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1. INTRODUCTION

The localization of source signals using vector sensor data
processing has attracted significant attentions lately. Many
advantages of using the vector sensor array have been identi-
fied and many array data processing techniques for source
localization and polarization estimation using vector sen-
sors have been developed. Nehorai and Paldi developed the
Cramér-Rao bound (CRB) and the vector cross-product
DOA estimator using the vector cross product of the electric-
field and the magnetic-field vector estimates [1, 2]. Li [3] de-
veloped ESPRIT-based angle and polarization estimation al-
gorithm using an arbitrary array with small loops and short
dipoles. Identifiablity and uniqueness study associated with
vector sensors were done by Hochwald and Nehorai [4], Ho
et al.[5] and Tan et al. [6]. Hochwald and Nehorai [7] stud-
ied parameter estimations with application to remote sensing
by vector sensors. Ho et al. [8] developed a high-resolution
ESPRIT-based method for estimating the DOA of partially
polarized sources. Ho et al. [9] further studied the DOA es-
timation with vector sensors for scenarios where completely
and incompletely polarized signals may coexist. Wong [10]
has showed that the vector cross-product DOA estimator re-
mains fully applicable for a pair of dipole triad and loop triad
spatially displaced by an arbitrary and unknown distance

(rather than being collocated). Uni-vector-sensor ESPRIT
is first presented to estimate 2D DOA and the polariza-
tion states of multiple monochromatic noncoherent incident
sources using a single electromagnetic vector sensor byWong
and Zoltowski [11]. Nehorai and Tichavsky [12] presented an
adaptive cross-product algorithm for tracking the direction
to a moving source using an electromagnetic vector sensor.
Ko et al. [13] proposed a structure for adaptively separating,
enhancing, and tracking up to three uncorrelated broadband
sources with an electromagnetic vector sensor. Wong [14]
proposed an ESPRIT-based adaptive geo-location and blind
interference rejection scheme for multiple noncooperative
wideband fast frequency-hop signals using one electromag-
netic vector sensor. Themaximum likelihood (ML) andmin-
imum variance distortionless response (MVDR) estimators
for signal DOA and polarization parameters for correlated
sources are derived by Rahamim et al. [15]. In addition,
a novel preprocessing method based on the polarization
smoothing algorithm (PSA) for “decorrelating” the signals
was also presented. Wong and Zoltowski [16] presented a
self-initiating MUSIC-based DOA and polarization estima-
tion algorithm for an arbitrarily spaced array of identically
oriented electromagnetic vector sensors. Their proposed al-
gorithm is able to exploit the incident sources’ polariza-
tion diversity and to decouple the estimation of the sources’
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arrival angles from the estimation of the sources’ polarization
parameters. The same authors further developed a closed-
form direction-finding algorithm applicable to multiple ar-
bitrarily spaced vector sensors at possibly unknown loca-
tions [17]. A sparse uniform array suffers cyclic ambiguity
in its direction-cosine estimates due to the spatial Nyquist
sampling theorem. Zoltowski and Wong then further pre-
sented another novel ESPRIT-based 2D arrival angle estima-
tion scheme to resolve the aforementioned ambiguity and
achieve aperture extension for a sparse uniform array of vec-
tor sensors spaced much further apart than a half wavelength
[18]. An improved version of the disambiguation algorithm
is also presented in [19].

In fact, frequency estimation is a fundamental problem
in estimation theory and its applications include radar, ar-
ray signal processing, and frequency synchronization. For
scalar sensor array, a number of ESPRIT-based angle and fre-
quency estimation methods have been proposed. Lemma et
al. presented joint angle-frequency estimation method using
multidimensional and multiresolution ESPRIT algorithms
[20, 21]. Zoltowaki andMathews discuss ESPRIT-based real-
time angle-frequency estimation algorithm using scalar sen-
sor array [22].

