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We propose a novel approach to detect the watermark message embedded in images under the form of a linear frequency modu-
lated chirp. Localization of several time-frequency distributions (TFDs) is studied for different frequency modulated signals under
various noise conditions. Smoothed pseudo-Wigner-Ville distribution (SPWVD) is chosen and applied to detect and recover the
corrupted image watermark bits at the receiver. The synthesized watermark message is compared with the referenced one at the
transmitter as a detection evaluation scheme. The correlation coefficient between the synthesized and the referenced chirps reaches
0.9 or above for a maximum bit error rate of 15% under intentional and nonintentional attacks. The method provides satisfactory
result for detection of image watermark messages modulated as chirp signal and could be a potential tool in multimedia security
applications.
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1. INTRODUCTION

Chirp signals are present ubiquitously in many areas of sci-
ence and engineering. Chirps are identified in natural sig-
nals such as animal sounds (birds, frogs, whales, and bats),
whistling sound, as well as in man-made systems such as in
radar, sonar, telecommunications, physics, and acoustics. For
example, in radar applications, chirp signals are used to an-
alyze the trajectories of moving objects. Due to its inherent
ability to reject interference, linear frequency modulated sig-
nals or chirp signals are also used widely in spread spectrum
communication. Chirps are also involved in biomedicine
applications such as in the study of electroencephalogram
(EEG) and electromyogram (EMG) data. Recently, the boom
in Internet makes it easier for digital contents to be copied
and reproduced in large quantities beyond the control of
content providers. Digital watermark is the tool created to
work against this problem, it can prove the content’s origin,
protect the copyrights, and prevent illegal use. In watermark-
ing of audio signals and images [1, 2], the chirp message is
embedded in the signals and then detected at the receiver
based on its frequency change rate. A more detailed discus-
sion on watermarking applications is provided in Section 2
of this paper.

Due to their immense importance, detection and esti-
mation of chirp signals in the presence of high noise level

and other signals has attracted much attention in many re-
cent research papers. There are various detection methods
for chirps in the time domain, joint time-frequency domain,
and the ambiguity domain. Some of the common techniques
are the optimal detection [3] based on the square inner prod-
uct between the observed and referenced chirps, the maxi-
mum likelihood which integrates along all possible lines of
the time-frequency distribution (TFD), the wavelet trans-
form, and evolutionary algorithm [4, 5]. One of the most
common techniques for linear chirp detection is the Hough-
Radon transform (HRT) [6–8]. HRT detects the directional
elements that satisfy a parametric constraint in the image of
the time-frequency (TF) plane by converting the signal’s TFD
into a parameter space. HRT is an effective method for de-
tecting, error correcting of linear chirp, and it can be applied
to small image of the TF plane. However, the complexity of
the HRT algorithm increases substantially with the size of
the image. The other approach for chirp detection and es-
timation, which is the main focus of this paper, is based on
time-frequency signal synthesis. Signal synthesis was first ap-
plied in signal design to generate signal with known, required
time-frequency properties such as in the design of time-
varying filter and signals separation. A time domain sig-
nal can be synthesized from its time-frequency distribution
using least square method or polynomial-phase transform.
In least square approach [9, 10], the signal is constructed
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by minimization of the error function between the signal
TFD and the desired TFD. Improved algorithms have been
tested for Wigner-Ville distribution as well as its smoothed
versions and they yielded satisfactory results. The discrete
polynomial-phase transform approach [11–13], on the other
hand, models the signal phase as polynomial and uses the
higher ambiguity function to estimate the signal parameters.

In this paper, we introduce a new way to detect the image
watermark messages modulated as linear chirp signals from
the TF plane by signal synthesis method using polynomial-
phase transform. The success rate of the method depends
considerably on the initial estimation of the instantaneous
frequency (IF) from the TF plane and which in turn, de-
pends on the TFD selection. A good TFD candidate would
be the one providing high localization and cross-term free
for a variety of signals in different noise levels at different
frequency modulation rates. The rest of the paper is orga-
nized as follows: an analysis on localization of the common
TFDs is discussed in Section 3. A review on signal synthesis
based on discrete polynomial transform (DPT) is provided in
Section 4. Section 5 is for the application of the proposed im-
age watermark detection scheme. And finally, the result and
discussion related to the proposed technique are provided in
Section 6. But first we will have a brief review on watermark
applications in joint time-frequency domain.

