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We present a set of functions in L2([0,∞)) and show it to be a (tight) generalized frame (as presented by G. Kaiser (1994)). The
analysis side of the frame operation is called the continuous unified transform. We show that some of the well-known transforms
(such as Laplace, Laguerre, Kautz, and Hambo) result by creating different sampling patterns in the transform domain (or, equiv-
alently, choosing a number of subsets of the original frame). Some of these resulting sets turn out to be generalized (tight) frames
as well. The work reported here enhances the understanding of the interrelationships between the above-mentioned transforms.
Furthermore, the impulse response of every stable finite-dimensional LTI system has a finite representation using the frame we
introduce here, with obvious benefits in identification problems.
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1. INTRODUCTION

Linear time invariant (LTI) systems representations have
been subject of research for many years resulting in a vast
amount of literature. Tools such as frequency response (FR),
Laplace transform (LP), Laguerre bases, and Hambo bases
(see, e.g., [2] and references therein) play key roles in these
investigations. In (almost) parallel the signal processing com-
munity has been developing tools for signal representation
such as Fourier transform (FT), short-time FT (STFT), con-
tinuous wavelet transform (CWT), and frames (see, e.g., [3–
5]). We present here an initial effort, on our part, to find
common grounds by using ideas and concepts from the latter
to generate a unified transform (UT) aimed mainly at system
representations.

The use of orthonormal bases for signal and system rep-
resentations has obvious benefits and a number of such bases
have been presented and discussed in the literature. However,
especially in the signal processing community, it has been
recognized for some time, that using larger sets of functions
may have a number of benefits. These sets are referred to as
frames (see, e.g., [4–8]). Typically, frames discussed in the lit-
erature are countable sets. However, in [1, 9], more general
frames, coined as continuous frames or generalized frames,
are presented. Since we will use extensively the structure,
concepts, and terminology associated with these generalized
frames and since we anticipate the reader to be less familiar
with these type of frames, we feel that a brief review would

be useful. For a more detailed discussion we refer the reader
to [1].

Let us start with a definition.

Definition 1 ([1, Definition 4.1]). Let H be a Hilbert space
and let M be a measure space with measure μ. A generalized
frame inH indexed (or “labeled”) byM is a family of vectors
(functions inH)HM ≡ {hm ∈H : m ∈M} such that

(1) for every f ∈ H , the function ˜f : M → C defined
by

˜f (m) ≡ 〈

hm, f
〉

H (1)

is measurable,
(2) there is a pair of constants 0 < A ≤ B <∞ such that
for every f ∈H ,

A‖ f ‖2H ≤
∥

∥

∥
˜f
∥

∥

∥

2

L2(μ)
≤ B‖ f ‖2H . (2)

Note that the STFT and the continuous wavelet trans-
form (CWT) are two examples of generalized frames.

In STFT

H = L2(R), M = R2,

m = (ω,u), hm(t) = g(t − u)e jωt,

μ(A) =
∫

A
dudω,

(3)
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Figure 1: Window function gν,1(t) for ν = 1, 2, 4, 8.

where g(t) is a predetermined localizing window. In CWT

H = L2(R), M = R2
+,

m = (a,u), hm(t) = ψ
(

t − u

a

)

,

μ(A) =
∫

A

da du

a2
,

(4)

where ψ(t) is the mother wavelet.
As is well known, (1) represents the analysis side of

the process while condition (2) guarantees the existence of
the synthesis side. To actually derive the synthesis (recon-
struction) expression one needs to find a reciprocal (dual)
frame HM ≡ {hm ∈ H : m ∈ M} for which one has
∫

M dμhm(hm)∗ = I (commonly referred to as the resolution
of unity). Then, the synthesis is given by

f =
∫

M
dμhm ˜f (m)

=
∫

M
dμhm

〈

hm, f
〉

H

=
∫

M
dμhm

〈

hm, f
〉

H .