In this paper, we try to combine the ESPRIT-based
frequency estimation with Wong’s ESPRIT-based 2D DOA
estimation scheme in [18] to yield extended-aperture two-
dimensional (2D) arrival angle and carrier frequency esti-
mates with a sparse uniform array of electromagnetic vector
sensors. Most of the works mentioned above have previously
proposed direction-finding and polarization estimation al-
gorithms using electromagnetic vector sensors; however, this
paper is the first in advancing an algorithm for the estimation
of both arrival angles and arrival delays.

In the newly proposed algorithm, the ESPRIT-based fre-
quency estimates are achieved using the temporal invariance
structure out of two time-delayed sets of data collected from
vector sensor array. In that each incident source’s direction of
arrival (DOA) coarse estimation is obtained through a vector
cross-product estimator. Then the frequency estimates and
coarse angle estimates results are used jointly to disambiguate
the cyclic phase ambiguities in ESPRIT’s eigenvalues when
the intervector sensor spacing exceeds a half wavelength.

2. MATHEMATICALMODEL

Consider the scenario of K uncorrelated monochromatic
completely polarized transverse electromagnetic planewaves
signals with different carrier frequencies, impinging on an
L-shaped array of regularly equally spaced and identical elec-
tromagnetic vector sensors from directions (θk, φk) and po-
larization parameters (γk, ηk) (k = 1, . . . ,K). 0 ≤ θk < π
is the kth signal’s elevation angle measured from vertical z-
axis, 0 ≤ φk < 2π is azimuth angle, 0 ≤ γk < π/2 is auxiliary
polarization angle, and −π ≤ ηk < π is polarization phase
difference.

The signal source model is given by

sk(n) =
√
Pke

j(2π fkn+ϕk), n = 1, 2, . . . ,N , (1)

where Pk is the kth source’s energy, ϕk is the kth signal’s
uniformly distributed random phase, and N is the number
of independent samples collected by the array. fk is the kth
source’s digital frequency (between −0.5 and 0.5) normal-
ized to the sampling frequency Fs which satisfies the Nyquist
sampling theorem for all the signals’ frequencies. Here we
normalize to Fs =1.

A vector sensor contains three electric and three mag-
netic orthogonal sensors. The spatial response in matrix no-
tation of one vector sensor for the kth signal may be ex-
pressed as follows [11]:

gk
def=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

exk
eyk
ezk
hxk
hyk
hzk

⎤

⎥
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⎥
⎥
⎥
⎥
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⎦

def=

⎡
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⎣

sin γk cos θk cosφke jηk − cos γk sinφk
sin γk cos θk sinφke jηk + cos γk cosφk

− sin γk sin θke jηk

− cos γk cos θk cosφk − sin γk sinφke jηk

− cos γk cos θk sinφk + sin γk cosφke jηk

cos γk sin θk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2)

Note that gk does not depend on the signal frequency.

ek
def= [exk, eyk, ezk]T and hk

def= [hxk,hyk,hzk]T (where the su-
perscript T denotes the vector transpose operator) are or-
thogonal to each other and the source’s direction of propaga-
tion, that is, the normalized Poynting vector pk [18],

pk =
⎡

⎢
⎣
pxk
pyk
pzk

⎤

⎥
⎦ = ek∥∥ek

∥∥ ×
h∗k∥∥hk
∥∥ =

⎡

⎢
⎣
uk
vk
wk

⎤

⎥
⎦ =

⎡

⎢
⎣
sinθk cosφk
sinθk sinφk

cosθk

⎤

⎥
⎦ ,

(3)

where∗ denotes complex conjugation and uk, vk,wk, respec-
tively, symbolize the direction cosine along the x-axis, y-axis,
and the z-axis.