2. TIME-FREQUENCY DIGITALWATERMARKING

Digital watermarking is the process involving integrating a
special message into digital contents such as audio, video,
and image for copyright protection purposes. The embed-
ded data is then extracted from the multimedia as a proof of
ownership. Various digital watermarking methods have been
researched by many authors in the past years. The watermark
techniques differ depending on their applications and char-
acteristics such as invisibility, robustness, security, andmedia
category. In addition, watermark methods can also be classi-
fied by the type of watermark message used as well as the
processing domain [14]. The watermark message used can
be any noise type, that is, pseudo-noise sequence, Gaussian
random sequence, or image type such as ones in the form
of binary image, stamp, and logo. The processing domain,
where the insertion and extraction of watermark taken place,
is usually spatial domain or frequency domain. The tech-
niques based on frequency domain such as DCT, wavelet and
Fourier transform have become very popular recently. How-
ever very few works have been done to exploit the unique
properties and advantages of watermarking in joint time-
frequency domain.

In [15], watermark insertion and extraction are both
done in time-frequency domain. In the embedding process,
watermark message w(t, f ), in time-frequency domain, is
added to the cells of Wigner-Ville distribution X(t, f ) of the
signal x(t). The locations of cells are carefully selected so that
the message will be invisible when inverting the watermarked
Wigner distribution back to spatial domain. In the detection
process, theWigner-Ville distribution of the original message
is subtracted from that of the watermarked message to re-
trieve the watermark.

The fragile watermark approach proposed in [16] does
not require the whole original signal to recover the water-
mark. A quadratic chirp is modulated with a pseudo-random
(PN) sequence before being added to the diagonal pixels of
the image in the spatial domain. Only the original value of
the diagonal pixels is enough for recovering the watermark
bits. After removing the PN effect, the watermark pattern can
be analyzed using a TFD.

In [1, 2], we introduced the novel watermarking method
using a linear chirp based technique and applied it to image
and audio signals. The chirp signal x(t) (or m) is quantized
and has value −1 and 1 as in mq. mq is then embedded into
the multimedia files. The detail of the embedding and ex-
tracting of watermark is followed.

2.1. Watermark embedding

Each bitm
q
k ofm

q is spread with a cyclic shifted version pk of
a binary PN sequence called watermark key. The results are
summed together and generate the wideband noise vector w:

w =
N∑

k=0
m

q
kpk, (1)

where N is the number of watermark message bits inmq.
The wideband noisew is then carefully shaped and added

to the audio or DCT block of the image so that it will cause
imperceptible change in signal quality. In the audio water-
marking application as proposed in [2], to make the water-
markmessage imperceptible, the amplitude level of the wide-
band noise w is scaled down to be about 0.3 of the product
between the dynamic range of the signal and the noise itself
and then lowpass filtered before being added to the signal.
The fact that audio signals have most of their energy lim-
ited from low to middle frequencies will allow embedding
the frequency-limited watermark with greater strength. This
method is therefore more robust compared to the method in
[17] especially to attacks in the high frequency band such as
MP3 compression, lowpass filtering, and resampling. In the
image watermarking application in [1] and this paper, the
length of w to be embedded depends on the perceptual en-
tropy of the image.

To embed the watermark into the image, the model based
on the just noticeable difference (JND) paradigm was utilized.
The JND model based on DCT was used to find the per-
ceptual entropy of the image and to determine the percep-
tually significant regions to embed the watermark. In this
method, the image is decomposed into 8 × 8 blocks. Taking
the DCT on the block b results in thematrixXu,v,b of the DCT
coefficients. The watermark embedding scheme is based on
the model proposed in [18]. The watermark encoder for the
DCT scheme is described as

X∗u,v,b =
⎧
⎨
⎩
Xu,v,b + tCu,v,bwu,v,b, if Xu,v,b > tCu,v,b,

Xu,v,b, otherwise,
(2)

where Xu,v,b refers to the DCT coefficients, X∗u,v,b refers to
the watermarked DCT coefficients, wu,v,b is obtained from
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Figure 1: Watermark embedding scheme.

the wideband noise vector w, and the threshold tCu,v,b is the
computed JND determined for various viewing conditions
such as minimum viewing distance, luminance sensitivity,
and contrast masking. Figure 1 shows the block diagram of
the described watermark encoding scheme.

2.2. Watermark detecting

Figure 2 shows the original image, the chirp used as water-
mark message, and the watermarked image based on our ap-
proach. The watermark is well hidden in the image that it is
imperceptible and causes no difference in the histogram. The
presence of the chirp message is undetectable in the spatial
and time-frequency domain thanks to the perceptual shap-
ing processing. Figure 3 shows the block diagram of the de-
scribed watermark decoding scheme. The detection scheme
for the DCT-based watermarking can be expressed as

ŵu,v,b =
Xu,v,b − X̂∗u,v,b

tCu,v,b
,

ŵ =
⎧
⎨
⎩
ŵu,v,b if Xu,v,b > tCu,v,b,

0 otherwise,

(3)

where X̂∗u,v,b are the coefficients of the received watermarked
image, and ŵ is the received wideband noise vector. Due to
intentional and nonintentional attacks such as lossy com-
pression, shifting, down-sampling the received chirpmessage
m̂q will be different from the original messagemq by a bit er-
ror rate BER. We use the watermark key, pk to despread ŵ,
and integrate the resulting sequence to generate a test statis-
tic 〈ŵ,pk〉. The sign of the expected value of the statistic de-
pends only on the embedded watermark bit m

q
k . Hence the

watermark bits can be estimated using the decision rule:

m̂
q
k =

⎧
⎨
⎩
+1, if

〈
ŵ,pk

〉
> 0,

−1, if
〈
ŵ,pk

〉
< 0.

