution in
state j, P(Oy | 1}), is the probability of receiving at time
t the estimation O, from layer 2 of position i if the pre-
vious state was [;:

P(O; ;) =P(Or =il g =1)). (26)

This distribution will be inferred in Section 6 accord-
ing to the results from layer 2.
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(1) Initialization:

81(i) = mP(Oy | I;)

28
y(i) = 0. (28)

(2) Recursion2 <t <T:

&) = m_aX[é\t—l(i)Pij]P(Or | lj)
1<i<c (29)
Wt = argmaxlsisc [6f*1(l)p1]]
(3) Termination:

qF = argmax,_,__[0r(i)]. (30)

(4) Path backtracking (most likely trajectory):

g =vm(qly), t=T-1,T-2,...,1, (31)
where §;(j) is the best score (highest probability)
along a single path, at time ¢, which accounts for
the first t observations and ends in state [;. y;(j) is
a matrix that contains the most probable
trajectory. A more detailed description of the
Viterbi algorithm can be consulted in [36].

ALGORITHM 1

(5) The initial state distribution 7 = {7;}, where
i = P[ql = l,] = P(l) (27)

Initially we can consider this distribution to be uni-
form in the location area, tough if possible we could
include information about positions that never can be
the initial ones.

These parameters are updated during the session, and
they constitute the user’s profile that can be stored and
employed in future sessions. The updating process can be
found in [35].

To obtain the most likely trajectory given a sequence of
T observations Oy, O, ..., Or from layer 2, we can apply the
Viterbi algorithm [36] (Algorithm 1).

The use of HMM in layer 3 should refine the location
estimation, maintaining the system time performance, as it
will be analyzed in Section 6.

6. NUMERICAL RESULTS
6.1. Layer 2: algorithm comparisons

We first compare the performance of the second layer of our
system against other algorithms presented in the literature.
We have selected two KNN algorithms, two Bayesian ones,
and another MSE method. System parameters are defined in
Table 2.

The two KNN algorithms are a simple 1-KNN and a 5-
WKNN, where the preceding numbers denote the number
of neighbors considered. They are supposed to display the

TABLE 2: System parameters.

Parameter Description

c Number of positions

d Number of APs

m Number of calibration samples per position
i MT position

n Number of training samples n = ¢ X m

Y Calibration information table (CIT)

Xk RSS from the kth AP

best accuracy but also high computational times and trans-
mission overheads. The two Bayesian methods are based on
(8), which transforms the problem of estimating the joint pdf
into the problem of estimating the marginal ones. We have
decided to analyze a 4-Bayesian and a 12-Bayesian, where the
numbers 4 and 12 denote the number of containers of each
marginal histogram. The MSE is an LMS rule, with an esti-
mation phase similar to that of the Ho-Kashyap method (16),
but where the A matrix is constructed according to (22). As
commented before, the problem of the LMS rule is that there
is no guarantee that the resulting LDFs are separating func-
tions in a separable case. Our layer 2 is based on the Ho-
Kashyap method presented in (24) where the learning rate
#(s) = 1/s and the number of iterations smayx is set to 2000.

As mentioned in Section 3, we employ a novel approach
where, instead of mapping the physical space with a fixed
grid, we consider it to be constructed by the aggregation of
different vital spaces, each of them with an average surface
of 9m?, which yields a location uncertainty of around 3 m if
the location estimation is successful. The accuracy parameter
changes from the error distance to the probability of a success-
ful location (Ps), defined as the probability of correctly esti-
mating an MT at position i. This probability is calculated as
the ratio between the number of successful estimations and
the total number of samples.

RSS samples are considered to follow a distribution as the
one described in Section 3. In Figure 5, the algorithm per-
formance as a function of the standard deviation of the log-
normal large-scale component oy is shown. We have simu-
lated 10 different buildings, each with 49 possible locations,
4 APs, and 10 calibration samples per location. The number
of transmitted samples in order to compute the P; is 200. Re-
sults show how the performance is enhanced with larger oy,
as it produces a spreading over the RSS space. It is important
to notice that this property holds if large-scale distortions af-
fect in the same way the calibration and the location samples.
If not, performance would be degraded as the deviation in-
creases.

