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Analysis of the multispectral remotely sensed images of the areas destroyed by an earthquake is proved to be a helpful tool for
destruction assessments. The performance of such methods is highly dependant on the preprocess that registers the two shots
before and after an event. In this paper, we propose a new fast and reliable change detection method for remotely sensed images
and analyze its performance. The experimental results show the efficiency of the proposed algorithm.
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1. INTRODUCTION

In recent years, the spatial and spectral resolutions of re-
motely sensed sensors and the revisiting frequency of satel-
lites have increased extensively. These developments have of-
fered the possibility of addressing new applications of remote
sensing in environmental monitoring. On the other hand,
the officials are getting more and more aware of using multi-
spectral remotely sensed images for regular and efficient con-
trol of the environment [1, 2].

Change detection of remotely sensed images can be
viewed as a general case of a global motion estimation usually
used in the video coding applications. However, the follow-
ing should be noted.

(i) In video coding applications, objects are likely to be
presented in the next frame unless we have occlusions, newly
appeared objects, or lightning changes, or when we deal with
degraded images. But, in remote sensing applications for sit-
uations such as earthquake, we are faced with very severe sit-
uations in which large areas are likely to be totally destroyed.

(ii) In video coding applications, the temporal rate is
about 30 frames per second, and thus one can benefit from
the existing high temporal redundancy between successive
frames (when there is no shot change), while in remote sens-
ing applications, the time interval between two captured
multiband images can be considerably long resulting in a
very low temporal redundancy.

(iii) In video coding applications, the segmentation and
motion estimation stages can in done in a crisp fashion, while

in remote sensing applications because of the different range
of changes that might exist between two shots, the decisions
should be made in a fuzzy fashion to take advantage of its
membership style soft decisions.

(iv) In remote sensing applications, the size and the num-
ber of the multispectral images are much higher than those
in video sequences; and thus even after dimension reduction
processes, we still need to have very fast algorithms.

(v) In remote sensing applications, due to the geomet-
rical changes in image capturing conditions, sensor-type
changes, and the long interval among captured images, an
accurate registration process is required that plays an impor-
tant role in the overall performance of any change detection
or classification algorithm.

According to the above-mentioned problems, the global
video motion techniques might be inefficient when dealing
with change detection of remote sensing applications. How-
ever, the global video motion estimation can be viewed as a
special case of the proposed change detection algorithm; and
thus the proposed algorithm can be used for such applica-
tions as well.

A key issue in analyzing the remotely sensed images is to
detect changes on the earth’s surface in order to manage pos-
sible interventions to avoid massive environmental problems
[3]. Recently, many researchers have worked on using the
remote-sensing data to help estimate the earthquake’s dam-
ages [4, 5] or the afterwards reconstruction progresses [6].
Change detection algorithms usually take two sets of images
as the two ensembles before and after the change, and return
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the locations where the changes are likely to happen [1]. Be-
fore such a stage, a preprocessing step is necessary to produce
two comparable images.

The process of registration aims at performing some geo-
metrical operations on one of the images (or both of them)
to give two compatible images in which the pixels with the
same coordinates in the two images correspond to the same
physical point [7]. Many researchers have reported the im-
pact of misregistration on the change detection results (e.g.,
see [8]). The registration operation is an inverse problem try-
ing to compensate the real transformation produced by the
imaging conditions. Although different registration methods
are introduced and analyzed [7, 9], there is no optimal solu-
tion found yet and the problem is still an active research area
[10].

The majority of registration methods consist of four es-
sential steps [9]:

(i) feature detection,
(ii) feature matching,
(iii) transfer model estimation,
(iv) image resampling and transformation.

The first step along with the second step aims at finding two
sets of corresponding points in the two images. These two
sets are used in the second step to estimate the transform
model. Finally, the fourth step results in the two registered
images.

There are two typical methods for finding and match-
ing feature points. The first one is to search for robust points
in the two images. There are reports of using contours [11],
boundaries [12], water reservoirs [13, 14], buildings [15], ur-
ban areas [16], roads [17], forests [18], coastal line [19], and
the forth as the features. Another approach is to use the in-
formation theory tools like mutual information to find the
control points [20]. All of the above-mentioned approaches
perform both feature detection and feature matching at the
same time. Due to the massive effect of mismatching of the
control points on the final registration results [8], we empha-
size on the determination procedure of the assigned control
points (even by using the old-style approach of human inter-
vention) for finding a set of about 20 correct control points
in the two images. The challenge of using the robust control
points is more clear when investigating the postearthquake
images (see Figure 1). Note that even if we do not find the
related control points in the second image, it still barriers
valuable information about the level of occurred changes. It
must be emphasized that any automatic control point detec-
tion method can be integrated to the proposed method.