(4)

The bit estimation process is repeated for all the trans-
mitted bits.

3. SELECTIONOF TFD

The frequency change of a signal over time (instantaneous
frequency) is an important tool for analysis of nonstationary
signals. The instantaneous frequency (IF) is traditionally ob-
tained by taking the first derivative of the phase of the signal
with respect to time. This poses some difficulties because the
derivative of the phase of the signal may take negative val-
ues thus misleading the interpretation of instantaneous fre-
quency. Another way to estimate the IF of a signal is to take
the first central moment of its time-frequency distribution.
Time-frequency distribution (TFD) has been used widely as
an analysis tool for the study of nonstationary signals. It in-
volves mapping a one-dimensional signal x(t) into a two-
dimensional function TFDx(t, f ), which provides the infor-
mation on spectral characteristics of the signal with respect
to time. Time-frequency representations (TFR) are classified
into two main groups: linear and quadratic. One example of
linear TFR is the short time Fourier transform which has the
tradeoff between time and frequency resolution. Quadratic
(or bilinear) TFR such as spectrogram andWigner-Ville uses
energy distribution of the signal over time and frequency
to represent the temporal and spectral information. There
are a large number of possible time-frequency distributions
and they are classified based on the desired properties such
as cross-term removal and joint time-frequency resolution.
There is always a tradeoff between resolution and cross-term
suppression. The removal of cross-term (smoothing) also
takes away some of the signal energy and reduces the joint
time-frequency resolution. When it comes to evaluation of a
TFD, besides the factors such as accuracy of IF estimation,
high resolution in joint time-frequency domain, ability to
suppress cross-terms, one should also consider the effects of
noise on the TFD’s performance.

We have done several simulations to compare the prop-
erties of different TFDs on various signals, types, and levels
of noise. The TFDs involved in the test are spectrogram (SP),
Wigner-Ville distribution (WVD), pseudo Wigner-Ville dis-
tribution (PWVD), smoothed pseudoWigner-Ville distribu-
tion (SPWVD), Choi-Williams distribution (CWD), chirplet
transform (CT), and the matching-pursuit-decomposition-
based time-frequency distribution (MPTFD) technique. Our
simulation results show that SPWVD, SP, CT, and MPTFD
can provide TFDs with better localization than the rest in
various conditions.

Among the examined TFRs, only matching pursuit de-
composition technique (MPTFD) and the chirplet transform
are adaptive in nature. Chirplet transform computation is ex-
tensive depending on the number of chirps used. MPTFD
has its adaptiveness based on the decomposition algorithm
[19, 20] and the choice of the dictionary. Both methods can
be adjusted to generate TFD which is clean and cross-term
free but at the expense of heavy computation. We prefer to
leave them out of the comparison since computational effi-
ciency is also one of the requirements for the TFD applica-
tions in multimedia security.
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Figure 2: (a), (b) image with no watermark embedded and its histogram, (c) time domain representation of the linear chirp (watermark),
(d) TFD of the linear chirp, (e) the image in (a) with watermark embedded, and (f) its histogram.
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Figure 3: Watermark detection scheme.

Table 1: Multicomponent signal-correlation coefficients between
the estimated and referenced IF.

Coef. WV PWV SPWV CWD SP

No noise −0.052 −0.055 0.995 −0.038 0.906

10 dB 0.093 0.100 0.956 0.073 0.893

5 dB 0.105 0.110 0.863 0.087 0.859

1 dB 0.083 0.085 0.697 0.077 0.786

0 dB 0.081 0.082 0.616 0.067 0.732

Table 1 gives the result of the correlation coefficients be-
tween referenced and estimated instantaneous frequency of
a multicomponent signal consists of two linear IF laws inter-
secting each other under different noise levels. The same sim-
ulation was also done on monocomponent FM signal and its
results were tabulated in Table 2.

