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Digital signal processing applications are specified with floating-point data types but they are usually implemented in embedded
systems with fixed-point arithmetic to minimise cost and power consumption. Thus, methodologies which establish automati-
cally the fixed-point specification are required to reduce the application time-to-market. In this paper, a new methodology for
the floating-to-fixed point conversion is proposed for software implementations. The aim of our approach is to determine the
fixed-point specification which minimises the code execution time for a given accuracy constraint. Compared to previous method-
ologies, our approach takes into account the DSP architecture to optimise the fixed-point formats and the floating-to-fixed-point
conversion process is coupled with the code generation process. The fixed-point data types and the position of the scaling opera-
tions are optimised to reduce the code execution time. To evaluate the fixed-point computation accuracy, an analytical approach
is used to reduce the optimisation time compared to the existing methods based on simulation. The methodology stages are de-
scribed and several experiment results are presented to underline the efficiency of this approach.
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1. INTRODUCTION

Most embedded systems integrate digital signal processing
applications. These applications are usually designed with
high-level description tools like CoCentric (Synopsys), Mat-
lab/Simulink (Mathworks), or SPW (CoWare) to evaluate
the application performances with floating-point simula-
tions. Nevertheless, if digital signal processing algorithms are
specified and designed with floating-point data types, they
are finally implemented into fixed-point architectures to sat-
isfy the cost and power consumption constraints associated
with embedded systems. In fixed-point architectures, mem-
ory and bus widths are smaller, leading to a definitively lower
cost and power consumption. Moreover, floating-point op-
erators are more complex to process the exponent and the
mantissa. Thus, floating-point operator area and latency are
greater compared to fixed-point operators.

In this context, the application specificationmust be con-
verted into fixed-point. The manual conversion process is
a time-consuming and an error-prone task which increases
the development time. Some experiments [1] have shown
that this manual conversion can represent up to 30% of
the global implementation time. To reduce the application
time-to-market, high-level development and code genera-
tion tools are needed. Thus, methodologies for automatic

floating-to-fixed-point conversion are required to accelerate
the development.

For digital signal processors (DSPs), the methodology
aim is to define the optimised fixed-point specification which
minimises the code execution time and leads to a suffi-
cient accuracy. For this accuracy, the desired application per-
formances must be reached. Existing methodologies [2, 3]
achieve a floating-to-fixed-point transformation leading to
an ANSI-C code with integer data types. Nevertheless, the
data types supported by the DSP and the processor scaling
capabilities are not taken into account to determine the fixed-
point specification. The analysis of the architecture influence
on the computation accuracy underlines the necessity to take
the DSP architecture into account to optimise the fixed-point
specification [4]. Furthermore, the code generation and the
conversion process must be coupled.

In this paper, a new methodology to implement floating-
point algorithms in fixed-point processors under accuracy
constraint is presented. Compared to the existing methods,
the processor architecture is taken into account and the
floating-to-fixed-point conversion process is coupled with
the code generation process. The fixed-point specification is
optimised to reduce the code execution time as long as the
application performances are reached. These optimisations
are achieved through the location of the scaling operations
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and the selection of the data word-length according to the
different data types supported by recent DSPs. The scal-
ing operations are moved to reduce the code execution
time. This paper is organised as follows. The previous works
for the floating-to-fixed-point conversion are presented in
Section 2. Our methodology is detailed in Section 3. For the
different methodology stages, our approach is justified and
the technique used to solve the problem is described. Finally,
in Section 4, different experiments are presented underlining
the efficiency of our approach.

2. RELATEDWORKS

2.1. Floating-to-fixed-point conversionmethodologies

In this section the different available methodologies for the
automatic implementation of floating-point algorithms into
fixed-point architectures are presented.

In [5], a methodology which implements floating-
point algorithms into the TMS320C25/50 fixed-point DSP
(Texas Instruments) is proposed. The floating-to-fixed-point
conversion is achieved after the code generation process.
This methodology is specialised for this particular archi-
tecture and cannot be transposed to other architecture
classes.