Figures 2 and 3 show the used logo image and the differ-
ent transforms applied on it, respectively. Figure 4 shows the
logo image with a set of control points overlaid on it. Figure 5
shows the result of performing our estimated affine trans-
form on the transferred images shown in Figure 3. Here, we
have used a new visualization method in which we have put
the two registered images in the red- and green-color chan-
nels of an image and have filled the blue-color channel with a
value of 255. As such, themagenta and cyan pixels will clearly
show the misregistered locations. Note that doing as such,

(a)

(b)

Figure 1: Bingol, Turkey area: (a) before the earthquake 2002-07-15;
(b) after the earthquake 2003-05-02. (Digital Globe.)

Figure 2: A sample image.

the pixels with cyan colors resulting from the borders of the
transformed images are not because of any inaccuracy in the
proposed registration method, but are caused by the lack of
input data.

The rest of this paper is organized as follows. Section 2
describes the proposed method containing a discussion
about the direct linear transform, the estimated affine trans-
form, the related experimental results, and a proposed
method to estimate the changes that have occurred on im-
ages. Section 3 contains the experimental results and discus-
sions, and finally Section 4 concludes the paper.
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(a)

(b)

(c)

(d)

Figure 3: Different transformations of the logo image shown in
Figure 2: (a) translated; (b) rotated and translated; (c) rotated,
translated, and balanced scaled; (d) rotated, translated, and unbal-
anced scaled.

Figure 4: Control points overlaid on the logo image shown in
Figure 2.

2. PROPOSEDMETHOD

Let images I1 and I2 correspond to two different captures of
the same scene in different times. The aim of the registration
stage is to find the transform T : [x, y] → [x�, y�] in the
way that when applying the transform T with the image I2,
the resulting image I′2 gets aligned with the image I1. We call
the control points in the two images of I1 and I2 as �xi and �yi
for i = 1 · · ·n, respectively. They are chosen so that applying
the transform T on �xi, the result lies on �yi. In fact, �xi and
�yi correspond to the same physical location captured as an
image pixel. Here, we assume that the used control points are
properly distributed all over the images.

2.1. Direct linear transform and affine transform

Registration has a structural relation to the problem of cam-
era calibration [21], where one is concerned with estimating
the 3D coordinates of a point from its corresponding 2D co-
ordinates in (at least) two different cameras. A well-known
model for camera projection is the direct linear transform
(DLT) by Abdel-Aziz and Karara [22]. Modeling a camera
with 11 parameters, the DLT is able to compensate perspec-
tive distortions [22].

In the methodology of the DLT, each camera is mod-
eled by 11 parameters and the projection of the point �pa =
[xa, ya, za] on a camera is defined as [22]

xb = auxa + buya + cuza + du
axa + bya + cza + 1

, (1)

yb = avxa + bv ya + cvza + dv
axa + bya + cza + 1

. (2)

Here, the denominator term (λ = ax+by+cz+1) applies the
effects of the destination from �p to the center of the camera
on the projected point coordinates [22]. In the case of space-
born imagery, there are two simplifications to be applied on
the DLT formulation. Firstly, the vertical distance between
the camera and the subject points, z, is assumed to be con-
stant (because the camera plane is almost parallel to the sub-
ject [9]). Secondly, as the normal vector of the cameraplane
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(a)

(b)

(c)

(d)

Figure 5: Results of performing the proposed estimated affine
transform on the transformed images shown in Figure 3.

and the normal vector of the “on the earth’s” surface are al-
most parallel, the denominator term, λ, gets constant for all
image pixels. Thus, setting

a1 = 1
λ
au, a2 = 1

λ
bu, tx = 1

λ

(
cuz + d

)
, (3)

a3 = 1
λ
av, a4 = 1

λ
bv, ty = 1

λ

(
cvz + d

)
(4)

gives the simplified linear model of

xb = a1xa + a2ya + tx, (5)

yb = a3xa + a4ya + ty , (6)

also known as the affine transform [9]. The affine transform
can be written in the matrix notation as

�pb =
(
a1 a2
a3 a4

)

�pa +
(
tx
ty

)

. (7)

Note that in contrast to the conventional DLT, here the two
different parts of the affine transform (that result in deter-
mining the xb and yb parameters) can be solved indepen-
dently resulting in fastening the algorithm efficiently.