(5)

We note that typically, for frames,
∫

M dμhmg(m) = f does

not uniquely determine g(m)·g(m) = ˜f (m) is only one such
choice but it turns out to have a special property. Of all pos-
sible coefficient functions g ∈ L2(μ), for a given f ∈ H ,
˜f has the least “energy” ‖g‖L2(μ) (i.e., it is the least squares
choice—see [1]).

2. THE UNIFIED TRANSFORM

2.1. The continuous unified transform

Since the exponential function plays a central role in LTI sys-
tems and their impulse responses, we start with

g(t) = √2e−t, t ≥ 0. (6)

In the sequel we limit our discussion to the space L2([0,∞))
and functions in this space, hence, will drop the explicit state-
ment t ≥ 0. Using the norm in this space, denoted by ‖ · ‖2,
note that ‖g‖2 = 1. We now use this basic function to gener-
ate a family of functions as follows:

gν,a(t) =
√

2a
Γ(2ν + 1)

(2at)νe−at, (7)

where ν ≥ 0, a > 0 are real and Γ(x) is the Gamma function
defined by

Γ(x) =
∫∞

0
tx−1e−tdt, x > 0

(

Γ(n + 1) = n!, n ∈ N0
)

.

(8)

Finally, define the functions

ϕν,a,ω(t) = gν,a(t)e jωt =
√

2a
Γ(2ν + 1)

(2at)νe−ate jωt, (9)

where ω ∈ R.
We now make the following observations: a set of func-

tions has been defined, “labeled” by the values (ν, a,ω). Re-
calling that the set of functions used for short-time Fourier
transforms (STFT) are of the form

ϕω,u(t) = g(t − u)e jωt, (10)

where g(t) is a predetermined (localizing) window, we note
the resemblance of these functions to those defined in (9)—a
window function multiplied by the function e jωt. The “win-
dow” function gν,a(t) in (9) can be shifted along the time
axis by choices of (ν, a), as illustrated in Figure 1 for a = 1,
ν = 1, 2, 4, 8.

However, differing from the STFT, we do not have fixed-
shaped windows and shifts along the time axis are not linear
in any of the “labeling variables” (ν, a). In fact, max gν,a(t)
is located at t = ν/a. On the other hand, we notice that the
impulse response of a finite-dimensional stable LTI system
is a finite linear combination of functions from this family.
Hence, this family is a natural choice to be used for linear sys-
tem representation (through their impulse responses). This is
our main motivation and we will come back to this point in
the sequel.

Let us use the set of functions introduced in (9) to define
the continuous unified transform (CUT) as follows:

˜f (ν, a,ω) = 〈

ϕν,a,ω, f
〉 =

∫∞

0
ϕν,a,ω(t) f (t)dt

=
√

2a
Γ(2ν + 1)

∫∞

0
(2at)νe−ate− jωt f (t)dt,

(11)

ν, a, ω as before.
Denote

M = {

(ν, a,ω) : ν ≥ 0, a > 0, ω ∈ R
}

(12)
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Figure 2: The labeling sets for the CUT, UT, and their sampled versions. (a) CUT : M = {(v, a,ω) ∈ R3 : v ≥ 0, a > 0}. (b) UT : Md =
{(n, a,ω) ∈ Z×R2 : n ≥ 0, a > 0}. (c) Laplace :ML = {(0, a,ω) ∈ 0×R2 : a ≥ ε > 0}. (d) Laguerre :Ma0 = {(n, a0, 0) ∈ Z× (a0, 0) : n ≥ 0}.
(e) Kautz :M2 = {(n, ai,ωi) : n ∈ Z, n ≥ 0, i = 1, 2}. (f) Hambo :M2 = {(n, ai,ωi) : n ∈ Z, n ≥ 0, i = 1, . . . ,N}.

as a labeling set (see Figure 2(a)) and define the measure

μ(A) =
∫∫∫

(ν,a,ω)∈A

νe−ν

a2
dνdadω (13)

for any set A ⊆M. This measure enables integrating measur-
able functions F :M → C. With this, we can write

‖g‖2L2(μ) ≡
∫∫∫

(ν,a,ω)∈M

νe−ν

a2
∣

∣g(ν, a,ω)
∣

∣

2
dνdadω. (14)

Let L2(μ) be the set of all g’s such that ‖g‖2μ <∞. Then L2(μ)
is a Hilbert space with inner product given by

〈

g1, g2
〉

L2(μ) =
∫∞

0

∫∞

0

∫∞

−∞
νe−ν

a2
g1(ν, a,ω)g2(ν, a,ω)ωdνdad

(15)

which is the result of polarizing the norm in (14) (see [1,
Theorem 1.12]).

