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We present a shape-from-shading approach for oblique lighting with accuracy enhancement by light direction optimization. Based
on an application of the Jacobi iterative method to the consistency between the reflectance map and image, four surface normal
approximations are introduced and the resulting four iterative relations are combined as constraints to get an iterative relation.
The matrix that converts the shading information to the depth is modified so as to be uniform over the whole image region,
making the iteration stable and, as a result, the resulting shape more accurate. Then, to enhance the accuracy, the light direction is
optimized for slant angle using two criteria based on the initial boundary value and the rank of the converting matrix. The method
is examined using synthetic and real images to show that it is superior to the current state-of-the-art methods and that it is effective
for oblique light direction whose slant angle ranges from 55 to 75 degrees.
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1. INTRODUCTION

Shape reconstruction from a single shading image has been
studied for decades [1], producing a variety of approaches
using minimization [2, 3], linearization [4], propagation
[5, 6], deformable model [7], viscosity solutions [8—11], an
attenuation term of the form 1/r? [12], and the Helmholtz
reciprocity [13] that also uses the attenuation term. They,
however, still fail to produce acceptable shapes. One of the
reasons may be that the iterative operations used in those
methods necessitate a tradeoff of accuracy in shape for nu-
merical stability. For example, the minimization approach
presented by Zheng and Chellappa extrapolates the surface
normals to estimate them on the boundaries [2]. This might
appear to be local, but its effects are global through the iter-
ation, causing the numerical instability. They stop the itera-
tion to avoid the instability at the cost of accuracy. The ap-
proach given by Tsai and Shah expands the reflectance map
in a single linear depth parameter and iteratively estimates
the shape [4]. It uses the Lambertian reflection and the con-
sistency between the image and the reflectance map, so that
instability occurs at the brightest parts. To avoid it, they limit
the number of the iteration, making it difficult to obtain an
accurate shape for many images. Propagation approaches es-
timate shapes starting from some initial curves at such special
points as the brightest or the darkest. When many such parts

are present, which may be usual, the image is normalized to
a value less than unity [6] to avoid the complex processing of
combining many shape patches, making the resulting shapes
inaccurate. The method using the deformable model has also
a stabilization factor in the estimation, introduced in [14], to
give a damping effect. The shape accuracy may be sacrificed
in return for stability. The two methods using the attenua-
tion term [12, 13] are stable, but the resulting shapes appear
to lack accuracy.

Another reason has to do with the use of parametric con-
straints and their heuristic optimization. For example, two
Lagrange multipliers are used in the minimization approach
[2], a single parameter is used in the linear approach in the
iterative process of revising the shape [4], normalization of
the image to a value less than unity is made in the propaga-
tion approach [6], and the initial function is chosen in the
method using the deformable model [7], in which case the
resulting shape may depend on the function. As an extreme
case, methods using viscosity solutions require knowledge of
the boundary [11], the heights at the local minimal points
(8], or at least part of the shape information on the bound-
ary [15], wherein the Morse functions used to form shapes
[16] may lack generality.

In addition, shadows are present in images which have
no shading information. The downright light may be best in
view of this, but there will be ambiguities between convex
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and concave shapes. An oblique light, on the other hand, is
most informative from our perceptual viewpoint, but most
likely there exist shadows in the image.

In this paper, we present a novel shape-from-shading
method, which uses neither adjusting parameters nor a pri-
ori or additional information, and which appears more ac-
curate for oblique light cases than the current methods. In
this method, based on an application of the Jacobi iterative
method to the consistency between the image and the re-
flectance map, we introduce four surface normal approxima-
tions and the resulting four iterative relations are combined
as constraints to get an iterative relation. The methods us-
ing viscosity solutions also use multiple depths at neighbor-
ing grid points. Specifically, they use two gradients in each
direction, but this results in spatially blurring shape recon-
struction. On the other hand, we use four surface normals,
which result in better shape through enhancement of stabil-
ity. Then, the matrix that converts the shading information
to the depth is modified so as to be uniform over the whole
image region, making the iteration stable and, as a result, the
resulting shape accurate. Then, in order to enhance the accu-
racy, the light direction is optimized using two criteria based
on the initial boundary value in the iteration and the rank of
the converting matrix.