The spatial phase factor of the kth signal at themth vector
sensor located (m− 1)Δ along x-axis equals

qxm
(
θk,φk

) def= e j2π fkFs(m−1)Δuk/c

= e j2π fkFs(m−1)Δ sin θk cosφk/c, m = 1, 2, . . . ,M,
(4)

where c is the velocity of light. The spatial phase factor of the
kth signal at the lth vector sensor located (l−1)Δ along y-axis
equals

q
y
l

(
θk,φk

) = e j2π fkFs(l−1)Δvk/c

= e j2π fkFs(l−1)Δ sin θk sinφk/c, l = 1, 2, . . . ,L.
(5)

The 6×1 vector measurement in the nth snapshot is pro-
duced by the mth vector sensor along x-axis and the lth vec-
tor sensor along y-axis, respectively,

zxm(n) =
K∑

k=1
gkqxm

(
θk,φk

)
Sk(n) + nx

m(n),

z
y
l (n) =

K∑

k=1
gkq

y
l

(
θk,φk

)
Sk(n) + n

y
l (n),

(6)



F. Ji and S. Kwong 3

where nx
m(n) and n

y
l (n), respectively, symbol 6×1 complex-

valued zero-mean additive white noise vector in nth snapshot
at themth vector sensor along x-axis and the lth vector sensor
along y-axis.

Time-delayed data collected from the linear vector sensor
array along x-axis is

zxm
(
n + n0

) =
K∑

k=1
gkqxm

(
θk,φk

)
Sk
(
n + n0

)
+ nx

m

(
n + n0

)

=
K∑

k=1
gkqxm

(
θk,φk

)
Sk(n)e j2π fkn0 + nx

m

(
n + n0

)
,

(7)

where n0 is the constant sample delay.
We form the following matrices by using (6) and (7):

x1(n) =
[
zx1(n), z

x
2(n), . . . , z

x
M−1(n)

]T = AS +N1,

y1(n) =
[
zx2(n), z

x
3(n), . . . , z

x
M(n)

]T = AΦxS +N2,

x2(n) =
[
z
y
1(n), z

y
2(n), . . . , z

y
L−1(n)

]T = BS +N3,

y2(n) =
[
z
y
2(n), z

y
3(n), . . . , z

y
L(n)

]T = BΦyS +N4,

y3(n) =
[
zx1
(
n + n0

)
, zx2

(
n + n0

)
, . . . , zxM−1

(
n + n0

)]T

= AΦtS +N5,

(8)

where

S
def=

⎡

⎢
⎢
⎣

S1(n)
...

SK (n)

⎤

⎥
⎥
⎦ , N1

def=

⎡

⎢
⎢
⎣

nx
1(n)
...

nx
M−1(n)

⎤

⎥
⎥
⎦ ,

N2
def=

⎡

⎢
⎢
⎣

nx
2(n)
...

nx
M(n)

⎤

⎥
⎥
⎦ , N3

def=

⎡

⎢
⎢
⎣

n
y
1(n)
...

n
y
L−1(n)

⎤

⎥
⎥
⎦ ,

N4
def=

⎡

⎢
⎢
⎣

n
y
2(n)
...

n
y
L(n)

⎤

⎥
⎥
⎦ , N5

def=

⎡

⎢
⎢
⎣

nx
1

(
n + n0

)

...
nx
M−1

(
n + n0

)

⎤

⎥
⎥
⎦ ,

(9)

A = [
ax1, . . . , a

x
K

] = [
qx
(
θ1,φ1

)⊗ g1, . . . ,qx
(
θK ,φK

)⊗ gK
]
,

(10)

B = [
a
y
1 , . . . , a

y
K

] = [
qy
(
θ1,φ1

)⊗ g1, . . . ,qy
(
θK ,φK

)⊗ gK
]
,

(11)

qx
(
θk,φk

) def=

⎡

⎢
⎢
⎢
⎢
⎣

1
e j2π fkFSΔuk/c

...
e j2π fkFS(M−2)Δuk/c

⎤

⎥
⎥
⎥
⎥
⎦
,

qy
(
θk,φk

) def=

⎡

⎢
⎢
⎢
⎢
⎣

1
e j2π fkFSΔvk/c

...
e j2π fkFS(L−2)Δvk/c

⎤

⎥
⎥
⎥
⎥
⎦
.

