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We discuss approaches for blind source separation where we can use more sensors than sources to obtain a better performance.
The discussion focuses mainly on reducing the dimensions of mixed signals before applying independent component analysis. We
compare two previously proposed methods. The first is based on principal component analysis, where noise reduction is achieved.
The second is based on geometric considerations and selects a subset of sensors in accordance with the fact that a low frequency
prefers a wide spacing, and a high frequency prefers a narrow spacing. We found that the PCA-based method behaves similarly to
the geometry-based method for low frequencies in the way that it emphasizes the outer sensors and yields superior results for high
frequencies. These results provide a better understanding of the former method.
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1. INTRODUCTION

Blind source separation (BSS) is a technique for estimating
original source signals using only sensor observations that
are mixtures of the original signals. If source signals are mu-
tually independent and non-Gaussian, we can employ inde-
pendent component analysis (ICA) to solve a BSS problem.
Although in many cases equal numbers of source signals and
sensors are assumed [1], the use of more sensors than source
signals (overdetermined systems) often yields better results
[2–4]. Different techniques are employed to map the mixture
signal space to the output signal space with reduced dimen-
sions.

In this paper we present results for overdetermined BSS
based on two different methods of subspace selection. Each
provides better separation results than when the number of
sensors and sources is the same. The first method utilizes
the principal components obtained by principal component
analysis (PCA) as described in [5]. The second method is
based on geometrical selection, which depends on the fre-
quency and sensor spacing as described in [6].

We compared the two methods by performing experi-
ments with real world data in a reverberant environment.
We found that for low frequencies the PCA-based method
behaves similarly to the geometry-based method, and sup-
port this result analytically. For high frequencies the for-
mer method yields better results, since it normally removes
the noise subspace more efficiently than the geometry-based

method. These results provide a better understanding of the
PCA-based approach. This paper generalizes the results in
[7] to include arbitrary arrangements of arbitrary numbers
of sensors.

2. BSS USINGMORE SENSORS THAN SOURCES

The general framework of overdetermined BSS is shown in
Figure 1. After the mixing process there is a subspace pro-
cessing stage followed by the actual ICA stage. The reasons
for the position of the subspace processing stage will be ex-
plained in Section 3.1. The subspace processing stage can be
subdivided into a sphering stage that spatially uncorrelates
the signals and a dimension reduction stage.

We consider a convolutive BSSmodel withN sources si(t)
(i = 1, . . . ,N) at positions qi and M sensors (N < M) that
give mixed signals xj(t) ( j = 1, . . . ,M) at positions r j with
added noise nj(t). The mixing process can be described by

xj(t) =
N∑

i=1

∞∑

l=0
hji(l)si(t − l) + nj(t), (1)

where hji(t) stands for the impulse response from source i
to sensor j. The noise is considered to be temporally and
spatially uncorrelated with unit variance and Gaussian dis-
tribution. With E{·} denoting the expectation value and the
superscript H the hermitian operator, the spatial correlation
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Figure 1: General framework of overdetermined BSS.

matrix is therefore given by

E
{
nnH

} = σ2nI, (2)

where n = [n1, . . . ,nM]T .
We employed a narrowband frequency-domain approach

to solve the convolutive BSS problem including the sub-
space processing [8]. First, we calculate the frequency re-
sponses of the separating system. Thus time-domain signals
x(t) = [x1(t), . . . , xM(t)]T are converted into time-frequency
domain signals X( f ,m) = [X1( f ,m), . . . ,XM( f ,m)]T by an
L-point sliding window discrete Fourier transform (DFT),
where f = 0, fs/L, . . . , fs(L − 1)/L ( fs is sampling frequency,
m is time index). After the subspace processing of X( f ,m),
we obtain uncorrelated signals Z( f ,m) = [Z1( f ,m), . . . ,
ZN ( f ,m)]T reduced to the dimension N . To obtain the fre-
quency responses Wki( f ) (i, k = 1, . . . ,N) of the separating
system, we solve an ICA problem

Y( f ,m) =W( f )Z( f ,m), (3)

where Y( f ,m) = [Y1( f ,m), . . . ,YN ( f ,m)]T and W( f ) is
an N × N matrix whose elements are Wki( f ). We call the
conjugately transposed row vectors of W( f ) separation vec-
tors wk( f ) = [Wk1, . . . ,WkM]H · Yk( f ,m) is a frequency-
domain representation of the output yk(t). The output sig-
nals Y( f ,m) are made mutually independent.