Performance of the TFD estimators varies depending on
the input signals’ characteristics such as linearity, rate of fre-
quency change, mono- or multicomponent, and the close-
ness between frequency components in the signal. Formono-
component linear FM signal, almost all estimated IF laws
are highly correlated with their corresponding reference. For
multicomponent signals, due to the effect of cross-terms,
WV and PWV become unreliable tools for estimating IF.
SPWVD and SP have high ability to suppress cross-term,
their estimated IF is highly correlated with the known IF and
less affected by white noise. We prefer SPWV to SP for our
image watermark application due to its better joint time-
frequency resolution. SPWVD’s advanced performance can
be contributed to its smoothing kernel design.

All time-frequency distributions which belong to Cohen’s
class can be represented as a two-dimensional convolution in
the equation below [21, 22]:

Tx(t, f ) =
∫

t′

∫

f ′
ψT(t − t′, f − f ′)Wx(t′, f ′)dt′df ′, (5)

where Wx(t, f ) is the Wigner-Ville distribution of the signal
x(t) and ψT(t, f ) is the real value smoothing kernel of the
distribution.

Table 2: Monocomponent signal-correlation coefficients between
the estimated and referenced IF.

Coef. WV PWV SPWV CWD SP

No noise 0.961 0.961 0.996 0.992 0.985

10 dB 0.897 0.897 0.996 0.902 0.984

5 dB 0.631 0.633 0.991 0.465 0.981

1 dB 0.222 0.227 0.967 0.209 0.969

0 dB 0.174 0.181 0.956 0.197 0.961

The above convolution in time-frequency domain is
equivalent to multiplication in the ambiguity domain (τ, ν):

Tx(τ, ν) = ΨT(τ, ν)Ax(τ, ν), (6)

where ΨT(τ, ν) is calculated as the 2D Fourier transform of
the real value kernel ψT(t, f ):

ΨT(τ, ν) =
∫

t

∫

f
ψT(t, f )e− j2π(νt−τ f )dt df , (7)

and Ax(τ, ν) is the ambiguity function calculated by taking
Fourier transform of the Wigner-VilleWx(t, f ):

Ax(τ, ν) =
∫

t
x
(
t +

τ

2

)
x∗
(
t − τ

2

)
e− j2πνtdt. (8)

In the ambiguity domain, the signal auto terms (AT) are
centered at the origin while the interference terms (IT) are
located away from the origin. The kernel acts as a low-pass
filter on the Wigner distribution of the signal, smooths out
ITs, and retains the ATs. In order to study the properties of
a time-frequency estimator, one has to examine the shape
of the corresponding smoothing kernel in the ambiguity do-
main [21, 22].

Smoothing of interference terms takes away the auto
terms and reduces joint TF resolution. Ideally, value of the
kernel low-pass filterΨT(τ, ν) should be one in the auto term
region and zero in the interference term region. If the ker-
nel is too narrow, suppression of IT also takes away some of
the AT energy leading to smearing of the TFD. On the other
hand, if the kernel shape is too broad, it cannot remove all the
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Table 3: Smoothing kernels of the common TFDs.

Distribution Kernel ϕT(t, τ) Kernel ΨT(τ, ν)

WVD δ(t) 1

PWVD δ(t)h
(
τ

2

)
h∗
(
− τ

2

)
h
(
τ

2

)
h∗
(
− τ

2

)

SPWVD g(t)h
(
τ

2

)
h∗
(
− τ

2

)
h
(
τ

2

)
h∗
(
− τ

2

)
G(ν)

SP γ
(
− t − τ

2

)
γ∗
(
− t +

τ

2

)
Aγ(−τ,−ν)

CW
√

σ

4π
1
|τ| exp

[
− σ

4

(
t

4

)2]
exp

[
− (2πτν)2

σ

]

ITs. This reason explains why a fixed kernel design (not adap-
tive) cannot work properly for any signal types. High joint
time-frequency resolution cannot be achieved at the same
time with good interference suppression.

Table 3 lists the smoothing kernels of several estimators
in (t, τ) domain and (τ, ν) ambiguity domain [21].

The kernel of the spectrogram,

ϕT(t, τ) = γ
(
− t − τ

2

)
γ∗
(
− t +

τ

2

)
, (9)

is the Wigner-Ville distribution of the running window γ(t).
Its smoothing region is very narrow that it effectively re-
moves all cross-terms at the cost of reduced joint time-
frequency resolution. Cross-terms will only be present if the
signal terms overlap [21]. In addition, spectrogram suffers
from a tradeoff between time and frequency resolution. If a
short window is used, smoothing function will be narrow in
time and wide in frequency leading to good resolution in
time and bad resolution in frequency, and vice versa. The
spectrogram is free of cross-terms but it has lower joint time-
frequency resolution compared to SPWVD.