We claim now that the set {ϕν,a,ω}(ν,a,ω)∈M as given in
(9) is a generalized frame in the space L2([0,∞)). First we
note that the CUT equation, (18), can be viewed as the syn-

thesis side of the frame operation, f �→ ˜f , as given in (1)
(Definition 1). The second part follows directly from the fol-
lowing lemma.

Lemma 1. For any f ∈ L2([0,∞))

∥

∥

∥
˜f
∥

∥

∥

2

L2(μ)
= 2π‖ f ‖22. (16)

Proof. Using (11) and (14) we have

∥

∥

∥
˜f
∥

∥

∥

2

L2(μ)

=
∫∞

0

∫∞

0

∫∞

0

νe−ν

a2

∣

∣

∣
˜f (ν, a,ω)

∣

∣

∣

2
dω dνda

=
∫∞

0

∫∞

0

∫∞

−∞
2a

Γ(2ν + 1)
νe−ν

a2

[∫∞

0
(2at)νe−ate jωt f (t)dt

]

×
[∫∞

0
(2aτ)νe−aτe− jωτ f (τ)dτ

]

dω dνda

=
∫∞

0

∫∞

0

∫∞

0

∫∞

0

2a
Γ(2ν + 1)

νe−ν

a2
dνda(2at)ν(2aτ)ν

× e−a(t+τ) f (t) f (τ)dt dτ

×
[∫∞

−∞
e jω(t−τ)dω

]

= 2π
∫∞

0

∣

∣ f (t)
∣

∣

2
dt

∫∞

0

2νe−ν

Γ(2ν + 1)
dν

×
∫∞

0
(2at)2ν−1e−2at2t da

= 2π
∫∞

0

∣

∣ f (t)
∣

∣

2
dt

∫∞

0

e−ν2νΓ(2ν)
Γ(2ν + 1)

dν

= 2π
∫∞

0

∣

∣ f (t)
∣

∣

2
dt

∫∞

0
e−νdν

= 2π‖ f ‖22.
(17)

Clearly, (2) is satisfied with A = B = 2π (which makes
the frame a tight frame). Next we prove the following.
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Lemma 2. For any f ∈ L2([0,∞))

f (t) = 1
2π

∫∞

−∞

∫∞

0

∫∞

0

νe−ν

a2
˜f (ν, a,ω)ϕν,a,ω(t)dνdadω.

(18)

Proof. Follows directly from Lemma 1 and [8].

Lemma 2 is in fact the synthesis side of the frame op-

eration, ˜f �→ f and can also be viewed as the inverse CUT
(ICUT).

We have defined a set of functions and showed that it
is a (generalized) frame in L2([0,∞)). This frame is labeled
by the continuous set M. It is thus, hardly surprising to find
out that we can generate various subsets of this frame which
are still (generalized) frames in L2([0,∞)). In fact, as we will
show shortly, some of these subsets/frames result in well-
known transforms. Basically, these subsets will be chosen by a
variety of sampling patterns in the labeling (transform) do-
main quite similar to the way one gets DWT from CWT. A
similar idea can be found in, for example, [10].