Then we obtain time-domain filters by applying an in-
verse DFT to W( f ). Calculating the separation filters in the
frequency domain has an advantage in that subspace process-
ing and ICA is employed for instantaneous mixtures, which
are easier to solve than convolutive mixtures in the time do-
main.

We applied the complex version of FastICA proposed in
[9] to Z to obtain the separation matrix W · Z is assumed
to have a zero mean and unit variance. By using negentropy
maximization as a basis, the separation vector wk for each
signal is gradually improved by

wk ←− E
{
Z
(
wH
k Z

)∗
g
(∣∣wH

k Z
∣∣2

)}

− E
{
g
(∣∣wH

k Z
∣∣2

)
+

∣∣wH
k Z

∣∣2
g′

(∣∣wH
k Z

∣∣2
)}

wk

(4)

until the difference between consecutive separation vectors
falls below a certain threshold. (·)∗ denotes the complex
conjugate. g(·) denotes the derivative of a nonlinear func-
tion G(·), which was here chosen as G(x) = log(a + x) with
a = 0.1. wk is orthonormalized after each step to already ex-
isting separation vectors.

3. SUBSPACE SELECTION

3.1. Relative order of subspace selection
and signal separation

The use of more sensors than sources usually improves the
separation result. We can exploit the performance improve-
ments due to beamforming principles. For the signal separa-
tion, we have to employ some form of dimension reduction
in order to map the number of mixed signals to the number
of output signals. It appears to be preferable to reduce the
dimensions before rather than after ICA as explained in the
following.

If we assume virtual sources composed, for example, of
noise we could separate as many sources as sensors. Then
we could select the desired sources and therefore the sub-
space after ICA. But we would face a similar problem to
the one that arises when solving the permutation problem,
which appears when we apply ICA to convolutive mixtures
in the frequency domain [10, 11]. The more signals we have,
the more difficult it is to characterize the components of
each frequency bin uniquely and relate them to the compo-
nents of adjacent frequency bins or distinguish virtual and
real sources. Normally more information is available before
we use ICA to select an appropriate subspace (e.g., sensor
spacing and eigenvalues that give the covariance) than after-
wards (eigenvalues are distorted due to scaling ambiguity). In
addition, reducing dimensions before ICA reduces the risk
of overlearning of the ICA algorithm caused by the virtual
sources [12]. In summary it is better to reduce the dimen-
sions before employing ICA.

3.2. Subspace selection based on statistical properties

Asano et al. proposed a BSS system that utilizes PCA to select
a subspace [5]. PCA in general gives principal components
that are by definition uncorrelated and is suited to dimen-
sion reduction [1, 2]. Here PCA is based on the spatial corre-
lation matrix Rxx as given in (5). The principal components
are given by the eigenvectors of Rxx onto which the mixed
signals are projected,

Rxx = E
{
XXH

}
. (5)

In a practical sense Asano et al. [5] consider room re-
flections to be uncorrelated noise from the direct source sig-
nals si(t) on condition that the time shift between direct and



S. Winter et al. 3

Sources Sensors

d1

d2

Subband processing + ICA
Output

+

+

Bandpass &
separate

Bandpass &
separate

Figure 2: Geometry-based subspace selection.

reflected signals is greater than the window length used for
the DFT. By assuming uncorrelatedness, it follows that the
first N principal components with the largest eigenvalues
contain a mixture of direct source signals and noise. N de-
notes the number of sources. By contrast the remaining prin-
cipal components consist solely of noise. Let E denote a ma-
trix with the first N principal components and D a diagonal
matrix with the corresponding eigenvalues. Then the spher-
ing matrix V that is used to project mixed signals X to Z is
given by

V = D−1/2 · EH. (6)

Thus by selecting the subspace that is spanned by the first
N principal components, dimensions are effectively reduced
by removing noise while retaining the signal of interest [13].