SPWV distributions, on the other hand, have more pro-
gressive and independent smoothing control both in time
and frequency. SPWVD’s advanced performance can be con-
tributed to its smoothing kernel design. The kernel of SP-
WVD and PWVD in time-frequency domain has the form

ψT(t, f ) = g(t)H( f ), (10)

where g(t) is the time-smoothing window and h(t) is the
running analysis window having frequency-smoothing ef-
fect. In the ambiguity domain:

ΨT(τ, ν) = H(τ)G(ν)

= h
(
τ

2

)
h∗
(
− τ

2

)
G(ν).

(11)

In WVD, the kernel is always one, therefore no smooth-
ing is made between the regions of the ambiguity domain. In
PWVD, g(t) = δ(t) leads to G(ν) = 1, no smoothing is done
to remove IT oscillating in time direction, smoothing is only
possible for frequency direction. Since SPWVD smoothing is
done in both time and frequency direction, most of its cross-
terms are attenuated. Smoothing in time and frequency can

be adjusted separably with abundant choices of windows g(t)
and h(t). The amount of smoothing in time and frequency
increases as the length of window g(t) increases and length
of window h(t) decreases, respectively. Although smoothing
of interference terms (IT) also takes away the auto terms (AT)
and reduces joint TF resolution, SPWVD is still more local-
ized than SP and does not suffer from the time-frequency
resolution tradeoff. According to [21, 22], SPWVD separable
smoothing kernel has the shape of a Gaussian function and
its ability to suppress IT does not depend much on signal
types as the Choi-Williams distribution (CWD) kernel. In
CWD, independent control of time and frequency smooth-
ing is not possible. This limitation as well as the requirement
on marginal property reduce the distribution’s ability to re-
move cross-terms and make it less versatile than SPWVD.

4. DISCRETE POLYNOMIAL-PHASE TRANSFORM
AND SIGNAL SYNTHESIS

The discrete polynomial-phase transform (DPT) has been
extensively studied in recent years [11–13]. It is a parametric
signal analysis approach for estimating the phase parameters
of polynomial-phase signals. The phase of many man-made
signals such as those used in radar, sonar, communications
can be modeled as a polynomial. The discrete version of a
polynomial-phase signal can be expressed as

x(n) = b0 exp

{
j

M∑

m=0
am(nΔ)m

}
, (12)

where M is the polynomial order (M = 2 for chirp signal),
0 ≤ n ≤ N − 1, N is the signal length, and Δ is the sampling
interval.

The principle of DPT is as follows. When DPT is applied
to a monocomponent signal with polynomial phase of or-
der M, it produces a spectral line. The position of this spec-
tral line at frequency ω0 provides an estimate of the coeffi-
cient âM . After âM is estimated, the order of the polynomial
is reduced from M to M − 1 by multiplying the signal with
exp{− jâM(nΔ)M}. This reduction of order is called phase
unwrapping. The next coefficient âM−1 is estimated the same
way by taking DPT of the polynomial-phase signal of order
M − 1 above. The procedure is repeated until all the coeffi-
cients of the polynomial phase are estimated.

DPT orderM of a continuous phase signal x(n) is defined
as the Fourier transform of the higher-order DPM[x(n), τ]
operator:

DPTM
[
x(n),ω, τ

] ≡ F
{
DPM

[
x(n), τ

]}

=
N−1∑

(M−1)τ
DPM

[
x(n), τ

]
exp− jωnΔ,

(13)

where τ is a positive number and

DP 1
[
x(n), τ

]
:= x(n),

DP 2
[
x(n), τ

]
:= x(n)x∗(n− τ),

DPM
[
x(n), τ

]
:=DP 2

[
DPM−1

[
x(n), τ

]
, τ
]
.

(14)
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The coefficients aM (a1 and a2) are estimated by applying
the following formula:

âM = 1

M!
(
τMΔ

)M−1 argmaxω
{∣∣DPTM

[
x(n),ω, τ

]∣∣},

(15)

where

DPT1
[
x(n),ω, τ

] = F
{
x(n)

}
,

DPT2
[
x(n),ω, τ

] = F
{
x(n)x∗(n− )

}
,

(16)

and

â0 = phase

{ N−1∑

n=0
x(n) exp

{
− j

M∑

m=1
am(nΔ)m

}}
,

b̂0 = 1
N

N−1∑

n=0
x(n) exp

{
− j

M∑

m=1
am(nΔ)m

}
.