2.2. Generalized (sub) frames related to the CUT

2.2.1. The unified transform

Let us consider the same functions with a labeling set Md =
{(n, a,ω) : 0 ≤ n ∈ Z, a > 0, ω ∈ R} ⊂M (see Figure 2(b)).
We define the measure on this set by

μd(A) =
∑

∫∫

(n,a,ω)∈A

ne−n

a2
dadω (19)

resulting inmodified definitions of the norm and inner prod-
uct in the “transform” domain

∥

∥g(n, a,ω)
∥

∥

L2(μd) =
∞
∑

n=0

∫∞

−∞

∫∞

0

ne−n

a2
∣

∣g(n, a,ω)
∣

∣

2
dadω,

〈

g1, g2
〉

L2(μd) =
∞
∑

n=0

∫∞

−∞

∫∞

0

ne−n

a2
g1(n, a,ω)g2(n, a,ω)dadω.

(20)

The corresponding analysis equation, referred to as the
unified transform (UT), is then given by

˜f (n, a,ω) = 〈

ϕn,a,ω, f
〉

=
√

2a
Γ(2n + 1)

∫∞

0
(2at)ne−ate− jωt f (t)dt

(21)

and the synthesis, or the inverse UT (IUT), by

f (t) =
∫

M
dμd

〈

ϕn,a,ω, f
〉

ϕn,a,ω

= 1− e−1

2π

∞
∑

n=0

∫∞

−∞

∫∞

0

ne−n

a2
˜f (n, a,ω)ϕn,a,ω(t)dadω.

(22)

Note that the UT results from sampling the CUT in the ν di-

rections. Namely, ˜f (n, a,ω) = ˜f (ν, a,ω)|ν=n. From (20)–(22)

it can be shown (quite similarly to the proof in Lemma 1)
that the set {ϕn,a,ω}(n,a,ω)∈Md is again a generalized, tight
frame with frame bounds A = B = 2π/(1− e−1).

The main thrust of our discussion is the UT but, before
discussing its properties we further “sample” the CUT (or,
equivalently, choose various subsets of {ϕν,a,ω}) and show
that a number of well-known transforms result from this
process.

2.2.2. Laplace transform

Let us consider now the same functions given by (9) with
the restriction ν = 0, resulting in the labeling set ML =
{(0, a,ω) : a > 0, ω ∈ R} ⊂ M (see Figure 2(c)). Then we
readily note that

1√
2a

˜f (0, a,ω) = 1√
2a

〈

ϕ0,a,ω, f
〉 =

∫∞

0
f (t)e−(a+ jω)tdt

(23)

which is the definition of the (one-sided) Laplace trans-
form (where s = a + jω is the Laplace variable and
since we assumed f ∈ L2([0,∞)), a > 0 guarantees that
we are always in the region of convergence). As we well
know the inverse Laplace transform is (using our notation)

(1/(2π
√

2a0))
∫∞
−∞ ˜f (0, a0,ω)ea0te jωtdω, which means that it

uses only ˜f (0, a0,ω) and reconstructs with the functions
(ea0te jωt/(2π

√

2a0)) which are not in L2([0,∞)). It is thus,
hardly surprising that the set of functions labeled by ML is
not a frame. In fact, taking μL(A) =

∫

(a,ω)∈A(dadω/a2) it can

be shown that ‖ ˜f (0, a,ω)‖ does not have an upper bound. It
is however interesting to note that while it is not a frame it
does have a reciprocal (dual) set of functions in L2([0,∞)).
This is presented in the following lemma.

Lemma 3. The set of functions {(1/2π√2)ϕ1,a,ω} is reciprocal
(biorthogonal) to {ϕ0,a,ω}.

Proof. With ϕ∗0,a,ω denoting the adjoint of ϕ0,a,ω, by (9) we
have

[∫

ML

1
2π
√
2
ϕ1,a,ωϕ

∗
0,a,ωdμL

]

f (t)

= 1
2π
√
2

∫∞

0

∫∞

−∞
dadω

a2
[√

a(2at)e−ate jωt
]

×
[√

2a
∫∞

0
e−aτe− jωτ f (τ)dτ

]

=
∫∞

0
dτ f (τ)

∫∞

0
2te−a(t+τ)da

[

1
2π

∫∞

−∞
e jω(t−τ)dω

]

=
∫∞

0
dτ f (τ)

∫∞

0
2te−a(t+τ)δ(τ − t)da

= f (t)
∫∞

0
2te−2atda

= f (t).
(24)
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This leads to the following reconstruction formula of

f (t) from ˜f (0, a,ω):

f (t) = 1
2π
√
2

∫∞

0

∫∞

−∞
dadω

a2
ϕ1,a,ω(t) ˜f (0, a,ω) (25)

which, in light of the observation (23) can be viewed as an
inverse Laplace transform for functions in L2([0,∞)).