Since PCA linearly combines the mixed signals, the noise
reduction can be backed up by an increase in the signal-to-
noise ratio (SNR) known from array processing [14]. In an
ideal case of coherently adding together the signals of several
sensors, which are disturbed by spatially and temporally un-
correlated noise, the increased SNRnew is given by

SNRnew = 10 log10(M) + SNRsingle . (7)

M denotes the number of sensors and SNRsingle the SNR at a
single sensor.

Here it is important to note that sphering takes place be-
fore dimension reduction, which is based on the principal
components found by sphering and is applied in the sphered
signal space.

3.3. Subspace selection based on
geometrical knowledge

A method for blind source separation has been proposed
using several separating subsystems whose sensor spacings
could be configured individually [6]. The idea is based on the
fact that low frequencies prefer a wide sensor spacing whereas
high frequencies prefer a narrow sensor spacing. This is due
to the resulting phase difference, which plays a key role in
separating signals. Therefore three sensors were arranged in
a way that gave two different sensor spacings d1 > d2 using
one sensor as a common sensor as shown in Figure 2.

The frequency range of the mixed signals was divided
into lower and higher frequency ranges. According to [8], for

‖qi − r j‖

r j

qi

‖qi‖

o =
⎡
⎢⎣
0
0
0

⎤
⎥⎦

Figure 3: Near-field model.

a frequency to be adequate for a specific sensor and source
arrangement, the condition in (8) should be fulfilled:

f <
∣∣∣∣

αc

2 · (∥∥qi − r j
∥∥− ∥∥qi

∥∥)
∣∣∣∣. (8)

Here α is a parameter that governs the degree to which the
phase difference exceeds π, c the sound velocity, r j the posi-
tion of the jth sensor, and qi the position of the ith source as
shown in the general near-field model in Figure 3.

The appropriate sensor pairs were chosen for each fre-
quency range and individually used for separation in each
frequency range. Before ICA was applied to each chosen
pair, the mixed signals were sphered. It is important to note
that sphering takes place after dimension reduction, which
is based on geometrical considerations and is applied in the
mixed signal space.

The similarities and differences between the two subspace
selection methods are summarized in Table 1.

4. GEOMETRICAL UNDERSTANDING OF
PCA- BASED APPROACH

4.1. Experimental results

We examined the behavior of PCA-based subspace selection
with regard to the resulting sensor selection. Speech signals
do not always comply with the assumptions of uncorrelated-
ness and independence, which are made when applying PCA
and ICA to them. Therefore, to assess the ideal behavior, we
used artificial signals produced by a random generator in the
frequency domain with the desired properties instead of real
speech signals.
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Table 1: Summarized comparison.

PCA-based selection Geometry-based selection

Statistical consideration Geometrical considerations

Different subspace for
each frequency bin

Few different
subspaces depending
on number of sensors

First sphering, then
dimension reduction

First dimension
reduction, then sphering

We assumed the frequency-dependent mixing matrix H
to be

H( f ) =
(
ej(2π f /c)(‖qi−r j‖−‖qi‖)

)

ji
, (9)

where 1 ≤ i ≤ N , 1 ≤ j ≤ M, and c denotes the sound ve-
locity. H can be derived assuming a far-field model for the
attenuation (Figure 4). The far-field assumption results in
a specific but constant attenuation at every sensor for each
source signal. Therefore we assume without loss of gener-
ality that the attenuation is included in the signal ampli-
tude and omit it from the mixing matrix. For simplicity the
phase is based on a more general near-field model (Figure 3)
and depends on the differences between the exact distances
from the source to the sensor ‖qi − r j‖ and to the origin
‖qi − [0, . . . , 0]T‖.