The two methodologies presented below achieve the
floating-to-fixed-point transformation at the source code
level. The FRIDGE [6] methodology, developed at the
Aachen University, transforms the floating-point C source
code into a C code with fixed-point data types. In the first
step, called annotations, the user defines the fixed-point for-
mat of some variables which are critical in the system or for
which the fixed-point specification is already known. More-
over, global annotations can be defined to specify some rules
for the entire system (maximal data word-length, casting
rules). The second step, called interpolation [6, 7], deter-
mines the application fixed-point specification. The fixed-
point data formats are obtained from a set of propagation
rules and the analysis of the program control flow. This de-
scription is simulated to verify if the accuracy constrains are
fulfilled. The commercial toolCoCentric Fixed-point Designer
proposed by Synopsys is based on this approach.

In [3] a method called embedded approach is proposed
to generate an ANSI-C code for a DSP compiler from the
fixed-point specification. The data (source data), for which
the fixed-point formats have been obtained with the tech-
nique presented previously, are specified with the available
data types (target data) supported by the target processor.
The degrees of freedom due to the source data position in
the target data are used to minimise the scaling operations.
This methodology produces a bit-true implementation into
a DSP of a fixed-point specification. But accuracy and execu-
tion time are not optimised through the fixed-point format
modification of some relevant variables.

The aim of the tool presented in [2, 8] is to transform
a floating-point C source code into an ANSI-C code with
integer data types. This code is independent of the targeted
architecture. Moreover, a fixed-point format optimisation is

done to minimise the number of scaling operations. Firstly,
the floating-point data types are replaced by fixed-point data
types and the scaling operations are included in the code.
The scaling operations and the fixed-point data formats are
determined from the dynamic range information obtained
with a statistical method [9]. The reduction of the scaling
operations number is based on the assignation of a common
format to several relevant data to minimise the scaling oper-
ations cost function. This cost function takes account of the
number of each scaling operation occurrences and depends
on the processor scaling capabilities. For a processor with a
barrel shifter, the cost of a scaling operation is set to one cy-
cle; otherwise the number of cycles required for a shift of n
bits is equal to n cycles.

This methodology achieves the floating-to-fixed-point
conversion with the minimisation of the scaling operations
cost. But, the code execution time is not optimised under a
global accuracy constraint. The accuracy constraint is only
specified through the definition of a maximal acceptable ac-
curacy degradation allowed for each data. The data types
supported by the architecture are not taken into account to
optimise the fixed-point data formats. Moreover, the archi-
tecture model used to minimise the scaling operations num-
ber is not realistic. Indeed, for conventional DSPs including
a barrel shifter and based on a MAC (multiply-accumulate)
structure, the scaling operation execution time depends on
the data location in the data path and is not always equal to
one cycle. Furthermore, for processors with instruction-level
parallelism (ILP) capabilities, the overhead due to scaling op-
erations depends on the scheduling step and cannot be easily
evaluated before the code generation process.

Compared to these methods, our approach optimises the
data word-length to benefit from the different data types sup-
ported by recent DSPs. Moreover, the scaling operation loca-
tion is optimised with a realistic model to evaluate the scaling
operation execution time. The goal of these two optimisa-
tions is to minimise the code execution time as long as the
accuracy constraint is fulfilled. In our methodology, the pro-
cessor architecture is taken into account and the floating-to-
fixed-point conversion process is coupled with the code gen-
eration process.

2.2. Fixed-point accuracy evaluation

Despite fixed-point computation, the application quality cri-
teria must be verified. Thus, the computation accuracy due
to fixed-point arithmetic is evaluated. Most of the avail-
able methodologies are based on a bit-true simulation of the
fixed-point application [10–12]. Nevertheless, this technique
suffers from a major drawback which is the time required for
the simulations [11]. The fixed-point mechanism emulation
on a floating-point workstation increases the simulation time
compared to a classical floating-point simulation. Moreover,
a great number of samples is required to verify if the applica-
tion quality criteria are respected. This drawback becomes a
severe limitation when these methods are used in the process
of fixed-point optimisation where multiple simulations are
needed to explore the design space [10]. For each evaluation
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of the fixed-point specification accuracy, a new simulation is
required.