(17)

The estimated coefficients are used to synthesize the polyno-
mial-phase signal:

x̂(n) = b̂0 exp

{
j

M∑

m=0
âm(nΔ)m

}
. (18)

5. APPLICATION: WATERMARK DETECTION
INMULTIMEDIA DATA

The method proposed in this paper synthesizes the polyno-
mial-phase chirp signal using a combination of the time-
frequency distribution’s property as well as the discrete poly-
nomial-phase transform. This approach and the one in [11]
both utilize the fact that the instantaneous frequency equals
the derivative of the phase of the signal to estimate the signal
phase from the instantaneous frequency. But the method in
this paper uses the smoothed pseudo Wigner-Ville distribu-
tion as a tool for time-frequency representation of the signal.
In addition, instead of using peak tracking algorithm to esti-
mate the instantaneous frequency, the approach proposed in
this paper utilizes a very useful property of the TFD theory to
generate IF. The IF can be simply obtained by taking the first
moment of the TFD. Let m and mq be the normalized chirp
and its quantized version at the transmitter, respectively. Let
m̂q be the corrupted quantized chirp at the receiver. To detect
the chirp, we apply the time-frequency signal synthesis algo-

rithm described in the previous section. The process involves
utilization of phase information which can be obtained from
the TFD of the received signal. We use SPWVD to calculate
the TFD of m̂q instead of using WVD or spectrogram as in
our previous works. The detection scheme is illustrated as in
Figure 4.

Since the discrete signal that we work on is a quantized
version of the chirp signal, its TFD consists of cross-terms
in addition to the linear component of the chirp. The cross-
terms’ energy is smaller than the energy of the linear compo-
nent, so it can be removed by applying a threshold to the
TFD energy. This masking process also removes the noise
and unwanted components in the TFD. The current thresh-
old setting is at 0.8 of the maximal energy of the TFD. This
value is obtained empirically. A more detailed and systematic
analysis of the effect of the environment on the signal can
be done so the masking threshold of the TFD can be deter-
mined adaptively but this is out of the scope of this paper.
The masking process helps to remove unwanted components
in the TFD and increase the estimation accuracy of the in-
stantaneous frequency. The monocomponent of interest is
extracted from the received signal by dechirping with e− jφ(t),
where φ(t) is obtained by integrating the IF estimated from
SPWVD. This extracted monocomponent is then low-pass
filtered and translated back into its original location by mul-
tiplying with e jφ(t). The signal at this point can be considered
a monocomponent and is subjected to the DPT algorithm as
described in the previous section [11, 12].

The synthesized version of mq is m
q
s obtained by quan-

tization of m̂, where m̂ is the chirp estimated from the DPT
algorithm. Figure 5(b) shows the original chirpm and its es-
timated version m̂ at BER of 5 percent. Figure 5(c) shows
correlation coefficients between the pairs (m, m̂), (mq, m̂q),
(mq, m̂q

s ) and they are used as a standard to evaluate the ef-
fectiveness of the method.

Figure 6 shows the test images used to evaluate the detec-
tion scheme. The size of these images is 512×512. The length
of the chirp to be embedded is 176. The sampling frequency
fs is equal to 1 kHz. Therefore, the initial and final frequen-
cies of the chirp to be embedded in the image are constraint
to [0–500]Hz. We experimentally found from our previous
work that the length of the PN sequence should be at least
10 000 samples for a reliable detection. The number of chirps
can be embedded depending on the number of samples in
the PN sequence the image can accept. In our watermark
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Figure 5: (a) Time-frequency distribution of the chirp, (b) time domain plot of the original chirp (solid) and synthesized chirp (dashed)
corresponding to a correlation coefficient of 0.94 at 5% BER, and (c) correlation coefficients at different BERs between the original and
synthesized chirps (solid), between their quantized versions (dashed), and between the quantized original chirp and quantized chirp at the
receiver (dash-dotted).

(a) (b) (c) (d) (e)

Figure 6: The test images used in the benchmark.

technique, each image is embedded with only one linear FM
chirp. There exists a tradeoff between the data size and ro-
bustness of the algorithm. As the length of the PN sequence
decreases, the technique will be able to add more bits to the
host image but the detection of the hidden bits and resistance
to different attacks will be decreased. When the chirp length
is increased, the BER resulted from the same attacks com-
pared to the case using the shorter chirp length is decreased.

However, as the chirp length increases, the accuracy of the
synthesized chirp has a tendency to decrease because any er-
ror in the estimated phase coefficients will propagate through
the length of the signal. Figure 7 shows the detection result
on watermarked image suffered from JPEG compression at-
tack with a quality factor of 20%. Figures 7(a) and 7(b) show
the original watermarked and the attacked images with a cor-
responding BER of 2.84%. The synthesized version of the
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Figure 7: (a) Watermarked image, (b) the same watermarked image after JPEG compression with 20% quality resulting in a BER of 2.84%,
and (c) synthesized chirp (solid) and original chirp (dashed) with a correlation coefficient of 0.93.

chirp is highly correlated to the original chirp with a corre-
lation coefficient of 0.93 as shown in Figure 7(c). Our sim-
ulation shows that the proposed method successfully detects
the watermark under JPEG compression with a quality fac-
tor of around 5% or greater. A compression quality factor of
less than 5% can result in a BER greater than the detection
limit of the proposed method which is about 15%. Figure 8
shows the detection result for the resampling attack case. The
watermark image is downsampled and upsampled with cor-
responding resampling factor of 0.75 and 1.33, respectively.
The BER detected in the received chirp is 2.27%. Themethod
successfully detects the chirp with a correlation coefficient of
0.9958 between the original and the synthesized chirps. Sim-
ilarly, Figure 9 shows the detection result for a watermarked
image under wavelet compression attack with a compression
factor of 0.3. The corresponding BER and correltion coeffi-
cient are 8.5% and 0.9985, respectively.