The amplitudes of the sensor weights (sensor gains) for
a specific output signal of an equispaced linear sensor array
(i.e., r2 − r1 = r3 − r2) for M = 3, N = 2, are shown in
Figure 5 for a specific output signal. They depend on the fre-
quency bin and sensor position. Since they look similar for all
output signals, the sensor gains are only shown for one out-
put signal. The unnormalized sensor gains are given by the
corresponding row of WV. For better comparison the sen-
sor gains are normalized by the respective maximum in each
frequency bin. We used the experimental conditions given in
the first two lines of Table 2. We can see that the PCA-based
method also emphasizes outer sensors with a wide spacing
for low frequencies as the geometrical considerations in [6]
suggest. However, the remaining sensor is not excluded but
contributes the more the higher the frequency becomes. In
Figure 6 the normalized sensor gain is given for M = 7 lin-
early arranged sensors with equal spacing and reveals very
similar behavior, particularly for low frequencies. The outer
microphones are preferred, which confirms the idea of the
geometry-based approach.

Figure 7 was generated under the same conditions as
Figure 5 except that we used real speech signals and impulse
responses instead of artificial signals and amixingmatrix. Al-
though not as smooth as Figure 5, it still illustrates the prin-
ciple that outer sensors are preferred for low frequencies and
justifies the assumptions made for the ideal case.

To investigate the effect of PCA in even more detail we
analyzed the eigenvectors and eigenvalues of the correlation
matrix Rxx of the mixed signals. A typical result for the first

‖qi − r j1‖

‖qi − r j2‖

r j1 r j2

qi

r j2 − r j1

θi

Figure 4: Far-field model.

and second principal components represented by the eigen-
vectors with the largest and second largest eigenvalues, re-
spectively, is shown in Figures 8 and 9 for each frequency
bin. The figures were generated under the same conditions
as Figure 5.

4.2. Interpretation of experimental results

Based on our analytical results as detailed in Appendix A, in
this section we provide an explanation for the sensor weight-
ing for low frequencies that is illustrated for the first and sec-
ond principal components in Figures 8 and 9, respectively.
We will then show how the eigenvalues of the correlationma-
trix Rxx influence the combination of the principal compo-
nents and contribute to the overall sensor weighting as ob-
served in Figure 5.

For low frequencies the first principal component in
Figure 8 weights every sensor approximately equally. This ex-
perimental result can be backed up analytically for arbitrary
sensor arrangements. Based on the mixing model in (9), the
mixed signals X are given by

X( f ,m)

= H( f )S( f ,m) =
( N∑

i=1
Si( f ,m)ej(2π f /c)(‖qi−r j‖−‖qi‖)

)

j

.

(10)

S( f ,m) = [S1( f ,m), . . . , SN ( f ,m)] denotes the time-freq-
uency domain representation of the source signals s accord-
ing to Section 2. Due to the far-field assumption the attenua-
tion from the ith source to an arbitrary sensor is independent
of the selected sensor. Therefore, without loss of generality
we assume that the attenuation is included in the signal am-
plitude Si.

For low frequencies the phase difference between two
sensors for a signal from source i,

Δϕi = 2π f

c

(∥∥qi − r j1
∥∥− ∥∥qi − r j2

∥∥)
, (11)

becomes very small. Therefore we can approximate the phase
ϕji := (2π f /c)‖qi − r j‖ by the least square error (LSE) solu-
tion

ϕi :=
2π f

c

∥∥qi − r
∥∥. (12)
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Figure 5: Normalized sensor gain with PCA-based subspace selection for 3 sensors (artificial signals).

Table 2: Experimental conditions.

Source direction 50◦ and 150◦

Sensor distance d1 = d2 = 28.3mm

Source signal duration 7.4 s

Reverberation time T60 = 200ms

Sampling rate 8 kHz

DFT length 250ms

Window type von Hann

Filter length 2048 points

Shifting interval 512 points

Frequency range parameter α = 1.2

Threshold for FastICA 10−3

Added sensor noise ≈ −14dB

ϕi is independent of the sensor j and turns out to be the
solution of

M∑

j=1
sin

(
ϕji − ϕi

) = A sin
(
ϕi

∑ − ϕi

) = 0. (13)

It is given by

ϕi = ϕi
∑ + kπ, k ∈ N. (14)

A and ϕi
∑ are the parameters of the single sinewave that re-

sults from the summation of the sinewaves on the left-hand
side of (13). The parameters can be determined by a vector
diagram as shown in Figure 10. The definition of ϕi in (12)
is based on r, which can be interpreted as the position of a
virtual sensor. Its signal can be approximated by using only
the first principal component.