(12)

A and B are the 6(M− 1)×K and 6(L− 1)×K matrices,
respectively, and ⊗ denotes Kronecker product. Φx, Φy , and

Φt are diagonal K × K matrices and are given by

Φx = diag
[
exp

j2π f1FSΔu1
c

, . . . , exp
j2π fKFSΔuK

c

]
,

Φy = diag
[
exp

j2π f1FSΔv1
c

, . . . , exp
j2π fKFSΔvK

c

]
,

Φt = diag
[
exp

(
j2π f1n0

)
, . . . , exp

(
j2π fKn0

)]
.

(13)

From N snapshots, three data sets are formed as the follow-
ing:

Z1 =
[
X1

Y1

]

=
[
x1(1) · · · x1(N)
y1(1) · · · y1(N)

]

,

Z2 =
[
X2

Y2

]

=
[
x2(1) · · · x2(N)
y2(1) · · · y2(N)

]

,

Z3 =
[
X1

Y3

]

=
[
x1(1) · · · x1

(
N − n0

)

y3(1) · · · y3
(
N − n0

)

]

.

(14)

The key problem now is how to estimate the digital fre-
quencies { fk}Kk=1 and arrival angles {θk,φk}Kk=1 from the
above data sets.

3. ESPRIT-BASED FREQUENCY AND 2D ANGLE
ESTIMATION ALGORITHM

From (14), we have formed three distinct matrix-pencil
pairs. This first matrix pencil X1 and Y1 has a spatial invari-
ance along the x-axis and can yield estimates of the direction
cosines {uk, k = 1, . . . ,K}. This second matrix pencil X2 and
Y2 has a spatial invariance along the y-axis and can yield es-
timates of the direction cosines {vk, k = 1, . . . ,K}. This third
matrix pencil X1 and Y3 has a temporal invariance and can
yield estimates of the frequency { fk, k = 1, . . . ,K}.

The first step in ESPRIT is to compute the signal-
subspace eigenvectors by eigendecomposing the data corre-
lation matrices R1 = Z1Z1

H , R2 = Z2Z2
H , and R3 = Z3Z3

H

(where the superscriptH denotes the vector conjugate trans-
pose operator). In the proposed algorithm, we basicallymod-
ified the algorithm proposed in [18]. Thus, steps 2 to 6 are
similar to and taken out from [18].

(1) Deriving the frequency estimates

Let EtS denote the 12(M − 1) × K signal-subspace eigenvec-
tor matrix whose K columns are the 12(M − 1) × 1 signal-
subspace eigenvectors associated with the K largest eigenval-
ues of R3 = Z3Z3

H .
The invariance structure of the matrix-pencil pair im-

plies EtS can be decomposed into two 6(M−1)×K subarrays
such that [23]

EtS =
[
Et1
Et2

]

=
[

ATt

AΦtTt

]

. (15)

Because both Et1 and E
t
2 are full rank, a unique nonsingu-

lar K × K matrixΨt exists such that [11]

Et1Ψ
t = Et2 =⇒ ATtΨt = AΦtTt

=⇒ Ψt = (
Tt
)−1

ΦtTt =⇒ Φt = TtΨt(Tt
)−1

.
(16)
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Ψt can be estimated by the total-least-squares ESPRIT
covariance algorithm (TLS-ESPRIT) [23].

Ψt’s eigenvalues equal {[Φt]kk = e j2π fkn0 , k = 1, . . . ,K},

exp
(
j2π f̂kn0

) = [
Φt
]
kk. (17)

If the maximum of the signal digital frequencies is fmax,
n0 is chosen as the following:

∣
∣2π fmaxn0

∣
∣ ≤ π =⇒ n0 ≤ 1

2
∣∣ fmax

∣∣ . (18)

Then we can get the unambiguous frequency estimates:

f̂k =
arg

{[
Φt]

kk

}

2πn0
, (19)

where arg{z} is principle argument of the complex number
z between −π and π.

(2) Deriving the low-variance but ambiguous
estimates of uk

Similarly, for the matrix pencil pair with spatial invari-
ance along the x-axis, Ψx’s eigenvalues equal {[Φx]kk =
e j2π fkFSΔuk/c, k = 1, . . . ,K}.