An alternative to the simulation-basedmethod is the ana-
lytical approach. The verification that the fixed-point imple-
mentation respects the application quality criteria is achieved
in two steps with the help of a single metric. The most com-
monly used metric to evaluate the computation accuracy is
the signal-to-quantisation-noise ratio (SQNR) [10, 13, 14].
This metric defines the ratio between the desired signal
power and the quantisation noise power. Thus, first of all,
the minimal value of the computation accuracy (SQNRmin)
is determined and then, the fixed-point specification is op-
timised under this accuracy constraint. The accuracy con-
straint (SQNRmin) is determined according to the application
performance constraints. The main advantage of the analyt-
ical approach is the execution time reduction of the fixed-
point optimisation process. Indeed, the SQNR expression de-
termination is done only once, then, the fixed-point system
accuracy is evaluated through the computation of a mathe-
matical expression.

In our methodology, an analytical approach is used to
evaluate the computation accuracy. This approach [14] re-
duces significantly the execution time of the fixed-point
optimisation process, compared to the simulation-based
methods. This method is described with further details in
Section 3.1.3.

3. FLOATING-TO-FIXED-POINT CONVERSION
METHODOLOGY

The aim of the methodology presented in this paper is to
implement automatically a floating-point application into a
fixed-point DSP. Despite the computation error due to the
fixed-point arithmetic, the different quality criteria (perfor-
mances) associated with the application must be respected.
For embedded systems, the cost and the power consumption
must be minimised. Thus, the optimised fixed-point specifi-
cation which minimises the code execution time and fulfils a
given computation accuracy constraint must be determined.
To optimise the implementation, the targeted architecture
must be taken into account during the fixed-point conver-
sion process.

3.1. Methodology flow

The methodology flow has been defined from the analysis
of the architecture influence on the computation accuracy
and from the study of the interaction between the fixed-
point conversion process and the code generation process.
The global methodology flow is presented in Figure 1. The
tool is made up of two main blocks corresponding to the
compilation infrastructure and to the floating-to-fixed-point
conversion.

The compilation infrastructure front-end generates an
intermediate representation from the floating-point C source
code. The floating-to-fixed-point conversion process is ap-
plied on this intermediate representation. The assembly code
is generated with the compilation infrastructure back-end
from this fixed-point intermediate representation.

The first stage of the fixed-point conversion process cor-
responds to the data dynamic range evaluation. These re-
sults are used to determine the data binary-point position
which avoids overflows. Then, the data word-lengths are de-
termined to obtain a complete fixed-point specification. The
data types which minimise the code execution time and re-
spect the accuracy constraint are selected. Finally, the scaling
operation locations are optimised to minimise the code exe-
cution time as long as the accuracy constraint is fulfilled. This
conversion process is achieved under an accuracy constraint
to obtain a fixed-point specification which satisfies the appli-
cation performances. Thus, the computation accuracy must
be evaluated and the accuracy constraint must be determined
from application performances.

3.1.1. Compilation infrastructure

The floating-point C source algorithm is transformed into
an intermediate representation with the compiler front-end.
This intermediate representation (IR) specifies the applica-
tion with a control and data flow graph (CDFG). The tool
uses the SUIF compiler front-end [15], and the CDFG is
generated from SUIF’s internal-representation abstract trees.
This CDFG is made up of different control flow graphs
(CFGs) and data flow graphs (DFGs). Each CFG represents
one of the application control structures. These structures
correspond to basic blocks, conditional and repetitive struc-
tures. The core of conditional and repetitive structures is
specified with a CFG. Each control structure block contains
a specification of its input and output data. The basic block
represents a set of sequential computations without control
structure. The different computations of a basic block core
which correspond to the signal processing part are repre-
sented with a data flow graph (DFG). The DFG includes the
delay operations. To illustrate this intermediate representa-
tion, an FIR (finite impulse response) filter example is under
consideration. The floating-point C source code is given in
Algorithm 1 and the corresponding intermediate representa-
tion is presented in Figure 2.

The code generation is achieved with the flexible code
generation tool CALIFE presented in [16] and the processor
is described with the ARMOR language [17].

3.1.2. Fixed-point format

A fixed-point data is made up of an integer part and a frac-
tional part as presented in Figure 3. The fixed-point format
of a data is specified as (b,m,n), where b is the data word-
length. The terms m and n are the binary-point positions
referenced, respectively, from the most significant bit (MSB)
and the least significant bit (LSB). In fixed-point arithmetic,
m and n are fixed and lead to an implicit scale factor which
stays constant during the processing.