If a virtual sensor coincides with an actual sensor, then
the first principal component is sufficient to describe its sig-
nal. No higher order principal component is necessary. The
further away an actual sensor is from the virtual sensor(s),
the more correction is required by higher order principal
components to describe the mixed signal at this sensor. This
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Figure 6: Normalized sensor gain with PCA-based subspace selec-
tion for 7 sensors (artificial signals).

is important when it comes to the final sensor selection as de-
scribed later. With an equally spaced linear sensor array the
average position of all sensors becomes a possible solution
for r (cf. (A.28)):

r = 1
M

M∑

j=1
r j . (15)

If in addition there is an odd number of sensors as in Figures
5 and 6, the central sensor’s signal is completely described by
the first principal component. However, as we will see later,
the first principal component contributes almost nothing to
the final result. This explains why the signal of the central
sensor is hardly present in the final result (Figure 5).

With the approximation (12) the first principal compo-
nent p = [p1, . . . , pM] can now be determined. Following the
definition of the (first) principal component we maximize
the power E{(pHX)∗(pHX)} with the constrain ‖p‖ = 1.
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Figure 7: Normalized sensor gain with PCA-based subspace selection for 3 sensors (real speech signals).
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Figure 8: Normalized first principal component for 3 sensors.

Without any further assumptions the elements pj result in
a constant

pj = p = const ∀ j. (16)

This means that for the first principal component all sen-
sors contribute approximately with the same gain for low fre-
quencies (Figure 8).

Since the first principal component describes the signal
of the virtual sensor at r almost completely and principal
components are orthogonal to each other, this signal will not
be included in higher order principal components. Instead,
higher order principal components will describe the signals
at different positions. This explains why in Figure 9 the cen-
tral sensor has nearly zero gain and the outer sensors are em-
phasized for low frequencies.

Now we take a look at the corresponding eigenvalues of
Rxx. According to (6) the square roots of their inverses de-
termine the weight of each principal component. By defi-
nition, as the order of a principal component increases, its

eigenvalue decreases. Typical eigenvalues depending on the
frequency are shown in Figure 11. For low frequencies the
eigenvalue corresponding to the first principal component is
very large compared with the eigenvalue corresponding to
the second principal component. This in turn means that
the first and second principal components are attenuated and
amplified, respectively, by their inverses. Thus the second and
higher order principal components have a dominant influ-
ence when they are combined with the first principal com-
ponent by the subsequent ICA stage. Therefore, the closer a
sensor is to the virtual sensor position r of the first principal
component, the less it contributes to the final result.

Different settings, such as the unequally spaced sensors
used in our additional experiments, also exhibit basically the
same behavior, particularly for low frequencies.

5. COMPARISONOF PCA- AND GEOMETRY-BASED
APPROACHES

5.1. Experimental results

To compare the PCA- and geometry-based methods, we sep-
arated mixtures that we obtained by convolving impulse re-
sponses hji(t) and pairs of speech signals si(t), and optionally
adding artificial noise nj(t). We used speech signals from the
Acoustical Society of Japan (ASJ) continuous speech corpus
and impulse responses in the Real World Computing Part-
nership (RWCP) sound scene database from real acoustic en-
vironments [15]. The frequency ranges were calculated based
on the criteria discussed in Section 3.3.

We measured the performance in terms of the signal-to-
noise plus interference ratio (SNIR) in dB. It is given for out-
put k by

SNIRk = 10 log

∑
t y

s
k(t)

2

∑
t y

c
k(t)2

, (17)

where ysk(t) is the portion of yk(t) that comes from a source
signal sk(t) and yck(t) = yk(t)− ysk(t).
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Figure 9: Normalized second principal component for 3 sensors.
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To avoid the permutation problem influencing the result
we selected the permutation that resulted in the highest SNIR
in each frequency bin. This SNIR was calculated in a similar
way to that described above. The solution is identical to that
obtained when the permutation problem is perfectly solved.
The experimental conditions are given in Table 2.