Because Δ ≥ λk (k = 1, . . . ,K) and −1 ≤ uk ≤1, there
exists a set of cyclically related candidates for the estimation
of uk [18]:

ûk
(
nu
) = μk +

nuc

f̂kFSΔ
,

⌈
f̂kFSΔ

c

(− 1− μk
)⌉ ≤ nu ≤

⌊
f̂kFSΔ

c

(− 1− μk
)⌋
,

μk =
arg

{[
Φx]

kk

}
· c

2π f̂kFSΔ
,

(20)

where �x� is the smallest integer not less than x; 	x
 is the
largest integer not greater than x.

(3) Deriving the low-variance but ambiguous
estimates of vk

Similarly, for the matrix pencil pair with spatial invari-
ance along the y-axis, Ψy ’s eigenvalues equal {[Φy]kk =
e j2π fkFsΔvk/c, k = 1, . . . ,K}.

There exists a set of cyclically related candidates for the
estimation of vk [18]:

v̂k
(
nv
) = vk +

nvc

f̂kFSΔ
,

⌈
f̂kFSΔ

c

(− 1− vk
)
⌉
≤ nv ≤

⌊
f̂kFSΔ

c

(
1− vk

)
⌋
,

vk =
arg

{[
Φy]

kk

}
· c

2π f̂kFSΔ
.

(21)

(4) Deriving the unambiguous coarse reference
estimates of uk and vk from ESPRIT’s eigenvector

Ψx’s right eigenvectors constitute the columns of Tx. From
[11], we have the following:

Â = 0.5
{
Ex1
(
Tx
)−1

+ Ex2
(
Tx
)−1(

Φx)−1}. (22)

With noise, the above estimation becomes only approxi-
mate.

We have the array manifold estimates from (10):

âxk = q̂x
(
θk,φk

)⊗ ĝk = q̂x
(
θk,φk

)⊗
[
êk
ĥk

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̂x1
(
θk,φk

)
êk

q̂x1
(
θk,φk

)
ĥk

...
q̂xM−1

(
θk,φk

)
êk

q̂xM−1
(
θk,φk

)
ĥk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(23)

Define

bi(k) = q̂xi
(
θk,φk

)
êk, ci(k) = q̂xi

(
θk,φk

)
ĥk, (24)

i = 1, 2, . . . ,M − 1.
Note that

bi(k)∥
∥bi(k)

∥
∥ ×

c∗i (k)∥
∥ci(k)

∥
∥ =

qxi
(
θk,φk

)
êk∥

∥qxi
(
θk,φk

)
êk
∥
∥ ×

qx
∗

i

(
θk,φk

)
ĥ∗k∥

∥qxi
(
θk,φk

)
ĥk
∥
∥

= êk∥∥êk
∥∥

ĥ∗k∥∥ĥk
∥∥
.

(25)

So we can get the estimate of Ponyting vector:

p̂xk =
1

M − 1

M−1∑

i=1

bi(k)∥∥bi(k)
∥∥ ×

c∗i (k)∥∥ci(k)
∥∥ . (26)

Unambiguous but high-variance estimates { p̂xxk, p̂xyk, p̂xzk}
for {uk, vk,wk} have been achieved. This is the so-called vec-
tor cross-product estimator who is pioneered by Nehorai
and Paldi [1, 2] and firstly adapted to ESPRIT by Wong and
Zoltowski [11, 24].

Similarly, for the matrix pencil with spatial invariance
along the y-axis, we can get another set of unambiguous but
high-variance estimates p̂

y
k for {uk, vk,wk}. For the matrix

pencil with temporal invariance, we can get p̂tk.