A binary-point position is assigned to each oi operation
inputs and output (mx′ ,my′ ,mz′) as presented in Figure 4.
In the same way, a word-length (bx′ , by′ , bz′) is assigned
to each oi operation operand. Let bi = (bx′ , by′ , bz′) and
mi = (mx′ ,my′ ,mz′) be, respectively, the word-lengths
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Figure 1: Methodology flow for the floating-to-fixed-point conversion. The tool is made up of two main blocks corresponding to the
compilation infrastructure and to the floating-to-fixed-point conversion.

float h[32] = {−0.0297, . . . ,
0.897, 0.98, 0.897, . . . ,−0.0297};
float x[32];
float y, acc;

float fir (float input)
{
int i;

x[0] = input;

acc = x[0]∗ h[0] ;

for (i = 31; i > 0; i−−)
{
acc = acc + x[i]∗ h[i];
x[i] = x[i− 1];
}
y = acc;

return y;

}

Algorithm 1: Specification of the 32-tap FIR filter with the
floating-point C source code.

and the binary-point positions associated with the oper-

ation oi. For a CDFG made up of No operations,
−→
b =

[b1,b2, . . . ,bi, . . . ,bNo] and
−→m = [m1,m2, . . . ,mi, . . . ,mNo]

are the vectors specifying, respectively, the word-length
and the binary-point position of all CDFG operation
operands.
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Figure 2: The control and data flow graph equivalent to
Algorithm 1 (the node z−1 corresponds to a delay operation).

3.1.3. Computation accuracymanagement

In our methodology, the SQNR metric is used to ensure that
the fixed-point implementation verifies the application qual-
ity criteria. Thus, the accuracy constraint and the SQNR ex-
pression can be obtained from the application as explained
in the following sections.



Daniel Menard et al. 5

S bm−1bm−2 b1 b0 b−1 b−2 b−n+2 b−n+1 b−n

Sign
bit 2m−1 Integer part 20 2−1 Fractional part 2−n

MSB m n
LSB

b

Figure 3: Fixed-point data specification: b, m, and n represent, re-
spectively, the data word-length, the binary-point position refer-
enced from the MSB (integer part), and the binary-point position
referenced from the LSB (fractional part).
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Figure 4: Binary-point position model for an operation. The
binary-point position for the operation inputs and output are spec-
ified bymx′ ,my′ , andmz′ .

Accuracy constraint determination

The accuracy constraint corresponding to the minimal value
(SQNRmin) of the SQNR is determined according to the
application performance constraints. This SQNR minimal
value is obtained with a floating-point simulation of the ap-
plication as presented in Figure 5. The error due to the fixed-
point conversion is modelled by a noise source (qy) located
at the system output. The power of this noise source is in-
creased as long as the application performance constraints
are respected. The SQNR constraint is determined from the
maximal value of the noise source power which ensures that
the application performances are still reached.

Computation accuracy evaluation

To determine the SQNR expression, the main challenge cor-
responds to the computation of the system output quantisa-
tion power. In fixed-point system, a quantisation noise qgk is
generated when some bits are eliminated during a cast opera-
tion. Each quantisation noise source qgk is propagated inside
the system and contributes to the output quantisation noise
qy through the gain αk as presented in Figure 6. The goal of
the analytical approach is to define the power expression of
the output noise qy according to the qgk noise source statisti-
cal parameters and the gains αk between the output and the
different noise sources.

For linear time-invariant systems, each αk term is ob-
tained from the transfer function between the system output
and the qgk noise source. The transfer functions are deter-
mined from the data flow graph [18] representing the appli-
cation [14]. They are obtained from the Z transform of the
recurrent equations representing the system. The recurrent
equations are built by traversing the graph from the inputs to
the output. This technique requires that the graph be acyclic.

Floating-point
system

Output quantisation
noise model

y ŷ

qy

+
Quality criteria
verification

max(Pqy )

SQNRmin
determination

SQNRmin

Quality
criteria

Application

Fixed-point system model

Figure 5: Technique to determine the accuracy constraint. The
global error due to the fixed-point conversion is modelled by a noise
source (qy).

q0

qi

qN

α0

αi

αN

+ qy

Figure 6: Output quantisation noise model in a fixed-point system.
The system output noise qy is a weighted sum of the different noise
sources qgk .