In Figure 6, the influence of the small-scale component
is shown. It can be seen how the performance is degraded
as the parameter op increases. As it happens in Figure 5,
KNN methods show the best results, followed by the Ho-
Kashyap method. Bayesian and LMS algorithms display the
worst performance. 1-KNN and 5-WKNN can reach a suc-
cess probability of 1 for low small-scale distortions, whereas
Ho-Kashyap cannot improve the 80% of successful locations.
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FIGURE 5: Probability of a successful location as a function of the
standard deviation of the log-normal large-scale channel compo-
nent. ¢ = 49 locations, d = 4APs, m = 10 calibration sam-
ples/location, or = —27dB (Rayleigh small-scale standard devia-
tion), 200 samples/simulation, 10 simulations.

5-WKNN performs worse than 1-KNN because it sometimes
takes into consideration calibration samples from locations
that can be far away from the correct one, thus increasing the
error probability for high small-scale distortions.

However, as it has already been mentioned, accuracy is
not the main objective in layer 2. It should be fast enough and
require few calibration to produce an initial location estima-
tion that layer 3 can use to infer the right position. Following,
we have analyzed the behavior of the different algorithms in
terms of success probability, computational time, and trans-
mission overhead as a function of the number of calibration
samples. The first of these results is presented in Figure 7. It
can be seen how the performance increases with the num-
ber of samples for all the algorithms, although calibration is
more important for Bayesian and WKNN algorithms than
for MSE and 1-KNN ones, which can operate without severe
degradation with less than 5 samples per location.

In Figure 8, time performance is displayed, related to
the computational time of the Ho-Kashyap method with
m = 1 training sample/position. It should be noticed that
time grows linearly in WKNN and KNN algorithms and
that it is independent of the number of calibration sam-
ples for Bayesian and MSE ones. Nevertheless, Bayesian
computational times are more than 20 times greater than
MSE ones. Consequently, MSE algorithms (LMS and Ho-
Kashyap) show a superior time performance than the other
algorithms, as expected.

CIT size is shown in Figure 9. It grows linearly with m
in WKNN and KNN algorithms as they send all the calibra-
tion samples as CIT. It is independent of m for the other al-
gorithms, increasing with the number of containers in the
Bayesian ones (CIT is three times greater in the 12-bayesian

Probability of a successful location

—-45 —-40 -35 -30 -25 -20 -15 -10

Small scale standard deviation (dB)

-©- LMS —-6¢- 4-Bayesian
-B- KNN —%— 12-Bayesian
—%- 5-WKNN -v- Ho-Kashyap

FIGURE 6: Probability of a successful location as a function of the
standard deviation of the Rayleigh small-scale channel component.
¢ = 49 locations, d = 4 APs, m = 10 calibration samples/location,
oy = 5dB (log-normal large-scale standard deviation), 200 sam-
ples/simulation, 10 simulations.

Probability of a successful location

Number of calibration samples per location

-©- LMS —-9— 4-Bayesian
—-8- KNN —%- 12-Bayesian
-%- 5-WKNN -v- Ho-Kashyap

FIGURE 7: Probability of a successful location as a function of the
number of calibration samples per location m. ¢ = 49 locations,
d = 4APs, o = —22dB, oy = 5dB, 200 samples/simulation, 10
simulations.

than in the 4 one). Once again, MSE performance is by far
superior, due to the employ of LDF, which guarantees band-
width efficiency. MSE methods are therefore more suitable to
implement layer 2 in terms of time and overhead, and among
them, the Ho-Kashyap one shows a better location perfor-
mance than the LMS.
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F1GURE 8: Time performance related to the time of the Ho-Kashyap
with m = 1 as a function of the number of calibration samples per
location m. ¢ = 49 locations, d = 4 APs, op = —22dB, oy = 5dB,
200 samples/simulation, 10 simulations.