Figures 12 and 13 show the results with both methods
for 12 pairs of speech signals. Figure 12 reveals that both

subspace methods exhibit similar behavior for low frequen-
cies independent of added noise. This confirms that the PCA-
based approach also emphasizes the wider sensor spacing in
the same way as the geometry-based method.

However, for high frequencies, while both approaches
still perform similarly if we only account for reverberation,
the PCA-based approach works better than the geometry-
based approach if noise is added (Figure 13). We confirmed
the superior performance with additional experiments using
different sensor spacings.

5.2. Interpretation of experimental results

To interpret the experimental results described in Section 5.1
we distinguish between noiseless and noisy cases.

As we have seen in Section 4.1 the PCA-based method
also emphasizes the outer microphones for low frequencies.
This normally provides the highest possible phase difference
for low frequencies, which is important for correctly separat-
ing the mixed signals by the subsequent ICA stage as men-
tioned in Section 3.3.

Therefore the contribution of the central sensor is very
small for low frequencies. In addition the PCA-basedmethod
might have trouble in finding appropriate principal com-
ponents due to low phase differences that are disturbed by
noise. Thus the PCA-based approach cannot make great use
of the remaining sensor for low frequencies either and there-
fore does not improve the performance.

As stated in Section 3.2 temporally and spatially uncorre-
lated noise is normally reduced if we coherently combine the
mixtures received at several sensors. The PCA-based method
can utilize all available sensors for high frequencies, since
then the smaller sensor distance is appropriate. In contrast
the geometry-based approach, by definition, always uses only
two sensors, and so cannot exploit the noise reduction as
much as the PCA-based approach.

In the noiseless case the noise suppression advantage pro-
vided by the PCA-based method has no effect and therefore
does not improve the result.
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Figure 13: Comparison of PCA- and geometry-based subspace selection for high frequency range (2356–4000Hz).

6. CONCLUSION

We have compared two subspace methods for use as prepro-
cessing steps in overdetermined BSS. We found experimen-
tally and analytically that for low frequencies the PCA-based
method exhibits a similar performance to the geometry-
based method because it also emphasizes the outer sensors.
For high frequencies the PCA-based approach performs bet-
ter when exposed to noisy speech mixtures because the ap-
propriate phase difference means it can utilize all pairs of
sensors to suppress the noise. This deepens the geometrical
understanding of the PCA-based method.

APPENDIX

A. DERIVATION OF SENSOR SELECTION BY
PCA FOR LOW FREQUENCIES

Experimental results have shown that the first principal
component weights all sensors equally for low frequencies
(Section 4.1). As a result, the central sensors contribute far
less than the outer sensors to the final sensor selection. In this
section we analytically derive the equal weighting of the first

principal component and determine the position of the vir-
tual sensor whose signal is completely represented by the first
principal component. After initial definitions and approxi-
mations obtained using virtual sensor in Section A.1 we de-
rive the first principal component in Section A.2. Finally, we
determine the position of the virtual sensor in Section A.3 as
a least square error (LSE) solution. An outline of this deriva-
tion can be found in Section 4.2.

A.1. Definitions and assumptions

We assume a mixing system with N sources and M sen-
sors under far-field conditions. The frequency-domain time
series of the source signals s = [s1, . . . , sN ]T according to
Section 2 are given by

S( f ,m) := [
S1( f ,m), . . . , SN ( f ,m)

]T
. (A.1)

According to Section 4.1, the frequency-dependent mixing
matrix can be written as

H( f ) =
(
ej(2π f /c)(‖qi−r j‖−‖qi‖)

)

ji
, (A.2)
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where c denotes the sound velocity, qi the ith source loca-
tion, and r j the jth sensor location. The far-field assumption
means that the attenuation from the ith source to a sensor is
independent of the selected sensor. Therefore, without loss of
generality, we assume that the attenuation is included in the
signal amplitude Si. Then we obtain the mixed signal vector
X as

X = HS =
( N∑

i=1
Sie

j(2π f /c)(‖qi−r j‖−‖qi‖)
)

j

. (A.3)

We define an arbitrary eigenvector of the covariance matrix
Rxx which corresponds to a principal component by

p := [
p1, . . . , pN

]T
, ‖p‖ = 1. (A.4)

The scalar product of p and the mixed signals X yield

pHX = pHHS

=
M∑

j=1
p∗j

N∑

i=1
Sie

j(2π f /c)(‖qi−r j‖−‖qi‖)

=
N∑

i=1
Sie

−j(2π f /c)‖qi‖
M∑

j=1
p∗j e

j(2π f /c)‖qi−r j‖.