Thus, the DFG is transformed into several directed acyclic
graphs (DAGs) when cycles are present like in the case of re-
cursive1 structures.

In nonrecursive2 and nonlinear systems, each αk term is
obtained from the signals associated with each operation in-
volved in the qgk noise source propagation towards the out-
put [19]. The αk term expressions are built by traversing the
acyclic graph from the inputs to the output. The statistical
parameters of αk are determined with a single floating-point
simulation.

The qgk noise source statistical parameters are deter-
mined from the models presented in [20]. The statistical pa-
rameters depend on the number of bits eliminated and the
data format after the cast operation. As described in (1),

the SQNR is a function of the vector
−→
b and −→m specified

in Section 3.1.2. This function is determined automatically
from the data flow graph representing the application with
the technique summarised in the previous paragraph and de-
tailed in [14, 19]:

SQNR = fSQNR(
−→
b ,−→m). (1)

1 In a recursive structure, the system output depends on the input samples
and the previous output samples.

2 In a nonrecursive structure, the system output depends only on the input
samples.
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3.1.4. Floating-to-fixed-point conversion

For the floating-to-fixed-point conversion process, the data
dynamic range is first evaluated. The results are used to de-
termine the binary-point position of each data. Then, the
data word-length is selected according to the data types sup-
ported by the targeted DSP. Finally, the fixed-point speci-
fication is optimised by moving the scaling operations to
reduce the code execution time. The data word-length and
the scaling operation location are optimised under accuracy
constraint. These different transformations in the conversion
process lead to the CDFG GDR, GBP, GWL, and GSO and are
detailed in the following sections. The optimised fixed-point
specification obtained after the conversion process can be
transformed into a fixed-point C code or a SystemC code.
This code can be used to simulate the fixed-point specifica-
tion and to verify that the application quality criteria are re-
spected.

3.2. Data dynamic range determination

The first stage of the methodology corresponds to the data
dynamic range evaluation. This stage only depends on the
application and the input signals. To evaluate an applica-
tion data dynamic range, two approaches based on statisti-
cal or analytical methods can be used. The dynamic range
can be computed from the data statistical parameters which
are obtained with a floating-point simulation. The estima-
tion results depend on the data used for the simulation. This
approach produces an accurate estimation of the dynamic
range from signal characteristics. It guarantees a low over-
flow probability for signals with the same characteristics.
Nevertheless, overflows can occur for signals with different
statistical properties.

The second class of methods corresponds to the ana-
lytical approaches which are based on the computation of
the data dynamic range expressions from the input dynamic
range. These methods guarantee that no overflow will occur
but lead to a more conservative estimation. Indeed, the dy-
namic range expression is computed in the worst case. The
data dynamic range can be obtained with the interval arith-
metic theory [21]. The operation’s output dynamic range is
determined from its input dynamic. A worst-case dynamic
range propagation rule is defined for each type of opera-
tion. Each data dynamic range is obtained with the help of
the propagation rules during the application graph traver-
sal. Thus, this technique cannot be used in the case of cyclic
graphs like in recursive structures.

For linear time-invariant systems, the data dynamic
range can be computed from the L1 or Chebyshev norm [22]
according to the input signal frequency characteristics. These
norms compute the data dynamic range in the case of lin-
ear time-invariant systems based on a nonrecursive or re-
cursive structure. To evaluate the dynamic range of a data
di from the system input x, the transfer function of the sub-
system with the di output and the x input has to be deter-
mined.

In our methodology, these two analytical approaches
have been combined to determine the data dynamic range in

Input dynamic
range

DFG generation

Data dynamic range
determination

GApp CDFG

Dynamic range
update

GDR CDFG

Figure 7: Methodology flow for the data dynamic range determi-
nation. The dynamic range is computed on the DFG representing
the application and then the global CDFG is annotated with the dy-
namic range information.

nonrecursive systems and in recursive linear time-invariant
systems. The structure of this module is presented in
Figure 7. The module input is the intermediate representa-
tion corresponding to the application CDFG GApp. The first
step eliminates the control structures of the CDFG to ob-
tain a data flow graph (DFG). For repetitive structures, the
loops are unrolled, and for conditional structures, the branch
which leads to the worst case is retained.