Table 4 shows the watermark detection on all images as
shown in Figure 6 under the geometric attacks according to
the benchmarking scheme proposed in [23]. A total of 235
attacks are performed on the five images (47 for each image).
The proposed technique can detect the watermark for 197
attacks corresponding to a detection rate of 83.82%. Com-
pare to 84% and 90% of the nonblind algorithm proposed by

Xia et al. [24] and Cox et al. [25], respectively, the detec-
tion result obtained by the proposed method is very satisfac-
tory considering the fact that it can embed multiple-bit chirp
message into the image, successfully detect and synthesize the
chirp from its corrupted version.

Table 5 shows the detection result of the method pro-
posed by Pereira et al. [26] with a detection rate of 61%. The
method can embed 56 bits into the image but it does not need
the original image at the receiver to recover the watermark.

The accuracy of the detection algorithm depends on
how precise the synthesized signal is compared to the ref-
erenced signal. The estimation of instantaneous frequency
contributes significantly to the accuracy of the synthesized
signal. If the watermark message involved is a monocompo-
nent signal, the step that uses SPWVD to separate and esti-
mate the monocomponent IF can be dropped and DPT can
be applied directly to the signal. Since the IF estimation step
can be skipped, the contribution of the error it can possibly
create is removed in the final synthesis output. The corre-
lation between the synthesized and referenced chirp signals
is, therefore, improved. Table 6 shows the result of the chirp
detection on the same signal with and without the IF estima-
tion process through SPWVD. The comparison is done for
the continuous and quantized versions of the chirps.
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Figure 8: (a) Original image, (b) the same image after resampling attack resulted in a BER of 2.27%, (c) TFD of the received chirp, and (d)
original chirp (solid) and synthesized chirp (dashed) with a correlation coefficient of 0.9958.

6. DISCUSSION AND CONCLUSION

The success of the estimated polynomial coefficients depends
considerably on the initial estimation of the instantaneous
frequency. The simulation we performed on different types
of signals and noise levels proves that SPWVD is a good
choice for determining IF. SPWVD has more versatility to
adapt to different types of signals. It can suppress interfer-
ence terms with least joint time-frequency resolution smear-
ing. We should note that any TFD which is highly localized
and cross-term free would be a good choice for the estima-
tion of IF.

The proposed technique, like the HRT method, has the
ability to detect the chirp message embedded in image and
audio signals and subjected to different BERs due to attacks
on the image watermark. The simulations show its robust-
ness for corrupted signal with BER of up to 15%. Since the
watermark message is a linear frequency modulated signal, it
is easily modeled using polynomial-phase transform. There-
fore, the parameters of the chirp such as slope and initial
phase, and frequency can be recovered easily and precisely.

The proposed technique not only can detect the chirp mes-
sage but also has the ability of error correction and recon-
struction of the original chirp. It can detect and synthesize
the chirp signal from distorted TFD having discontinuity in
its IF trajectory. Figure 10 shows the TFD of a signal with
discontinuity in its IF law and the corresponding synthesized
chirp. Both the referenced and synthesized chirps are highly
correlated despite the corruption in the instantaneous fre-
quency.

The novelty of the new method is in the fact that it is
very efficient in terms of computational complexity (CC).
The computational complexity is determined based on the
number of multiplications needed to detect a linear chirp
having length N . HRT-based method involves the calcula-
tion of WVD [27] and taking the standard HRT [28] on the
resulted WVD:

CC(WVD) = O
(
N2 log2N

)
,

CC(HRT) = O
(
N2t

)
,

(19)

where t is the number of bins used for the quantization of
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Figure 9: (a) Original image, (b) the same image after wavelet compression attack resulted in a BER of 8.5%, (c) TFD of the received chirp,
and (d) original chirp (solid) and synthesized chirp (dashed) with a correlation coefficient of 0.9965.

each axis in the Hough space (t <
√
2N). The total complex-

ity is

O
(
N2 log2N

)
+O

(
N2t

)
. (20)