2. ITERATIVE RELATION FOR RECONSTRUCTION
AND OPTIMIZATION OF LIGHT DIRECTION

We use the consistency between a given image I(x, y) and
the reflectance map R(p,q). Let P oc (p,q,1)T be the sur-
face normal of the object’s depth z(x, y), x,y = 1,...,N,
and S o« (S, Sy,Sz)T be the light direction, where ortho-
graphic projection from a point source is assumed. Then, for
the Lambertian surface, the map normalized by the albedo is
given by the scalar product of P and S:

pSx+qSy+ S,
w/p2+q2+1,/5§+8§+83'

The Lambertian surface does not represent real surfaces of
objects, but is a good approximation if we use polarization
filters when taking pictures to eliminate specular reflection
components. We do not impose R(p,q) to be smooth. The
surface normal components, p and g, are given by —dz/dx
and —dz/dy, respectively, where the negative sign is used for
the convenience. Here we consider the four approximations
for them as follows:

R(p,q) = (1)

(z(x = 1,y) = z(x, ¥),2(x, y — 1) — z(x, ),

(o) = (z(x,y) —z(x+ 1,9),2(x, ¥) — z(x, y + 1)),
’ (z(x = L y) = 2(x, y), 2(x, y) = 2(x, y + 1)),
(z(x, y) —z(x+ 1, 9),2(x, y — 1) — z(x, ),

(2)

and let the function f(x, y) be defined by

fm(X,)’) E]m(x,}’)—Rm(P,Q)a m = 1)~--)4) (3)

where the image, J,»(x, y), is shifted corresponding to the ap-
proximations:

I(x,y) form=1,
Ix+1,y+1) form=2,
m\As = 4
I, y) I(x,y+1) form =3, @)
Ix+1,y) form = 4.

I(x, y) is normalized to unity, and (p,q) in (2) are used in
Ry (p,q), m = 1,...,4. The shifts are necessary to avoid the
deterioration in shape resolution. Applying the Jacobi itera-
tive method to f,,(x, ), m = 1,...,4, we obtain the following
four iterative relations, respectively:

(n-1) (n—1)
=1y _ afl,xw (Z(n) _Z(n—l)) + afl’w
b T\ Oz o 021,y
(n—1)
w -\, (Ofxy W -1
X (an—l,yf xnl,y)+<a ) (ZX?yflfzxtly*1>)
Zx,y—l

(n—1) (n—1)
f: of.
(n—1) d 2,x,y - 2%y
f o < ) (Z:J(Cfl}2 ZJ(C’;/I)’ 1)) (

azx,y aZx+1,y

af (n—-1)
2 1
x<z§+ay—z,aﬂy>+( ) -),

any+1
(n—1) (n—1)
o - () ) o (e
%y aZx)), aZx Ly

) <9f3xy

X (Zx—l,y X— ly 0z, 41

(n—1) (n—1)
_ =1y _ 0 faxy ( (n 1)) n af4xy
by aZx,y aZerl Sy

0
x (e, ~2h) (f4xy (-2,

Zx+1,y Zx+1 y
(5)

(n—1)
xy+1 xy+l

any 1

where fux, = fulx,y) and z., = z(x,y). These can be
rewritten in matrix form as

D) = glnD) (50 _ pn-1))

m

4, n=1,2,...,
(6)

where f,, and z are N2-element column vectors of f,(x, y)
and z(x, y), respectively, and g,, are N> X N2-element sparse
matrices made of one to three derivatives of f,(x, y) with
respect to z(x, ¥), z(x—1, y), z(x+1, y), z(x, y— 1), or z(x, y+
1). The derivatives have positive or negative values.