2.2.3. Fourier transform

Clearly, from (23), we have that ((1/
√
2a) ˜f (0, a,ω))|a=0 is the

Fourier transform of f . It is well known that for the result-
ing Fourier integral to exist, f has to satisfy the condition
∫∞
0 | f (t)| < ∞. Furthermore, we can then readily see (since
for n ∈ N, Γ(n + 1) = n!) that

∞
∑

n=0

√

Γ(2n + 1)
2nΓ(n + 1)

1√
2a

˜f (n, a,ω)

=
∞
∑

n=0

2−n

n!

∫∞

0
(2at)ne−ate− jωt f (t)dt

=
∫∞

0
e−ate− jωt f (t)

∞
∑

n=0

(at)n

n!
dt

=
∫∞

0
e−ate− jωt f (t)eat

=
∫∞

0
e− jωt f (t)dt.

(26)

In our derivation above we have exchanged the order of in-
tegration and summation. This is justified by using Fubini’s
theorem (see, e.g., [11]) and the fact that

∫∞
0 | f (t)| <∞.

2.2.4. Laguerre functions

Let us now fix both the a and ω variables to a = a0 > 0
and ω = 0, respectively, and consider the labeling set Ma0 =
{(n, a0, 0), 0 ≤ n ∈ Z} ⊂ M. Then the resulting set of func-
tions, {ϕk,a0,0(t), k ∈ N0}, when taken through the Gram-
Schmidt orthogonalization procedure (see (28) below), gives
the well-known Laguerre orthonormal basis {Lr(t), r ∈ N0}
in L2([0,∞)).

The Laguerre functions are characterized by a fixed pole
a0 and have the form

Lr(t) =
√

2a0
r
∑

n=0
(−1)n

(

r

n

)(

2a0t
)n

n!
e−a0t, r = 0, 1, 2, . . . ,

(27)

and it can be shown that 〈Lr ,Lm〉 = δ(r−m) (Kronecker
delta).

These functions can be written as a finite linear combi-
nation of the frame functions (9) and vice versa as stated in
the following lemma.

Lemma 4. LetLr(t) be the Laguerre functions (given in (27)).
Then

Lr(t) =
r
∑

k=0
α(r, k)ϕk,a0,0(t),

ϕr,a0,0(t) =
r
∑

k=0
β(r, k)Lk(t),

(28)

r
∑

k=n
α(k,n)β(r, k) = δ(n−r), (29)

where the coefficients α(r, k), β(r, k), 0 ≤ r, k ∈ Z are defined
by

α(r, k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(−1)k
(

r

k

)√

Γ(2k + 1)
k!

for k ≤ r,

0 otherwise,

β(r, k) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(−1)k
(

r

k

)

r!
√

Γ(2r + 1)
for k ≤ r,

0 otherwise.

(30)

Proof. Equation (28) follows immediately from (27) and
(30). Using (30) we get

r
∑

k=n
α(k,n)β(r, k)

=
r
∑

k=n
(−1)k−n

(

k

n

)(

r

k

)

r!
√

Γ(2n + 1)
√

Γ(2r + 1)n!

= (r!)2
√

Γ(2n + 1)
(n!)2

√

Γ(2r + 1)

r
∑

k=n
(−1)k−n 1

(k − n)!(r − k)!

= (r!)2
√

Γ(2n + 1)
(r − n)!(n!)2

√

Γ(2r + 1)

r−n
∑

˜k=0
(−1)˜k (r − n)!

˜k!
(

r − n− ˜k
)

!