The proposed algorithm for estimating the affine trans-
form from CPs is based on the least-square error minimiza-
tion approach.

(1) Least-squaremethod

The quality of an affine transform can be measured by Err =
∑N

i=1 ‖ p̃b,i− pb,i‖2. To minimize the transformation error, we
have to set∇Err = 0 as
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We can rewrite (8) as

a1

N∑

i=1
x2a,i + a2

N∑

i=1
xa,i · ya,i + tx

N∑

i=1
xa,i =

N∑

i=1
xb,i · xa,i, (9)

a1

N∑

i=1
xa,i · ya,i + a2

N∑

i=1
y2a,i + tx

N∑

i=1
ya,i =

N∑

i=1
xb,i · ya,i, (10)

a1

N∑

i=1
xa,i + a2

N∑

i=1
ya,i + tx ·N =

N∑

i=1
xb,i, (11)

a3

N∑

i=1
x2a,i + a4

N∑

i=1
xa,i · ya,i + ty

N∑

i=1
xa,i =

N∑

i=1
yb,i · xa,i, (12)

a3

N∑

i=1
xa,i · ya,i + a4

N∑

i=1
y2a,i + ty

N∑

i=1
ya,i =

N∑

i=1
yb,i · ya,i, (13)

a3

N∑

i=1
xa,i + a4

N∑

i=1
ya,i + ty ·N =

N∑

i=1
yb,i. (14)

Now, using this derivation, we just need to solve two linear
equations of order three simultaneously. Note that the com-
putational complexity order of the proposed algorithm has
reduced to only O(N) instead of conventional approach that
is in order of O(N3).

(2) Experimental results

The performance of the proposed algorithm is analyzed in
terms of its complexity and accuracy. To implement the algo-
rithm, we have used Matlab 6.5 on a 1.7GHz Intel Pentium
M computer with 512 MB of RAM. The accuracy of different
algorithms to approximate the affine transform between two
sets of CPs and the related error caused during the processes
are listed in Table 1. The error is calculated using

Error = 1
N

1√
W2 +H2

N∑

i=1

∣
∣�pb,i −

(
A�pa,i +�t

)∣∣, (15)

where w and h denote the width and height of the image,
respectively. Table 2 lists the computational cost when using
different number of CPs. (The common number of CPs de-
pends on the application but an appropriate value is a num-
ber between 20–30.)

As the registration step plays an important role in the
overall performance of any change detection approach, and
the remotely sensed images cannot well illustrate the accurate
performance of the proposed registration algorithm, here we
have used a sample image (the logo of our university) to bet-
ter illustrate the accurate performance of the proposed regis-
tration method.

2.2. Proposed change detectionmethod

In this section, we state our proposed unsupervised method
for segmentation and change detection in multispectral re-
motely sensed image intervals using the proposed fuzzy prin-
cipal component analysis-based clustering method. While
the proposed method is faster than the available approaches

Table 1: Performance of different algorithms.

Algorithm Run time Error Stability

Gradient-descent [23] 2700ms 18.96% No
Geometric [23] 10ms 1.07% Yes
Enhanced geometric [23] 16ms 0.045% Yes
Fourier transform [24] 3.8ms 0.027% Yes
Proposed LMS 0.5ms 0.010% Yes

Table 2: Required run time when using different number of control
points.

Number of CPs N = 10 N = 20 N = 100 N = 200

1.06ms 3.8ms 108.95ms 445msFourier
transform [24]

Proposed LMS 0.34ms 0.50ms 2.43ms 4.72ms

reported in the literature, and depends on no predetermined
parameters, it is also robust against illumination changes. To
the best knowledge of the authors, the method introduced
in this paper is the first fuzzy change detection process. Note
that the proposed affine transform estimation and the pro-
posed change detection methods can also be used in other
applications such as video motion estimation.