(5) Pairing the direction-cosine estimates
and frequency estimates

The orderings of { p̂txi, p̂tyi, p̂tzi, i = 1, 2, . . . ,K}, { p̂xx j , p̂xy j , p̂xz j ,
j = 1, 2, . . . ,K} and { p̂yxk, p̂yyk, p̂yzk, k = 1, 2, . . . ,K} are differ-
ent and need to be paired. { p̂txi, p̂tyi, p̂tzi} can be easily paired
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with { p̂xx j , p̂xy j , p̂xz j} and { p̂yxk, p̂yyk, p̂yzk} as follows [18]:
{
j01 , . . . , j

0
K

} = argmin
∥
∥[p̂t1, . . . , p̂

t
K

]− [
p̂xj1 , . . . , p̂

x
jK

]∥∥,
{
k01, . . . , k

0
K

} = argmin
∥∥[p̂t1, . . . , p̂

t
K

]− [
p̂
y
k1
, . . . , p̂

y
kK

]∥∥.
(27)

The above minimization is with respect to all possible per-
mutations of {k1, . . . , kK} and { j1, . . . , jK}.

From p̂tk, p̂
x
k, p̂

y
k we may form a p̂k:

p̂k =
⎡

⎢
⎣
p̂xk
p̂yk
p̂zk

⎤

⎥
⎦ = p̂tk + p̂xk + p̂

y
k

3
. (28)

{ p̂txi, p̂tyi, p̂tzi} are already paired with fi, and { p̂xx j , p̂xy j ,
p̂xz j} with μj , { p̂yxk, p̂yyk, p̂yzk} with vk. It follows that { f̂1, . . . ,
f̂K} is to be paired with {μ̂ j01

, . . . , μ̂ j0K
} and {v̂k01 , . . . , v̂k0K } [18].

(6) Disambiguation of the low-variance estimates
of direction-cosine from ESPRIT’s eigenvalues [18]

The disambiguated estimates are

ûk
(
nu
) = μk +

n◦uc

f̂kFSΔ
, v̂k

(
nv
) = vk +

n◦vc

f̂kFSΔ
, (29)

where n◦u and n◦v may be separately estimated as

n◦u = arg min
nu

∣
∣∣
∣ p̂xk − μk − nuc

f̂kFSΔ

∣
∣∣
∣,

n◦v = arg min
nv

∣
∣
∣
∣ p̂yk − vk − nvc

f̂kFSΔ

∣
∣
∣
∣.

(30)

(7) The 2D arrival angle estimation

We can calculate low-variance 2D arrival angle estimates
from direction-cosine estimates out of ESPRIT’s eigenvalues

θ̂k = arcsin
(√

û2k + v̂2k
)
,

φ̂k = arctan
(
v̂k
ûk

)
.

(31)

Similarly, we can calculate the high-variance 2D arrival
angle estimates from direction-cosine estimates out of ES-
PRIT’s eigenvectors

θ̂k = arcsin
(√

p̂2xk + p̂2yk
)
,

φ̂k = arctan
(
p̂yk
p̂xk

)
.

(32)

Note that p̂zk may be applied to judge the quadrant of θ̂k.

4. SIMULATIONS

Several simulations are presented to verify the effectiveness of
the proposed ESPRIT-based frequency and 2D angle estima-
tion algorithm. In these simulations, the total-least-squares
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Figure 1: The RMS standard deviation of (θ̂k , φ̂k , k = 1, 2) versus
SNR: the two uncorrelated sources {θ1, θ2} = (30◦, 60◦), {φ1,φ2} =
(40◦,−60◦), {γ1, γ2} = (0◦, 45◦), {η1,η2} = (0◦, 90◦), { f1, f2} =
(0.3, 0.4) impinge upon an L-shaped vector sensor, 100 snapshots
per experiment, 300 experiments per data point.
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Figure 2: The RMS standard deviation of ( f̂k , k = 1, 2) versus SNR,
same settings as an Figure 1.

ESPRIT covariance algorithm (TLS-ESPRIT) [23] is used.
We consider the scenario of the two signals impinging one
uniform L-shaped array and M = 4, L = 4. All the signal
source’s energy P is unity and n0 = 1. The intersensor spac-
ing is chosen as Δ = 10 ∗ λmin/2 (λmin = c/( fmaxFs)) except
for the example in Figures 4 and 5.