(A.5)

For low frequencies the phase difference (2π f /c)(‖qi − r j1‖−
‖qi − r j2‖) between two sensors becomes very small, and we
can approximate the phase ϕji := (2π f /c)‖qi − r j‖ in (A.5)
by the LSE solution ϕi of

argmin
ϕi

∥∥∥∥∥

M∑

j=1
p∗j e

jϕji − ejϕi

M∑

j=1
p∗j

∥∥∥∥∥

2

. (A.6)

Then we can approximate pHX by

pHX ≈
( N∑

i=1
Sie

−j(2π f /c)‖qi‖ejϕi

)( M∑

j=1
p∗j

)
. (A.7)

A.2. Derivation of first principal component

The first principal component is found by maximizing the
power

E
{(
pHX

)(
pHX

)∗}
(A.8)

with the constraint ‖p‖2 = 1. This leads to a constrained
problem

max
p

E
{(
pHX

)(
pHX

)∗}
, ‖p‖2 = 1. (A.9)

By defining

x2 := E

{( N∑

i=1
Sie

−j(2π f /c)‖qi‖ejϕi

)

·
( N∑

i=1
Sie

−j(2π f /c)‖qi‖ejϕi

)∗} (A.10)

and using (A.7), we can approximate (A.8) by

E
{(
pHX

)(
pHX

)∗}

≈ E

{( N∑

i=1
Sie

−j(2π f /c)‖qi‖ejϕi

)( M∑

j=1
p∗j

)

·
( N∑

i=1
Sie

−j(2π f /c)‖qi‖ejϕi

)∗( M∑

j=1
pj

)}

=

⎛
⎜⎜⎜⎜⎜⎜⎝

M∑

j=1
pj p

∗
j

︸ ︷︷ ︸
=‖p‖=1

+
M∑

i=1

∑

j �=i
p∗i p j

⎞
⎟⎟⎟⎟⎟⎟⎠
· x2

=
(
1 +

M∑

i=1

∑

j �=i
p∗i p j

)
· x2.

(A.11)

Since x2 does not depend on p we only have to maximize the
first part of (A.11). Therefore (A.9) becomes

max
p

(
1 +

M∑

i=1

∑

j �=i
p∗i p j

)
, ‖p‖2 = 1. (A.12)

Using the Lagrange multipliers approach [16] with δ being
the Lagrange multiplier we obtain the following problem:

∇p

⎛
⎝

⎛
⎝1 +

M∑

i=1

∑

j �=i
p∗i p j

)
+ δ

(‖p‖2 − 1
)
)

= ∇p(1− δ)
︸ ︷︷ ︸

=0

+∇
( M∑

i=1

∑

j �=i
p∗i p j + δ‖p‖2

)

=
(

∂

∂pi

M∑

i=1

∑

j �=i
p∗i p j + δ

M∑

i=1
p∗i pi

)

i

= 2

(
∑

j �=i
p j + δpi

)

i

= 0.

(A.13)

This linear equation can be written as

2

⎡
⎢⎢⎣

δ 1
. . .

1 δ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p1
...
pM

⎤
⎥⎥⎦ = 0. (A.14)

We obtain a nontrivial solution if and only if

det

⎡
⎢⎢⎣

δ 1
. . .

1 δ

⎤
⎥⎥⎦ = (δ − 1)M−1

(
δ + (M − 1)

) = 0, (A.15)

that is, for δ1 = 1 or δ2 = 1−M.