= (r!)2
√

Γ(2n + 1)
(r − n)!(n!)2

√

Γ(2r + 1)
(1− 1)r−n

= δ(n−r)
(31)

which completes the proof of (29). Then, using this and (28)
we readily get

r
∑

k=0
β(r, k)Lk(t) =

r
∑

k=0
β(r, k)

k
∑

m=0
α(k,m)ϕm,a0,0

=
r
∑

m=0
ϕm,a0,0

r
∑

k=0
α(k,m)β(r, k)

=
r
∑

m=0
ϕm,a0,0

r
∑

k=m
α(k,m)β(r, k)

=
r
∑

m=0
ϕm,a0,0δ(r−m)

= ϕr,a0,0

(32)

which completes the proof of the lemma.
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With these relations we can create the reciprocal (dual)
set for {ϕk,a0,0(t), k ∈ N0}, as is stated next.

Lemma 5. Define the functions ϕk,a0,0(t), 0 ≤ k ∈ Z, by

ϕk,a0,0(t) =
∞
∑

m=k
α(m, k)

m
∑

l=0
α(m, l)ϕl,a0,0(t)

=
∞
∑

m=k
α(m, k)Lm(t).

(33)

Then, {ϕk,a0,0}∞k=0 and {ϕk,a0,0}∞k=0 are biorthogonal in the
sense that

〈

ϕk,a0,0,ϕn,a0,0

�

= δ(k−n). (34)

Proof. By substitution of (33) we get

〈

ϕk,a0,0,ϕn,a0,0

�

=
∞
∑

m=k
α(m, k)

〈

Lm,ϕn,a0,0

�

. (35)

Then

〈

ϕk,a0,0,ϕn,a0,0

�

=
∞
∑

m=k
α(m, k)

〈

Lm,
n
∑

l=0
β(n, l)Ll

〉

=
∞
∑

m=k
α(m, k)

n
∑

l=0
β(n, l)δl−m

=
∞
∑

m=k
α(m, k)β(n,m)

=
n
∑

m=k
α(m, k)β(n,m)

= δ(k−n)

(36)

which completes the proof.

Lemma 5 and the observation that {ϕk,a0,0}∞k=0 span
L2([0,∞)), naturally lead to the reconstruction (synthesis or
inverse transform)

f (t) =
∞
∑

k=0

〈

ϕk,a0,0, f
�

ϕk,a0,0(t)

=
∞
∑

k=0
˜f
(

k, a0, 0
)

ϕk,a0,0(t).

(37)

2.2.5. Hambo transform and the Kautz result

In this section we extend the label set which led to the La-
guerre functions by considering a finite set of pairs (ai,ωi)
and define M2 = {(n, ai,ωi) : 0 ≤ n ∈ Z, 1 ≤ i ≤ N} where
for every ωj �= 0 we have (n, aj ,ωj) ∈ M2 ⇔ (n, aj ,−ωj) ∈
M2. The corresponding set can be viewed as a union ofN sets
Ma0 of the previous subsection. By ordering the set so that the
kth function is such that k = nN+i and then orthogonalizing
one gets the Hambo basis which corresponds to the Hambo
transform. The case with N = 2 is known in the literature as
the Kautz functions (see, e.g., [2]).

It is interesting to note that if the orthogonalization is
carried out along each i separately, one gets N orthonormal
bases. The union of these bases is known to be a (tight) frame
with bound equal to N .

An alternative choice of subset of functions can be gener-
ated when we letN →∞ in the aboveM2 but nmay be finite.
This includes any general sampling pattern of the original la-
beling setM. Whether the resulting set of functions is indeed
a (generalized) frame or not is very closely related to the re-
sult of Kautz and the condition derived by Szas (see, e.g., in
[12]).