The DPT-based method estimates the signal parameter
from the TFD (WVD, e.g.). It involves WVD calculation
of the chirp signal and taking DPT on the estimated chirp.
DPT is calculated by first taking the ambiguity function and
then taking the Fourier transform of the ambiguity func-
tion. The computational complexity of the ambiguity func-
tion calculation and the fast Fourier transform are O(N) and
O(N log2N), respectively. Therefore,

CC
(
DPT

) = O(N) +O
(
N log2N

) −→ O
(
N log2N

)
.
(21)

The total complexity of the DPT-based chirp detection
approach is

O
(
N2 log2N

)
+O

(
N log2N

)
. (22)

Obviously, computational complexity of the method
based on DPT is lower compared to the HRT-based method.
The calculation involves DPT-based method for the case
WVD is used. If DPT is applied directly to the signal with-
out using the TFD to estimate IF, the total complexity is
only O(N log2N). Our simulation shows that on a Pentium
3.0GHz computer, after the watermark chirp is extracted
from the attacked image, the mean time to detect the mono-
component chirp of the proposed DPT-based and HRT-
based techniques is 0.0229 and 9.1725 seconds, respectively.
This means that the DPT-based detection method is about
400 times faster than the HRT-based method. The similar-
ity between the HRT-based method and DPT-based method
proposed in this paper is that both transforms are applied
to the TFD. SPWVD is known to have high joint time-
frequency resolution and the ability to suppress cross-term
due to the smoothing operation involved. Unfortunately, the
smoothing operation also increases the total amount of com-
putation needed. Depending on the application at hand, if
the chirp to be detected is a monocomponent signal, DPT
can be applied directly to it to reduce the computational
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Table 4: Result of watermark detection for checkmark benchmark
for a chirp length of 176.

Watermark attack

Images

1 2 3 4 5
Detection

average (%)

Remodulation (4) 4 0 2 3 3 60.00

MAP (6) 6 6 6 6 6 100.00

Copy (1) 1 1 1 1 1 100.00

Wavelet (10) 8 7 9 9 9 84.00

JPEG (12) 12 11 12 12 12 98.33

ML (7) 4 2 6 3 6 60.00

Filtering (3) 3 3 3 3 3 100.00

Resampling (2) 2 1 2 1 2 80.00

Color reduce (2) 2 0 1 1 1 50.00

Table 5: Result of watermark detection for the blind detection
scheme proposed by Pereira.

Watermark attack

Images

1 2 3 4 5
Detection

average (%)

Remodulation (4) 0 0 0 2 0 10

MAP (6) 1 2 2 5 1 37

Copy (1) 1 1 0 1 0 60

Wavelet (10) 3 6 8 7 7 62

JPEG (12) 12 12 12 12 12 100

ML (7) 0 3 3 3 0 26

Filtering (3) 3 3 3 3 3 100

Resampling (1) 1 1 1 1 1 100

Color reduce (2) 0 1 1 2 0 40

complexity. If the signal involved is a multicomponent sig-
nal, then the individual components have to be extracted first
before DPT can be used. Because of this reason, SPWVD
should be used in place of WVD.

So with the new proposed method, tradeoff problem be-
tween speed and accuracy in HRT-based method is solved.
Faster detection is thus allowed together with accuracy. This
is also the motivation for the proposed approach for chirp
detection in a real-time application such as image water-
marking of multimedia data.

We performed a novel technique to detect watermark
message on images with different BERs. Our simulation
showed high correlation (> 0.9) between m and m̂. As a re-
sult of the quantization process, the correlation between mq

and m̂q
s is lower than the previous case but it is still larger

than 0.8 at different BERs. These correlation coefficients can
help us to confidently make decision on the transmitted
chirp’s properties. In our simulation, the watermark message
embedded in the images is monocomponent linear FM chirp.

Table 6: Correlation coefficient between the synthesized and refer-
enced chirps in continuous and quantized forms with and without
the IF estimation process.

BER
With IF estimation Without IF estimation

Continuous Quantized Continuous Quantized

0 0.9534 0.8515 0.9889 0.8861

1 0.9497 0.8416 0.9889 0.8898

2 0.9463 0.8367 0.9884 0.8925

3 0.9433 0.8333 0.9859 0.8901

4 0.9441 0.8346 0.9854 0.8886

5 0.9423 0.8332 0.9838 0.8879

6 0.9427 0.8336 0.9835 0.8889

7 0.9402 0.8298 0.9811 0.8836

8 0.9414 0.8333 0.9814 0.8876

9 0.9407 0.8298 0.9813 0.8856
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Figure 10: (a) Time-frequency distribution of the chirp with dis-
continuity in its IF law corresponding to a BER of 17%, and (b)
time domain plot of the original chirp (solid) and synthesized chirp
(dashed) corresponding to a correlation coefficient of 0.92.
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However, the method can be extended to detect image water-
mark messages consisting of multicomponent linear chirps.
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