The inverses of the four g, matrices take values in dif-
ferent regions from each other, as shown in Figure 1. The
elements of f,, within these shaded regions are multiplied
by those of g,,! and are integrated to give values of g;,'f,,.
For finer details, it is seen from the distribution of the values
of g, that the effective averaging region is roughly elliptical
around the reconstruction point with the long axis being in
the direction of the tilt angle, 7, of the light direction and that
the ellipse is most circular for 7 = 454+90u, u = integer, while
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FIGURE 1: Integral operations of the form g,,'f,, are carried out in
the different shaded regions to give depth maps for the four different
approximations.

it is just a line for 7 = 90u. Thus, the method is not specif-
ically sensitive to noise or shadows in the image due to the
integration; and in finer details, their effects may be largest
for the case of T = 90u and smallest for 45 + 90u.

‘We combine the four iterative relations as follows:

fl(”—l) (ln—l)
fz(”*I) ggnfl)
_ (n-1) = (n-1) (z(") _Z(Vl—l))) n=12,.... (7)
f3 s
finfl) gin—l)
Using F and G given by

T
N (CRINCRINCOINGOR

(8)
n n)\ T n\ T n)\T nm\T T
G™ = (g’ (&™) &™) (™))
Equation (7) is rewritten as
—F0= = GUU (2 — Dy =12, (9)

Then, following the least square error procedure, the shape is
reconstructed following the iterative relation

2" =20 _(GPYTTEY ) n=12,..., (10)
typically with z(® = 0 as initial values, where
G, = G'G, F, = G'F. (11)

Let us express the terms gy, f,,, and z as

o= lgm ],

where i or j is equal to x + Ny, then G, and F, are given,
respectively, by

£ — [ (n)], = [z"], (12)

mj

4 N2
=[S Sagn ] o

- 4 N?
B - [Z gﬁsz,.fns*z)]- (14)
1

It is seen from (13) that the matrix, G, is also sparse and its
eigenvalues are given by the diagonal elements as

4 2 B 2
Mx,p) = > (M) + (M)

m=1 aZ(X, y) m=2,4 aZ(X, )’)
2 2
8fm(x+1,y)) <8fm(x,y—l))
" m:Zl,S ( az(x, y) * m:ZZ,3 az(x, )/)
+m:Zl,4 ( az(x,y) ’

2<x<N-1,2<y<N-1
(15)

The eigenvalues on the four boundary lines are also given
by (15) if we retain only those terms within the region of
l <x<Nand1 < y < N. That is, they consist of five kinds
of the squared derivatives in the region 2 < x < N — 1 and
2 < y < N—1, four kinds of such terms on the four boundary
lines and three kinds of such terms at the four corners.

We can see by inserting (3) and the relevant expressions
in (15) that nine depths at (x, y) and at its eight neighbor-
ing points contribute to the eigenvalue in the region 2 < x <
N -1land2 < y < N — 1. Similarly it is seen from (14)
that the elements of F, also have similar symmetric expres-
sions. The symmetric property, which is achieved by combin-
ing the four approximations, indicates that the reconstruc-
tion uses the entire image in correspondence with Figure 1.
The symmetry, however, is not complete due to the existence
of the nonsymmetric terms on the boundary lines, which
possibly seriously damages the shape reconstruction. Those
terms could make the determinant of the converting matrix
insignificant, making the iteration unstable.

We restrict the reconstruction in the region 2 < x < N—1
and 2 < y < N — 1. In this case all the eigenvalues are given
by (15). Letting z’, G5, and F, have the elements of z, G,, and
F,, respectively, in this region, the following iterative relation
holds:

7MW =200 _(GN)TEMY . =12, (16)
It is noted that the values of (p,q) in the entire area are still
needed, as seen from (15).