3. PROPERTIES OF THE UNIFIED TRANSFORM

As stated earlier, our main interest is in the unified transform
(UT). We recall its definition

˜f (n, a,ω) = 〈

ϕn,a,ω, f
〉

=
√

2a
Γ(2n + 1)

∫∞

0
(2at)ne−ate− jωt f (t)dt

(38)

and the inverse transform is given by (22):

f (t) = 1− e−1

2π

∞
∑

n=0

∫∞

0

∫∞

0
dadω

ne−n

a2
˜f (n, a,ω)ϕn,a,ω(t).

(39)

In the next lemma we summarize some of its properties.

Lemma 6. The unified transform has the following properties.
(1) Time derivative: let f1(t) = (df (t)/dt), then

˜f1(0, a,ω) = (a + jω) ˜f (0, a,ω)−√2a f (0), (40)

and for n ≥ 1,

˜f1(n, a,ω) = (a + jω) ˜f (n, a,ω)− a

√

2n
2n− 1

˜f (n− 1, a,ω).

(41)

(2) Time shift: let f1(t) = f (t − T), then

˜f1(n, a,ω)

= e−T(a+ jω)
n
∑

m=0

(

n

m

)

(2aT)n−m
√

Γ(2m + 1)
Γ(2n + 1)

˜f (m, a,ω).

(42)

(3) Convolution: let y(t) = g(t) ∗ u(t) = ∫∞
0 g(σ)u(t −

σ)dσ , then

ỹ(n, a,ω) =
n
∑

m=0

(

n

m

)
√

Γ(2m + 1)Γ
(

2(n−m) + 1
)

2aΓ(2n + 1)

× ũ(m, a,ω)g̃(n−m, a,ω).

(43)

Note that if a normalized version of the transform is defined
as

ŷ(n, a,ω) =
√

Γ(2n + 1)
n!

ỹ(n, a,ω), (44)



Arie Feuer et al. 7

(43) can be rewritten as

ŷ(n, a,ω) = 1√
2a

n
∑

m=0
ĝ(n−m, a,ω)û(m, a,ω) (45)

which is clearly a linear convolution along the n-axis.
(4) Derivative with respect to ω:

∂ ˜f (n, a,ω)
∂ω

= 1√
2a j

√

(2n + 1)(n + 1) ˜f (n + 1, a,ω). (46)

(5) Derivative with respect to a:

∂ ˜f (n, a,ω)
∂a

= 1
a

(

n +
1
2

)

˜f (n, a,ω)

− 1√
2a

√

(2n + 1)(n + 1) ˜f (n + 1, a,ω).

(47)

3.1. LTI system representation in
the transform domain

To simplify our discussion we restrict ourselves to single-
input single-output (SISO) LTI systems. We next investi-
gate what form an LTI system takes on in the transform do-
main. As is well known, there are a number of equivalent LTI
system representations (convolution, differential equations,
state space, etc.). We could start with any of them and show
the equivalence of the results in the transform domain. How-
ever, we feel it will suffice to investigate one of them and we
chose the state space representation.

Consider the SISO LTI system given by

d

dt
x(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),

(48)

where x(t) ∈ RL. Applying the transform ((21)) on both
sides and using property (1) of Lemma 6 we can show that
the transforms of the input and the output satisfy the follow-
ing difference equations for n ≥ 0:

(a + jω)x̃(0, a,ω)−√2ax(0) = Ax̃(0, a,ω) + Bũ(0, a,ω),

(a + jω)x̃(n + 1, a,ω)− a

√

2n + 2
2n + 1

x̃(n, a,ω)

= Ax̃(n + 1, a,ω) + Bũ(n + 1, a,ω).
(49)