Figures 1 and 2 give the RMS standard deviations of (θ̂k,

φ̂k, k = 1, 2) and ( f̂k, k = 1, 2) versus SNR, respectively. The
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Figure 3: The RMS bias of (θ̂k , φ̂k , k = 1, 2) and ( f̂k , k = 1, 2)
versus SNR, same settings as in Figure 1.

parameters of the two signals are {θ1, θ2} = (30◦, 60◦), {φ1,
φ2} = (40◦,−60◦), {γ1, γ2} = (0◦, 45◦), {η1,η2} = (0◦, 90◦),
{ f1, f2} = (0.3, 0.4). Figure 3 gives the corresponding RMS
bias versus SNR. The proposed algorithm successfully re-
solves all the two electromagnetic source parameters includ-
ing frequency and 2D angles. Figures 1 and 3 show that the
angle estimates from ESPRIT’s eigenvalues combined with
eigenvectors have better performance than angle estimates
obtained from only ESPRIT’s eigenvectors at SNR’s above
1 dB. It is observed that the RMS bias of angle estimates is
less than 0.2◦ at SNR’s above 5 dB and 0.1◦ at SNR’s above
10 dB. RMS standard deviation of frequency estimates is less
than one order of magnitude greater than the CRB at SNR’s
above 0 dB.

Figures 4 and 5, respectively, give the RMS standard de-

viations and bias of (θ̂k, φ̂k, k = 1, 2) versus intersensor
spacing when SNR = 15. The parameters of the two sig-
nals are {θ1, θ2} = (60◦, 30◦), {φ1,φ2} = (40◦,−60◦),
{γ1, γ2} = (0◦, 45◦), {η1,η2} = (0◦, 90◦), { f1, f2} = (0.4, 0.5).
Figure 3 shows that the standard deviations and bias of an-
gle estimates from the eigenvalues combined with eigenvec-
tors decrease as the intersensor spacing increases when Δ <
60λmin/2. But the performance of angle estimates obtained
from only the eigenvectors remains relatively constant as the
inter-sensor spacing increases. Note that when Δ ≥ 60λmin/2,
the standard deviations and bias of angle estimates from the
eigenvalues combined with eigenvectors begin to increase as
the intersensor spacing increases. In fact, this phenomenon
has been explained in [18].

From (29), it can be seen that the performance of fre-
quency estimation may affect the performance of low-var-
iance angle estimation. Figure 6 gives the RMS standard devi-

ation of (θ̂k, φ̂k, k = 1, 2) versus SNR. The signal parameters
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Figure 4: The RMS standard deviation of (θ̂k , φ̂k , k = 1, 2) ver-
sus intersensor spacing when SNR = 15 dB: the two uncorrelated
sources {θ1, θ2} = (60◦, 30◦), {φ1,φ2} = (40◦,−60◦), {γ1, γ2} =
(0◦, 45◦), {η1,η2} = (0◦, 90◦), { f1, f2} = (0.4, 0.5) impinge upon an
L-shaped vector sensor, 100 snapshots per experiment, 300 experi-
ments per data point.
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Figure 5: The RMS bias of (θ̂k , φ̂k , k = 1, 2) versus intersensor spac-
ing when SNR = 15 dB, same settings as in Figure 4.

are the same as in Figure 1 except that { f1, f2} = (0.35, 0.4).
One curve is calculated from the low-variance angle estima-
tion algorithm when the signal frequencies are not known
and estimated. Another curve is calculated by the low-var-
iance angle estimation algorithm when the signal frequen-
cies are known. It is shown that when signal frequencies are
known, the RMS standard deviation of angle estimates is
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Figure 6: The RMS standard deviations of (θ̂k , φ̂k , k = 1, 2) ver-
sus SNR from low-variance angle estimation, same settings as in
Figure 1 except that { f1, f2} = (0.35, 0.4).

just slightly lower than that when signal frequencies are esti-
mated. Our simulations also show that RMS bias of the low-
variance angle estimates when frequencies are known is al-
most the same as that when frequencies are estimated.