It is also interesting to see how performance evolves when
the physical conditions change. In Figure 10, we can see how
the success probability decreases as a function of the phys-
ical location area when the number of positions ¢ increases
(as the average position area is fixed to 9 m?). Performance
reduces almost linearly with ¢ although 1-KNN and Ho-
Kashyap present smaller slopes and consequently they are less
sensible to configuration changes. It is important to notice
how 4 APs can theoretically manage more than 50 locations,
which means that an approximate area of 500 m? could be
covered by only 4 APs.

Another interesting result usually presented in posi-
tioning analysis is the evolution with the number of sen-
sors (APs). It is shown in Figure 11 where it can be seen
that performance improves with the number of APs, sat-
urating when it is greater than 6-8 APs (for 49 locations).
This conclusion gives us the possibility of implementing
an algorithm of smart selection in layer 2. In this algo-
rithm, if the number of active APs for a given MT is suf-
ficiently high, we can discard those that show the great-
est fluctuations between consecutive RSS samples in order
to reduce the small-scale distortions while keeping d high
enough to display a good location performance. From re-
sults in Figures 10 and 11, we propose the deployment of
a grid of APs with a specific geometry (squares, pentagons,
hexagons, etc.). This grid presents two advantages: it al-
lows the number of APs that cover a specific area to be
approximately constant, and if the number of APs is suf-
ficiently high (e.g., hexagons for less than 49 positions),
smart selection can be implemented, thus reducing distor-
tions.
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FIGURE 9: Size of the calibration in bytes as a function of the number
of calibration samples per location m. ¢ = 49 locations, d = 4 APs,
or = —22dB, oy = 5dB, 200 samples/simulation, 10 simulations.

Probability of a successful location

Number of positions
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FIGURE 10: Probability of a successful location as a function of
the number of possible locations ¢, d = 4APs, m = 10 sam-
ples/position, o = —22dB, oy = 5dB, 200 samples/simulation,
5 simulations.

It is also interesting to notice how performance decreases
with a large number of APs in Bayesian algorithms, as the
assumption that the RSS signals from different APs are inde-
pendent does not hold when the APs are close enough.
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FiGURre 11: Probability of a successful location as a function of the
number of APs d, ¢ = 49 locations, m = 10 samples/position, or =
—22dB, oy = 5dB, 200 samples/simulation, 15 simulations.

TaBLE 3: Figure 12 configurations.

Name Radius Angle
Initial 100% 2m
HK 1 66% 27
HK 2 55% 2m
HK 3 33% 2m
HK 4 20% 2m
HK 5 100% 7T
HK 6 100% 0.2m

6.2. Layer 2: the Ho-Kashyap method

We would like to analyze some specific properties of the Ho-
Kashyap method as the potential candidate to implement
the location algorithm of layer 2. We would like to see first
how the performance depends on the APs distribution: APs
have been considered to be equally distributed in a circum-
ference that surrounds the location area as shown in Figure 3;
we would like to see what happens when both assumptions
change, and the APs are introduced inside the location area
and concentrated in a given arc of circumference.

In Table 3 we present the different configurations consid-
ered, depending on their radius (denoted as a percentage of
the radius in the initial case) and the angle they cover (the
initial case would be 27). Corresponding results are shown
in Figure 12.