We impose the solid boundary condition in order to en-
sure stability. The depth on the boundary lines is set to the
same value as the initial depth value in the iteration, so that
we impose the following in each iteration:

exceptfor2 <x <N -2,2<y=<N-2.
(17)

z(x,y) =0

In case the image varies on the boundary lines, where the
condition in (17) cannot be applied, we enclose the im-
age with flat-shaped strips whose shading value is deter-
mined from the lighting direction, and we shade the bound-
ary between the object and the surrounding flat part on the
assumption that the object is positive in depth along the
boundary.
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(a) Mozart (b) Mouse (c) Penguin

(d) Penny

(e) Vase

F1GURE 2: Five shapes and two real images used in experiments.

It is possible that this imposition affects the resulting
shape around the boundary. In general, as the height of the
object on the boundary is larger, the effect may be larger.
In most synthetic image examples we have in this paper the
height is null on the boundary, so we may have no such ef-
fect. In real image examples the height may not be null on
the boundary, so the resulting shape around the boundary
may be affected by the imposition. The degree and spatial
extent of the effect may depend on the reconstruction capa-
bility; that is, as the capability is larger, the degree and the
affecting area may be smaller. As far as the real images used
are concerned, the effect appears to be insignificant. This, in
turn, implies that our method is superior in reconstruction
capability.

We use two criteria to optimize the light direction. One
evaluates how accurately the flat part with the initial null
value is reconstructed, and the other evaluates the rank of
the converting matrix,

SMminz = arg Maxg {Min(x,y) {z(x, )}, (18)
Srank = argMaXS {Nz“l I\il M} (19)
x=2 )’=2 Maxx,y {)‘(x,)/)}

As the light direction is different from the true direction,
shape distortions may increase and the minimal depth is
observed to usually be smaller than the initial value which
is null. And at the same time the number of insignificant
eigenvalues may increase. It should be noted that optimiza-
tion possibly compensates for the insufficient reconstruction
characteristic of the method.

3. COMPUTER EXPERIMENTS

Five objects and two real images shown in Figure 2 were
used, among which shapes of the mouse and the penguin
were measured using a laser range scanner. Some shape er-
rors, generated when converting the three-dimensional data
to that on the two-dimensional grid, are noticeable in the
synthetic images. Shading images of 50 X 50 to 96 X 96 pix-
els were synthesized from the objects. The number of iter-
ations using (16) was typically 100, resulting in the average
change in shape less than 0.1 percent for most cases. Taking
into account the orthographic projection, the error of the re-
constructed shape was evaluated as

~ Mine { 3 ) | Zrec(x, ) = € = Zgen(x, ) |}
a MaX(x,y) { |ngn(x’ )’) | } Z(X’)’)

, (20

FIGURE 3: Shapes reconstructed from the vase images, where S =
(0,1, 1) and the depths are, from left, 100, 25, and 12% of the true
one. The ratio of the number of zero-valued pixels to that of en-
tire pixels is, from left to right, 1.1, 0.4, and 0%. The reconstructed
shapes are normalized in height.

where zr. and zgn represent the reconstructed and the
ground-truth shapes, respectively. As for the real images, the
David may have a Lambertian surface to a great degree. The
specular reflection components in the pepper image were re-
duced to create smoother brightness profiles.

The results in Figure 3, which were obtained for vase im-
ages for three different magnitudes of the object depth, show
that the reconstruction is successful when there is no shadow
in the image, while it fails when there are shadows. The effects
of shadows are most serious for S = (0,1,1) and (0,—1,1)
due to the symmetry of the shape and the existence of cliffs
at the top and bottom. It appears that the variability in object
shape does not contribute significantly to the results. The re-
sults in Figure 4, which were obtained for the Mozart object
with one twentieth of the true height, show that when images
have few shadows, the reconstruction is successful for a wide
slant angle range of 30 to 87 degrees for the shape error of
5%.