Figure 7 gives the RMS standard deviation of (θ̂k, φ̂k, k =
1, 2) versus elevation angle of the first signal when SNR =
15 dB. The parameters of the two signals are θ2 = 45◦, {φ1,
φ2} = (25◦,−30◦), {γ1, γ2} = (0◦, 45◦), {η1,η2} = (0◦, 90◦),
{ f1, f2} = (0.3, 0.4). It is observed that the standard devia-
tions of angle estimates from the eigenvalues combined with
eigenvectors are greater than angle estimates from ESPRIT
eigenvectors when elevation angle nears 90◦.

Figure 8 gives the RMS standard deviation of (θ̂k, φ̂k, k =
1, 2) versus azimuth angle of the first signal when SNR =
15 dB. The signal parameters are the same as in Figure 7 ex-
cept that {θ1, θ2} = (30◦, 45◦), φ2 = −30◦. It is shown that
the RMS standard deviation of angle estimates from two esti-
mation methods almost does not change as the azimuth an-
gle of the first signal is changed.

Figure 9 gives the RMS standard deviation of (θ̂k, φ̂k, k =
1, 2) and ( f̂k, k = 1, 2) versus the number of snapshots
when SNR = 15 dB. The parameters of the two signals are
{θ1, θ2} = (60◦, 30◦), {φ1,φ2} = (40◦,−60◦), {γ1, γ2} =
(0◦, 45◦), {η1,η2} = (0◦, 90◦), { f1, f2} = (0.3, 0.4). It is
shown that the RMS standard deviation decreases slowly as
the number of snapshots increases for the number of snap-
shots exceeding 50.

Figure 10 gives the RMS standard deviation and bias of

( f̂k, k = 1, 2) versus the difference Δ f of two signal fre-
quencies when SNR = 15 dB. The signal parameters are the
same as in Figure 9 except that { f1, f2} = (0.4 − Δ f , 0.4).
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Figure 7: The RMS standard deviations of (θ̂k , φ̂k , k = 1, 2) ver-
sus elevation angle of the first signal when SNR = 15 dB. The pa-
rameters of the two signals are θ2 = 45◦, {φ1,φ2} = (25◦,−30◦),
{γ1, γ2} = (0◦, 45◦), {η1,η2} = (0◦, 90◦), { f1, f2} = (0.3, 0.4), 100
snapshots per experiment, 300 experiments per data point.
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Figure 8: The RMS standard deviation of (θ̂k , φ̂k , k = 1, 2) versus
azimuth angle of the first signal when SNR = 15 dB, same setting as
in Figure 7 except that {θ1, θ2} = (30◦, 45◦) and φ2 = −30◦.

It is observed that when Δ f is 0.004, the RMS bias is about
2.5e-4 and standard deviation is about 1.6e-3, which shows
that two signal frequencies can be separated. Note that just
50 snapshots are used here. For discrete Fourier transform
when 50 snapshots are used, the frequency discrimination is
just 1/50 = 0.02.
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Figure 9: The RMS standard deviation of (θ̂k , φ̂k , k = 1, 2) and

( f̂k , k = 1, 2) versus the number of snapshots when SNR =
15 dB. The parameters of the two signals are {θ1, θ2} = (60◦, 30◦),
{φ1,φ2} = (40◦,−60◦), {γ1, γ2} = (0◦, 45◦), {η1,η2} = (0◦, 90◦),
{ f1, f2} = (0.3, 0.4), 100 snapshots per experiment, 300 experi-
ments per data point.
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Figure 10: The RMS standard deviations and bias of ( f̂k , k = 1, 2)
versus the difference Δ f of two signal frequencies when SNR =
15 dB, same settings as in Figure 9 except that { f1, f2} = (0.4 −
Δ f , 0.4), 50 snapshots per experiment, 300 experiments per data
point.

5. CONCLUSION

In this paper, we propose an ESPRIT-based algorithm that
yields 2D angle and frequency estimates. This algorithm can

achieve extended-aperture arrival angle estimation even
though using a sparse electromagnetic vector sensor array.
Good frequency discrimination obtained even though there
are little samples used. Although we only consider the L-
shaped array here, the approach may be implemented using
a variety of array geometries.
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