As it can be seen in Figure 12, if APs are not too close
to one another, introducing them inside the location area
does not impact too much on the performance, as it happens

Probability of a successful location

Number of APs
—6©— Initial -%x- HK4
—-B- HK1 -%— HK5
-©6- HK2 -x— HK6
-v- HK3

FIGURE 12: Probability of a successful location as a function of the
number of APs d for the AP distributions of Table 3, ¢ = 49 lo-
cations, m = 10 samples/position, o = —22dB, oy = 5dB, 200
samples/simulation, 5 simulations.

in HK 1 (66% of radius) and HK 2 (55%), where a small
improvement with respect to the initial distribution can be
noticed. However, if they get too close, performance quickly
degrades, as in HK 3 (33%) and HK 4 (20%). Something
similar happens with the angular distribution; if APs occupy
only a semicircumference as in HK 5 (angle ), performance
is similar to the initial one. Notwithstanding, if they concen-
trate in a small angle like in HK 6 (0.27), performance gets
worse, but not so much as it could be expected. In general
terms, the system is not very sensible to the APs distribution,
which is a very desirable characteristic.

We are also interested in estimating the observation sym-
bol probability distribution in state j, P(O; | [;), which is the
probability of estimating position O, = i if the previous state
was [;, as this probability is necessary for the HMM in layer
3. In order to do this, we have calculated the pdf of the obser-
vations received when the MT is at different positions, as it
is shown in Figure 13 for position (0,0) and in Figure 14 for
position (0, 4).

In both figures, it can be seen how the pdf consists of a
probability peak at the MT position and different “errors”
that do not seem to follow any specific distribution. There-
fore we have decided to model P(O; | ;) as a peak at [;, and
a uniform distribution among the other positions:

Ppeak(j) lfot = j:
P(O; | 1) = 1 (32)

———— ifO #j,
0= ppea(i)) "7
where ppear(j) is the peak probability.

This probability depends on the considered MT position
j» as presented in Figure 15. Here it can be seen how peak
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F1GURE 13: The observation symbol probability distribution in state
j = (0,0), P(O; | I; = (0,0)). ¢ = 81 locations, d = 4APs,
m = 10 samples/position, op = —17dB, oy = 5dB, 50000 sam-
ples/simulation, 10 simulations. The peak corresponds to the prob-
ability of a successful location (28%).
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F1GUrE 14: The observation symbol probability distribution in state
j = (0,4), P(O; | I; = (0,4)). ¢ = 81 locations, d = 4APs,
m = 10 samples/position, og = —17dB, oy = 5dB, 10000 sam-
ples/simulation, 10 simulations. The peak corresponds to the prob-
ability of a successful location (54%).

probability varies more than 0.15 between different points,
degrading in the center of the location area as these positions
are far from all the APs.

Notwithstanding, in order to make the system simpler
and to reduce calibration, we have implemented layer 3 as-
suming a constant ppeax for all the positions, as commented
below.

6.3. Layer 3: application of HMM

Layer 3 is in charge of receiving the observations O, from
layer 2 and inferring the MT position and trajectory trying
to reduce as less as possible the system speed. As commented
above, we have implemented this layer with an HMM of ¢
states.

Probability (%)

FIGURE 15: Probability of a successful location as a function of the
MT position. ¢ = 49 locations, d = 4 APs, m = 10 samples/position,
or = —12dB, oy = 5dB, 1960 samples/simulation, 20 simulations.

In order to implement it, we had to define the state tran-
sition probability distribution P = {p;;} or transition matrix,
the observation symbol probability distribution P(Oy | [;) or
observation matrix, and the initial state distribution 7 = {m;}.

We consider that the MT enters the location area through
a given position (which therefore determines the initial state
distribution 77) and moves with a probability psutic(j) of re-
maining at position j and 1 — psaric(j) of changing of posi-
tion. If the MT changes its position, it can move with equal
probability to all the open adjacent positions. A position i is
considered to be open from an adjacent position j if there is
no obstacle between them.

To make the scenario more realistic, we force the MT to
move in a corridor from the entry to the opposite side, pass-
ing through the central position (0,0), where the probabil-
ity of not moving is denoted as pcentral and it is higher than
Dstatic(j) as we considered that this is the user’s vital space,
where the MT remains most of the time. The MT trajectory
is therefore fully characterized by pcentral for the central posi-
tion and pstatic, which we considered constant for all the other
positions.