The literature of multispectral segmentation is not so
rich compared to the case of gray-scale segmentation meth-
ods. The first significant method for measuring the color-
based similarity between two images might be the color his-
togram intersection approach introduced by Swain and Bal-
lard [25]. Although, the method is very simple, it gives a rela-
tively reasonable performance with two main shortcomings:
the lack of spatial information about the images, and de-
pendency on imaging conditions (like the ambient illumina-
tion). Some other researchers try to use certain color spaces
that they believed to be suitable for segmentation purposes.
For example in [26], the authors use a geometrical measure
in the color histogram to define the similarity between color
pairs in the HLS color space. Although some good segmen-
tation results in the HLS color space are reported [27], it
is proved in various studies that none of the standard color
spaces are outperforming the others (e.g., see [28, 29]), while
the local principal component analysis (PCA) is proved to give
dominantly better results [29, 30]. In [31], the researchers
process color components independently, neglecting the vec-
tor tendency of them. In [32], motion estimation is used for
segmentation purposes. Here, we used all m–D data in our
proposed PCA-based clustering and change detection stages.

Let two images I1 and I2 belong to the same scene. Then,
each pixel in I1 and I2 is anm–D realization. Also, let image I1
be segmented into c classes of φi using the proposed FPCAC

method [33]. Here, Jixy shows the membership of �I1xy to the
ith class.

Now, perform the FPCA [33] on the fuzzy set,

X̃ =
{(
�I2xy ; Jmixy

)
| 1 ≤ x ≤W , 1 ≤ y ≤ H

}
, (16)

to find the new clusters φ̃i. In fact, we are using the tempo-
ral redundancy of successive images, assuming that the fuzzy
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membership of a pixel to the c classes remains constant if
there is no abrupt change. The reason behind finding the
new clusters in I2 is to compensate probable slight changes
corresponding to the lighting and sensor changes. Now, we
have the new membership values J̃ixy , which show the level

of membership of �I2xy to the ith new class φ̃i.
We propose computing

δ2xy =
1
c2

c∑

i=1
Jixy
(
Jixy − J̃ixy

)2
, 1 ≤ x ≤W , 1 ≤ y ≤ H

(17)

as the probability of the point (x, y) being changed from I1 to
I2. In fact, δxy measures the net amount of change in mem-
bership of pixels to the classes in the successive images. Note
that while these fuzzy change values are computed, the clus-
ters are also updated at the same time.

If I1 ≡ I2, then Jixy and J̃ixy will be identical, resulting in
δxy being zero everywhere, as desired. Now, assume that there
is no change between the two images I1 and I2, unless for the
changes in the imaging conditions. Assume that �xi and �yi are
the spectral vectors of the same pixel in the two images I1
and I2, respectively. We model the change in imaging condi-
tions as a linear operation [34]. Assume that �xi and �yi relate
through a linear transform, namely, �xi = A�yi + �b. Here, we
model A as a nonsingular invertible matrix with its eigen-
values being almost constant. This situation relates to the
cases that the spectral axes rotate (changing the chromatic-
ity of the illumination), scale (changing the achromaticity
of the illumination), and translate. The model restricts un-
balanced scaling of spectral components which changes the
spectral information non-meaningfully (for details see [34]).
Note that matrix A in the singular value decomposition (SVD)
form is written as A = VDU−1, where U and V are orthogo-
nal matrices and D is a diagonal matrix with the eigenvalues
of A as its elements.

The expectation vectors in the two images I1 and I2 re-

late as E{�xi} = E{A�yi + �b} = AE{�yi} + �b. The fuzzy co-
variance matrices of the two images I1 and I2 satisfy C1 =
AE{(�yi − E{�yj})(�yi − E{�yj})T}AT = AC2AT . Assume that
the eigenvectors of C1 are �vi corresponding to the eigenval-
ues of λi and the eigenvectors of C2 are �ui corresponding to
the eigenvalues of ρi. Also, assume the eigenvectors of A to
be �wi corresponding to the eigenvalues of εi. Thus, for all
i, C1�vi = λi�vi, C2�ui = ρi�ui, and A�wi = εi�wi. First assume
that the eigenvectors of A are all exactly equal to the fixed
value of λ (or equivalently ∀i, εi = λ). Thus, A = VDU−1

equals V diagonal (λ, . . . , λ)U−1 = λVU−1. In this situation,
AT = λUV−1 = λ2A−1 resulting in ATA = AAT = λ2I .
Now, note that C1A�ui = AC2ATA�ui = λ2AC2�ui = λ2ρiA�ui.
Thus, A�ui is the eigenvector of C2 corresponding to the
eigenvalue of λ2ρi. Note that ‖A�ui‖ = λ‖�ui‖ = λ. As the
eigenvalues and eigenvectors of a single matrix are identi-
cal, {((1/λ)A�u1, λ2ρ1), . . . , ((1/λ)A�um, λ2ρm)} is identical to
{(�v1, λ1), . . . , (�vm, λm)}. As λ2 > 0, we have �vi = (1/λ)A�ui
and λi = λ2ρi, for all i. Thus, using the above reclustering
method, the cluster φ = [�η,�v] in I2 results in the cluster