Solution for δ = δ1 = 1

The solution is as follows:

pi = −
∑

j �=i
p j . (A.16)
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Using (A.16) in (A.11) yields

(
1 +

M∑

i=1

∑

j �=i
p∗i p j

)
· x2 =

(
1 +

M∑

i=1
p∗i

∑

j �=i
p j

)
· x2

=
(
1 +

M∑

i=1
p∗i

(− pi
)
)
· x2

= (1− 1) · x2 = 0.
(A.17)

Solution for δ = δ2 = 1−M

The solution is as follows:

pi = p ∀i. (A.18)

With ‖p‖2 =M|p|2 it follows:

|p| = 1√
M

. (A.19)

Applying this result to (A.11) yields
(
1 +

M∑

i=1

∑

j �=i
p∗i p j

)
· x2 = (

1 +M(M − 1)pp∗
) · x2

=M · x2 ≥ 0.

(A.20)

The resulting power is for δ2 larger than for δ1. Therefore the
maximum is obtained for δ = δ2 = 1−M and pi = p ∀i.

A.3. Approximation of phase

With pi = p and (A.6) we can now approximate the phase.
The minimum of (A.6) can be found by

∇r

∥∥∥∥∥

M∑

j=1
p∗j e

j(2π f /c)‖qi−r j‖ − ej(2π f /c)‖qi−r‖
M∑

j=1
p∗j

∥∥∥∥∥

2

= ∇r

∥∥∥∥∥p
∗
( M∑

j=1
ejϕji −Mejϕi

)∥∥∥∥∥

2

= ∇r pp
∗

︸ ︷︷ ︸
=1

( M∑

j=1
ejϕji

M∑

k=1
e−jϕki

)

︸ ︷︷ ︸
=0

+∇r pp
∗

︸ ︷︷ ︸
=1

(
M2ejϕie−jϕi

)

︸ ︷︷ ︸
=0

−∇r

( M∑

j=1
ejϕji e−jϕi +

M∑

j=1
e−jϕji ejϕi

)

= j2π f

c

M∑

j=1

(
ej(ϕji−ϕi) − e−j(ϕji−ϕi)

)
∇r

∥∥qi − r
∥∥

= −4π f

c

M∑

j=1
sin

(
ϕji − ϕi

) qi − r√∥∥qi − r
∥∥

= 0.

(A.21)

Since this equation must be true for all i, p = qi is not a
solution. Thus we have to solve

M∑

j=1
sin

(
ϕji − ϕi

) = A sin
(
ϕi

∑ − ϕi

) = 0 ∀i. (A.22)

This equation is a sum of sine functions with identical fre-
quencies and can therefore be expressed as one sine func-
tion with amplitude A and phase ϕi

∑. The parameters A
and ϕi

∑ can be determined by a vector diagram as shown in
Figure 10. Each sine wave on the left hand of (A.22) is repre-
sented by a vector with amplitude 1 and angle ϕji. The am-
plitude and angle of the sum of these vectors give A and ϕi

∑,
respectively. Then ϕi is given by

ϕi = ϕi
∑ + kπ, k ∈ N, (A.23)

which implies

∥∥qi − r
∥∥ = c

f

(
1

2π f
ϕi

∑ + k
)

∀i, (A.24)

and can be interpreted as spheres with the source locations
qi as their centers. The intersection of all the spheres is the
solution of r.

As a special case let us consider a linear array with equally
spaced sensors, that is,

u := r j − r j+1, ∀ j ∈ [1;M − 1] ⊂ N. (A.25)

With the far-field assumption and u := (2π f /c)‖u‖ cos θi we
obtain

ϕMi = 2π f

c

∥∥qi − rM
∥∥,

ϕji = 2π f

c

∥∥qi − r j
∥∥

= 2π f

c

(∥∥qi − rM
∥∥ + (M − j) · ‖u‖ cos θi

)

= ϕMi + (M − j) · u.

(A.26)

Then ϕi turns out to be

ϕi =
1
M

M∑

j=1
ϕji + kπ, k ∈ N. (A.27)

If we limit the possible solutions to the line spanned by the
linear array, (A.27) goes along with

r = 1
M

M∑

j=1
r j , (A.28)

which is the center of the sensor array.
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