The observations matrix is modeled following (32) and
we have decided to test two possible values of pyea. One of
them is the same for all the possible environments as it is a
constant with a value ppeac = 0.5 for all the positions. The
other depends on the environment and it changes depending
on the system parameters presented in Table 2, so we have
decided to take as ppeak the value of the average for all the
positions of the probability of a successful location.

When trying to model the transition matrix, we find a
problem as we do not know how much information does the
system store about the user’s profile, characterized by pcentral
and piatic. Therefore we have also decided to consider two
possible alternatives: in one of them the transition matrix in-
cludes perfect information about the user’s profile, whereas
in the other the system works with a raw estimation pl.
for all the positions, including (0,0). In the following sim-
ulations, we have taken pcentral = 0.996, psatic = 0.6, and

P;tatic =0.9.
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TaBLE 4: Simulated HMM models.

Estimation of the P (O, | [;)

Perfect Estimation (0.5)
Estimation
of the Perfect HMM 1 HMM 2
transition  Estimation (0.9)  HMM 3 HMM 4
matrix P

Probability of a successful location
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FIGURE 16: Probability of a successful location as a function of the
HMM block length T. ¢ = 49 locations, d = 4 APs, m = 10 sam-
ples/position, or = —7dB, oy = 5dB, 10000 samples/simulation,
15 simulations.

In Table 4, the four different HMM models that are tested
can be seen. In HMM 1, both the transition and observation
matrix are perfectly estimated, in HMM, 2P(O; | ;) is esti-
mated following (32), whereas in HMM 3 it is perfectly es-
timated but the transition matrix is modelled as considered
in the previous paragraph (pi.;. = 0.9). Finally, in HMM 4
both matrices are estimated.

Results are presented in Figures 16 and 17 for high and
low small-scale distortions, respectively. We are comparing
the four HMM models with a “pure” layer 2 Ho-Kashyap
procedure and a 1-KNN. The Ho-Kashyap can be considered
as an especial case of HMM where T, the block length, is set
to 1. The 1-KNN is presented in order to compare our meth-
ods with the best performance layer 2 algorithm.

In Figure 17, it is shown that, in a low-distortion environ-
ment, HMM methods can achieve a higher success probabil-
ity than the other algorithms, including KNN. It should also
be noticed that the performance between perfect and approx-
imate estimations of the observation matrix is very similar
(comparisons between HMM 1-2 and HMM 3—-4), whereas
the estimation of the transition matrix has a considerable im-
pact on the result. Those models that estimate the transition

Probability of a successful location

10 20 30 40 50 60 70
Size of the HMM block

80 90 100 110 120

-B8- KNN -%- HMM 3
-6- HMM 1 -9$- HMM 4
-%x— HMM 2 -v- Ho-Kashyap

FIGURE 17: Probability of a successful location as a function of the
HMM block length T. ¢ = 49 locations, d = 4 APs, m = 10 sam-
ples/position, or = —22dB, oy = 5dB, 10000 samples/simulation,
15 simulations.

matrix (HMM 3 and 4) need more than 40 samples per block
in order to reach a similar performance to the KNN algo-
rithm, which is a ~ 20% worse than the probability achieved
by those with a perfect user’s profile (HMM 1 and 2).

In a high-distortion environment as the one presented
in Figure 16, where layer 2 algorithms totally fail to correctly
estimate the MT position, models with a perfect user profil-
ing still locate it with success probabilities beyond 80%. It is
now clearly seen how although the observation matrix esti-
mation degrades a little bit the location estimation, the sub-
stantial degradation happens if the user’s profile has not been
correctly estimated, as in models 3 and 4, which show a sim-
ilar behavior to layer 2 algorithms.