(a)

(b)

Figure 6: Bam area: (a) unregistered image before the earthquake
2003-12-04; (b) unregistered image after the earthquake 2003-12-
29. (Digital Globe.)

φ̃ = [A�η +�b,A�v]. Now, we have

Ψ
(
�xi, φ̃

) =
∥
∥
∥∥
[(
A�yi +�b

)− (A�η +�b)
]

− 1
λ2
�vTAT

[(
A�yi +�b

)− (A�η +�b)
]
A�v
∥
∥
∥∥

2

= λ2Ψ
(
�xi, φ̃

)
,

(18)

and J̃ixy = Jixy , resulting in δxy = 0. Thus, the proposed
method will be independent of the lighting and imaging con-
ditions. Now, assume a more realistic case that εi’s are not
exactly the same but we have λ − δλ ≤ εi ≤ λ + δλ. For
the cases that δλ/λ is too small, the above equations change
to semiequations and still marginally hold. In this situation
δxy 
 0. In contrast, physical changes of interest result in
different materials in a single point in different shots. Hence,
they produce absolutely different values of Jixy and J̃ixy re-
sulting in nonzero patterns of δxy . In the proposed method,
at the same time both the image sequence segmentation and
the fuzzy change detection are performed.

3. EXPERIMENTAL RESULT

The experiments are performed using an Intel Centrino
1700MHz computer with 512MB of RAM.
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(a)

(b)

Figure 7: Bam area: (a) registered image before the earthquake
2003-12-04; (b) registered image after the earthquake 2003-12-29.

(a)

(b)

Figure 8: Urban portion of the images shown in Figure 7.

(a)

(b)

Figure 9: Resulting change maps using the proposed change detec-
tion algorithm: (a) fuzzy change map; (b) crisp change map (after
hard thresholding).

Figure 6 shows twomultiband images taken from the city
of Bam by theQuick Bird satellite, before and after the devas-
tating earthquake of December 26, 2003 before registration.
Figure 7 shows the result of our registration. Figure 8 shows
the urban portion of the images. The first images are cropped
with no magnification to focus on details.

Figure 9 shows the resulted fuzzy change maps. A crisp
map can be easily generated after performing a hard thresh-
old.

As mentioned before, the proposed algorithm computes
both the segmentation and the change detection map at the
same time. Note that many applications need to use them at
the same time. Figure 10 illustrates the segmentation result
before the earthquake and the segmentation tuning result af-
ter the earthquake.

To show the robustness of the proposed algorithm against
changes in imaging conditions, we have evaluated its change
detection performance when running it on two images with
manipulated color changes. In fact, Figure 11 shows a simu-
lated change in imaging conditions with no real changes on
the earth’s surface. Figures 12 and 13 illustrate the robust-
ness of the proposed algorithm against such changes. Here,
we chose a linear transform with eigenvalues 0.9, 0.7, 0.9,
which are not completely equal to simulate the more real-
istic changes. When running the proposed change detection
stage on 472 × 792 downsampled images, it elapsed 5.7 sec-
onds.

4. CONCLUSION

In this paper, a fast and accurate affine transform esti-
mation method and a new efficient fuzzy change detec-
tion method are proposed for remotely sensed images. The
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(a)

(b)

Figure 10: Segmentation results: (a) before the earthquake; (b) seg-
mentation tuning after the earthquake.

Figure 11: Linearly changed image.

experimental results show that the proposed method is fast
and robust against undesired change in imaging conditions.
It was shown that the algorithm can be also efficiently used
to detect damages caused by an earthquake.
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(a)

(b)

Figure 12: Resulting change maps using the proposed change de-
tection method (linearly changed image): (a) fuzzy change map; (b)
crisp change map (after hard thresholding).

(a)

(b)

Figure 13: Segmentation results: (a) original image; (b) linearly
changed image.
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