Figure 5 shows shape errors and shadow ratios as a func-
tion of slant angle for the five objects. It is seen that shad-
ows increase with increasing slant angle, degrading the ac-
curacy for a large slant angle, and that the shape also tends
to be worse for smaller slant angle due to increasing number
of singular points. The eigenvalues of the converting matrix
are small at singular points, resulting in large depth changes.
When the object has a shape as shown in Figure 2, this prop-
erty may not often give contradictory results for a large slant
angle, but it may often give contradictory results for a small
slant angle. As a result, the effective slant angle range is re-
stricted to 55 to 75, as shown in Figure 5, where there exists
no ambiguity between convex and concave shapes. Examples
of reconstructed shapes are shown in Figure 6 for three slant
angles of 54.7, 67.0, and 82.0 and for a tilt angle of 0, —45, or
45 degrees. Figure 7 shows shadow ratios and the shape er-
rors as a function of tilt angle, and examples of reconstructed
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—— Shadow
—— Shape

—— Shadow
— Shape

FIGURE 4: Left: shadow ratio and the error of reconstructed shape both in percentage as a function of the ratio of the maximal height to the
true height of the Mozart, where 7 = 45. Right: the shadow ratio and the reconstructed shape error for ¢ = 0 to 90 and 7 = 45 for a Mozart

object with one twentieth of the true height.
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FIGURE 5: Ratios of the number of shadow pixels and shape errors as a function of slant angle for the five objects.

shapes are shown in Figure 8. Figure 7 shows that shapes tend
to be worst when the vector normal to the cliff-like part of
the object has the same tilt angle as the light. It is seen in
Figure 8 that lighting with a tilt angle of —45 or 45 degrees
gives smoother shapes compared to —90, 0, or 90 as described
previously.

Our method is compared with the current state-of-the-
art methods in Table 1, where DM stands for deformable
model [7], BEST is a group of six methods [17], and in our
method the surface normal components are derived from
the shape. Shapes are normalized in height so as to have the
same range in order to obtain statistics on shape accuracy
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Wdair

FIGURE 6: Shading images and their reconstructed shapes for three slant angles of, from top, 82.0, 67.0, and 54.7 degrees for the five objects.
The tilt angle is 45 degrees for mouse and penguin, 0 for vase, 45 for Mozart, and —45 for penny.

and compare them. The results show that our method is bet-
ter than those state-of-the-art methods for the three object
examples in terms of the absolute depth error and its stan-
dard deviation. Especially the small standard deviation val-
ues mean that our method can reconstruct similar shapes for
different light directions. Our method is also better in terms
of the surface normal error, except for the Mozart example,
in which case our method is inferior to DM for smoothness
of shape.

Figure 9 shows examples of the optimal slant and tilt an-
gles, estimated using the two criteria in (18) and (19), rela-
tive to the true ones as a function of the slant angle, where
Mozart images for the case of S = (5,5,5;) are used. As
shown in Figure 10, it is more advantageous to use Syank to
get a better shape than Syinz. It can be observed for those
objects that optimization for the slant angle tends to have
much more significant effects than that for the tilt angle. The

difference in effects between the two criteria is more clearly
seen in the real images of pepper and David, as shown in Fig-
ures 11 and 12, respectively. The true light directions given
in the references are (0,7) = (45,40) and (45, 135), respec-
tively. It is seen from the results that optimal directions based
on (18) are (59,40) and (59, 135) for pepper and David, re-
spectively, while the directions optimized with respect to the
slant angle based on (19) are (59,40) and (65.8,135), re-
spectively. It is seen from Figure 11 that optimization im-
proves the shape and from Figure 12 that optimization based
on rank improves the shape more than that based on min-
imal depth. The right cheek of the David is noticeably dis-
torted, but it can be corrected by using a slightly differ-
ent direction from the optimal light direction, which indi-
cates a need to improve the criterion. Hence, the criterion

using rank may be more effective than that using minimal
depth.
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FIGURE 7: Ratios of shadow pixels and the shape errors as a function of tilt angle for the five objects.