This analysis shows the importance of a correct user’s
profiling, with a higher impact on the performance than
other “traditional” parameters, such as the number of cali-
bration points or the number of APs. A good profiling en-
sures a high location probability and reduces the sensibility
to structural or environmental variables.

In Figure 18, time performance is displayed, related to the
computational time of the Ho-Kashyap method with m = 1
training sample/position. Two interesting results should be
highlighted: first, the reduced impact of T, HMM block
size, on the computational time, which allows big blocks
and therefore improved performance in HMM algorithms.
Second, HMM algorithms are around 10 times slower than
“pure” Ho-Kashyap, twice than KNN for this number of cal-
ibration samples, and faster than the other non-MSE algo-
rithms already shown in Figure 8. Layer 3 therefore intro-
duces a considerable delay on the system performance, but
not so much as it could be expected, and inferior to most
layer 2 algorithms, such as Bayesian or WKNN.



EURASIP Journal on Applied Signal Processing

14
14 T T
& 12 ¥ St NN L e g
58 Lo N . _:—:—_5
ﬂg o //i/// Q_ZZM
MOE0E s RTTT PR 1
S 3 v ‘ ‘ ‘
T 8 % ‘ ‘
v 2 ® . .
EZ2 8f------: I L -
i | ‘
o o . .
g5 : : .
=} 9 6 """"" LT _VEV—__V """""""""" P N
8 g E----ETTTTT T e I 7" 7
= ‘ I I
sE A s |
g :
(@) 2 b I I E
R V-———— R il V=== D it v
0 1 1 ; 1 1
0 20 40 60 80 100 120
Size of the HMM block
—-B- KNN -%- HMM 3
-©- HMM 1 -9- HMM 4
-%- HMM 2 -v- Ho-Kashyap

FiGuUre 18: Time performance related to the time of the Ho-Kashyap
with m = 1 as a function of the HMM block length T. ¢ = 49
locations, d = 4 APs, m = 10 samples/position, o = —7dB, oy =
5dB, 10 000 samples/simulation, 15 simulations.

Finally we would like to analyze the layer 3 capabilities
to correctly infer the user’s profile. We have therefore sim-
ulated a total estimation HMM 4 model and we have esti-
mated pcentral as the probability of remaining in (0,0) and
Dstatic s the probability of remaining in (0, —3), the entry po-
sition. We have followed the calibration algorithm presented
in [35] and results are presented in Figure 19 for a low distor-
tion environment. It can be noticed that convergence is rela-
tively fast (0.95 and 0.62 with less than 500 samples), even if
we cannot reach the exact transition probabilities (0.996 and
0.5) due to the inherent error probability (= 20%).

7. CONCLUSIONS

In this paper, we have presented a new approach to loca-
tion estimation systems based on LDF and HMM, and we
have compared it with algorithms previously presented in
the literature. Both the algorithm and the comparisons can
be surely improved in the future, so we want to remark that
we do not consider them to be our main contribution, but
a way to highlight some of the most interesting problems in
WLAN positioning systems and to present some novel ap-
proaches for them.

In the system description, our two-layer architecture and
its correspondence with the work presented in [20, 21] in-
troduces a novel approach to positioning, based on a fast
and simple layer 2, instead of the complex and accurate tra-
ditional algorithms. Further research should be focused on
the interface between layers in order to ensure flexibility and
scalability and on the tradeoff between time and accuracy
that we have achieved by implementing this architecture,
which is strongly dependent on the application considered.

Transition probability
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FIGURE 19: Probability of a successful location as a function of the
accumulative number of samples. ¢ = 49 locations, d = 4 APs, m =
10 samples/position, T = 60 samples/block, o = —22dB, oy =
5dB, 2 simulations.

Another contribution is the concept of a mapping based
on vital spaces instead of grids. Vital spaces are more suit-
able for pattern recognition problems and allow the system
administrator to define the positions emphasizing the most
important areas for the users.