Substituting

˜X(n, a,ω) = x̃(n, a,ω)− (

(a + jω)I − A
)−1

Bũ(n, a,ω)
dn

,

˜U(n, a,ω) = ũ(n, a,ω)
dn

,

˜Y(n, a,ω) = ỹ(n, a,ω)
dn

,

(50)

where

dn = 2nΓ(n + 1)
√

Γ(2n + 1)
, (51)

we get the discrete time state space form

˜X(n + 1, a,ω) = ˜A(a,ω) ˜X(n, a,ω) + ˜B(a,ω) ˜U(n, a,ω),

˜Y(n, a,ω) = ˜C(a,ω) ˜X(n, a,ω) + ˜D(a,ω) ˜U(n, a,ω),
(52)

where

˜A(a,ω) = a
(

(a + jω)I − A
)−1

,

˜B(a,ω) = a
(

(a + jω)I − A
)−2

B,

˜C(a,ω) = C,

˜D(a,ω) = D + C
(

(a + jω)I − A
)−1

B,

(53)

and initial conditions

˜X(0, a,ω) = x̃(0, a,ω)− (

(a + jω)I − A
)−1

Bũ(0, a,ω)

= √2a((a + jω)I − A
)−1

x0.
(54)

Remark 1. When we restrict the labeling set to M2 (see
Section 2.2.5) the results above are in agreement with the re-
sults in [13] regarding the Hambo transform.

4. COMMENTS REGARDING THE USE OF UT FOR
SYSTEM IDENTIFICATION

We wish to stress here, again, the important potential for
system identification we see in representing a function in
L2([0,∞)), using the (generalized) frame {ϕn,a,ω}(n,a,ω)∈Md .
It stems from the observation that the impulse response of
every finite-dimensional stable LTI system has a finite repre-
sentation in this set. More specifically, as is well known, the
impulse response of every N-dimensional stable LTI system
can be written as

h(t) =
I
∑

i=1

Ni−1
∑

n=0
ci,nt

ne(−ai+ jωi), (55)

where N = ∑I
i=1Ni is the system dimension and {(−ai +

jωi)}Ii=1 are the system distinct poles (each with respective
repetition of Ni). Then, clearly

h(t) =
I
∑

i=1

Ni−1
∑

n=0
c̃i,nϕn,ai,ωi(t). (56)

The UT we defined is only one (out of infinitely many) pos-
sible representations of a given signal in this frame. It can
be shown to be optimal in the least square sense. Namely, of
all functions g(n, a,ω) which are representations of a given

function f in this frame, ˜f is the one with least energy (see
for more detail [1]). However, in order to find the spars-
est representation, a different optimization criterion will be
needed. Specifically, for a function such as h(t) above, we
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know that there exists a finite representation (readily ob-
served to be unique!) and we would like to have an optimiza-
tion criterion which will render this particular representation
as its optimum. This particular problem is of much interest
and has generated, in finite-dimensional spaces, many pub-
lished results (see, e.g., [14, 15]).

We are currently investigating the possibilities of using
different optimization criteria to generate different represen-
tations in the transform domain. Specifically, we are cur-
rently testing the possibilities of using L1 norms in order to
generate the sparsest representations.

A very relevant observation is summarized in the follow-
ing lemma.

Lemma 7. Consider the function

g(t) = ϕl,σ ,Ω(t)

(

=
√

2σ
Γ(2l + 1)

(2σt)le(−σ+ jΩ)t

)

(57)

Then

∀(n, a,ω) �= (l, σ ,Ω)
∣

∣g̃(l, σ ,Ω)
∣

∣

2
>
∣

∣g̃(n, a,ω)
∣

∣

2
. (58)

Proof. As g̃(n, a,ω) = 〈ϕn,a,ω, g〉 and g(t) = ϕl,σ ,Ω(t), by
Cauchy Schwarz we get

∣

∣g̃(n, a,ω)
∣

∣ ≤ ∥

∥ϕn,a,ω
∥

∥

∥

∥ϕl,σ ,Ω
∥

∥

≤ 1,
(59)

where equality holds if and only if ϕn,a,ω(t) = ϕl,σ ,Ω(t), name-
ly (n, a,ω) = (l, σ ,Ω). Then (58) follows since g̃(l, σ ,Ω) =
〈ϕl,σ ,Ω, g〉 = 〈ϕl,σ ,Ω,ϕl,σ ,Ω〉 = 1.

Lemma 7 means that if the system contains a single pole
at (−σ+ jΩ) withmultiplicity (l+1), finding themaximumof
its UT will render both the pole location and its multiplicity.
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