Ficure 8: Examples of reconstructed shapes, where S = (71,71,42) (top) and (0,99,42) (bottom) for mouse, (71,71,35) and (71,—71,35)
for penguin, (71, -71,47) and (71,71,47) for vase, (71,71,42) and (71, —71,42) for Mozart, and (71,71,42) and (0, —99,42) for penny.

Relatively small-sized images are used in these experi-
ments, but the method can be applied to larger images to re-
construct more details of the shape, as an example is shown
in Figure 13.

4. CONCLUSIONS

We presented a shape-from-shading method for oblique
lighting with accuracy enhancement by light direction

optimization. Based on an application of the Jacobi iterative
method to the consistency between the reflectance map and
image, four surface normal approximations were introduced,
and the matrix of the resulting relation was made uniform
over the image region to obtain a more stable and accurate
shape. Then, the light direction was optimized in slant angle
based on the rank of the converting matrix to enhance the ac-
curacy. Examination using synthetic and real images showed
that the method was superior to the current state-of-the-art
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— Srank
— S$Zmin

— Srank
— S$Zmin

FiGUre 9: Optimal light directions relative to the true ones for slant (left) and tilt (right) angles using the two criteria for the case of Mozart.

TasLE 1: Comparison of our method with the current state-of-the-
art methods, BEST and DM, where BEST consists of six methods
and its figure means the best value among the six and DM stands for
deformable model. The first figure in each cell is for S = (5,5,7) for
BEST and DM, while it is an average for (5,5, S;), S, = 1-5, for our
method, and the second figure is for S = (1,0, 1) for BEST and DM,
while it is an average for (7,0,S;), S; = 1-5, for our method. Zavg
means the absolute depth error, std. dev. the standard deviation of
the absolute depth error, and (p, q) the surface normal components
error.

Methods Vase Penny Mozart
Zavg 7.5,7.9 4.7,4.4 8.8,7.7

BEST
(7,17)  std. dev. 12.9,13.9 7.3,5.5 5.8,3.5
(p,9) 0.9, 0.9 1.1, 1.0 0.7,0.5
Zavg 3.7,44 2.2,2.9 4.5,4.2
DM (7] std. dev. 3.3,3.3 1.9,2.1 5.8,3.5
(p,9) 0.3,0.5 0.4, 0.4 0.3,0.3
Zavg 1.8,1.3 2.1,2.5 4.2,4.3

Our
method  std. dev. 0.1,0.1 0.2,0.5 0.6,0.6
(p,9) 0.2,0.2 0.2,0.3 0.5,0.5

Ficure 10: The shape of the Mozart reconstructed for S = (5,5,2)
on the left has the maximal minimal depth and an error of 8.0%,
while that for S = (50,50, 24) on the right has the maximal rank

and an error of 6.4%.

1950
1850
1750
1650
1550
1450

45 50 55 60 65

FIGURE 11: Results for the pepper image. Top: minimal depth profile
as a function of tilt angle (left), and minimal depth (center) and
rank (right) profiles as a function of slant angle. Bottom: shapes
reconstructed for S = (0.766,0.642, 1) (left) and (0.766,0.642,0.6)
(right).

methods and that it effectively worked for oblique light di-
rection ranging from 55 to 75 degrees in slant angle without
convex/concave ambiguities. A more sophisticated optimiz-
ing method is under study.
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FIGURE 12: Results for the David image. Top: minimal depth profile
as a function of tilt angle (left), and minimal depth (center) and
rank (right) profiles as a function of slant angle. Bottom: shapes
reconstructed for § = (-0.707,0.707,1),(—0.707,0.707,0.6), and
(—0.707,0.707,0.45), from left to right.

Figure 13: Comparison between shapes reconstructed from two
different-sized penny images of 54 x 54 (left) and 96 x 96 (right)
pixels.
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