A special reference should be made to channel models.
Despite the exhaustive work presented in [29, 30], it is neces-
sary to achieve a full statistical RSS characterization for dif-
ferent environments, in order to apply more realistic simula-
tion models than the one we have developed. Variability be-
tween different types of building (concrete, glass, wood, etc.),
different WLAN cards and antennas, and human influence
should be taken into careful consideration.

In layer 2, we have presented two novel location meth-
ods based on LDF and MSE procedures. More suitable lo-
cation methods will be probably developed in the near fu-
ture, but we want to remark the importance of a fast and
simple, almost calibration-free system if it is to be imple-
mented in small MTs such as cell phones or PDAs. Further
research should be oriented towards the study of the applica-
tion of ray tracing models based on simple maps and should
analyze the number of averaged RSS samples that guarantee
the best tradeoff between distortion reduction and time effi-
ciency (taking layer 3 also into consideration).

Another important point is related to the number and
distribution of the APs. Our research has shown that the im-
provement by increasing their number quickly saturates, and
that the system is robust to changes in the AP distribution.
Future research in this field should be focused on the grid
distribution of APs and the smart selection algorithm, so that
the AP distribution allow the MTs to receive, no matter their
position, a constant number of APs, discarding those with
the highest RSS variability.
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Although the possibility of adding an additional layer
based on HMM or Kalman filters had been previously com-
mented in literature, we have fully developed it, analyzing
the importance of a good transition matrix characterization.
Based on data from layer 2, we have proposed a simple sta-
tistical distribution for the observation probability that per-
forms well in practice and we have also presented the im-
portance of user’s profiling (with a higher impact on the sys-
tem performance than the calibration) and the possibility of
a self-profiling system. Further work should be carried out
to optimize the HMM algorithm to make it faster for loca-
tion applications and to develop new theoretical models for
profiling to improve the system performance.

Our analyses have yielded additional interesting conclu-
sions about the behavior of location estimation systems.

(i) Performance is enhanced with an increment in large-
scale log-normal distortion under the assumption that
it affects in the same way the calibration and the loca-
tion samples. If this assumption did not hold, the effect
would be the opposite.

(ii) Small-scale distortions quickly degrade the perfor-
mance, which falls sharply for oz greater than —25 dB.

(iii) Performance is improved by increasing m, the num-
ber of calibration samples per position. KNN and MSE
methods can cope better with small m than Bayesian
methods do.

(iv) KNN and WKNN computation time grows linearly
with m, whereas it is constant for Bayesian and MSE
methods. Nevertheless, Bayesian times are more than
20 times greater than the MSE ones. CIT size displays
a similar behavior.

(v) Performance falls almost linearly as the number of po-
sitions ¢ grows, that is, when the location area gets
wider.

(vi) Performance can be improved by increasing d, the
number of APs transmitting to an MP. This improve-
ment saturates for a given number of APs; neverthe-
less, further increments of d can be useful if a smart
selection algorithm is implemented.

(vii) Changes in the AP distribution do not affect signifi-
cantly to the system performance.

(viii) The observation symbol probability distribution
P(O; = i | lj), that is, the probability of layer 2 es-
timating a sample from position j as position i, can
be modelled as a peak at position j (whose height is
the probability of a successful location) and a uniform
distribution among the other positions. Numerical re-
sults from layer 3 show that this assumption is reason-
ably well suited.

(ix) The probability of a successful location is lower in the
areas that are far away from all APs.

(x) HMM works extremely well both in high and low dis-
tortion environments. To ensure that an HMM works
properly in a high distortion situation, it should have
properly estimated the user’s profile.

(xi) Although layer 3 makes the system ten times slower, it
is still faster than Bayesian or WKNN algorithms, and

shows a performance superior to any layer 2 method,
including KNN.

(xii) Under low distortion conditions, HMM can quickly
derive the user’s profile.

In conclusion, we have presented a novel approach to lo-
cation estimation based on previous work. We hope it will
help to increase the research in this promising field.
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