The second step corresponds to the dynamic range com-
putation for each data of the application DFG. For nonrecur-
sive structures the dynamic range information are obtained
by traversing the graph from the sources to the sinks. For
each operation, a propagation rule is applied as defined in
[21]. For recursive linear time-invariant structures, the trans-
fer functions between the critical data and the inputs are de-
termined with the technique presented in [14]. These critical
data correspond to the output of the addition or subtraction
operations. Then, the dynamic range is computed from the
input dynamic range with the L1 or Chebyshev norm. For all
other data, the dynamic range is obtained with the propaga-
tion rule technique.

The last step annotates the CDFG GApp data with the dy-
namic range and leads to the CDFGGDR. For a data with only
one instantiation in the CDFG, its dynamic range is equal
to the dynamic range of the equivalent data in the applica-
tion DFG. For data defined as vector (i.e., array) and used in
loop, the vector dynamic range in the CDFG corresponds to
the greatest value of the different vector elements used in the
DFG. The dynamic range determination is more complex in
the case of data with multiple instantiations like in the FFT
(fast Fourier transform) butterfly where the butterfly inputs
and outputs are stored in the same variables. The output vec-
tor dynamic range is multiplied by a factor of two at each
FFT stage. Thus, the fixed-point format of the output vec-
tor must evolve at each stage. The first and the final values of
the vector X dynamic range are specified through the input
and the output loop structure and the evolution of the vec-
tor X dynamic range is specified through the input and the
output CFG block which represents the ith FFT stage. This
is illustrated in Figure 8. Consequently, the expression of the
dynamic range evolution for a multiple instantiation data is
determined from the different dynamic range values.
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3.3. Binary-point position determination

The second stage of the methodology corresponds to the
determination of the data binary-point position. The dy-
namic range results are used to determine, for each data,
the binary-point position which minimises the integer part
word-length and avoids overflows. The architecture must be
taken into account to determine the binary-point position.
Indeed, many DSPs offer accumulator guard bits to manage
the supplementary bits due to accumulations. Most of the
DSPs achieve a MAC (multiply-accumulate) operation with-
out loss of information. The adder and the multiplier out-
put word-length is equal to the sum of the multiplier input
word-lengths. Nevertheless, the dynamic range increase, due
to successive accumulations, can lead to an overflow. Thus,
many DSPs [23, 24] extend the accumulator word-length by
providing guard bits. These supplementary bits ensure the
storage of additional bits generated during successive accu-
mulations. To avoid the introduction of costly scaling oper-
ations, these guard bits must be taken into account to deter-
mine the binary-point position.

The aim of this methodology stage is to obtain a cor-
rect fixed-point specification which guarantees no overflow.
Moreover, this transformation must respect the different
fixed-point arithmetic rules. Thus, scaling operations are in-
cluded in the application to adapt the fixed-point format of
a data to its dynamic range or to align the binary-point of
the addition inputs. The input of this transformation is the
CDFG GDR where all the data are annotated with their dy-
namic range. The output is the CDFG GBP where all the data
are annotated with their binary-point position. A hierarchi-
cal approach is used to determine the data binary-point po-
sition. First, all the application DFGs are independently pro-
cessed and then a global processing is applied to the CDFG
to obtain a coherent fixed-point specification.

To determine the binary-point position (m) of each data,
the different DFGs are traversed from the sources towards
the sinks. For each data and operation, a rule is applied to

obtain the binary-point position. This technique can be ap-
plied only on directed acyclic graph (DAG). Thus, the graph
representing a DFG is firstly dismantled into a DAG if it con-
tains cycles.

For a data x, the binary-point position mx is obtained
from the dynamic range with the following relation:

mx =
⌈
log2

(
max
n

(∣∣x(n)∣∣))⌉. (2)

A binary-point position is assigned to each operation in-
put and output (mx′ , my′ , mz′) as presented in Figure 4. A
propagation rule has been defined for each type of operation.
These rules determine the value ofmx′ ,my′ ,mz′ according to
the binary-point position of the operation input and output
data (mx,my ,mz).

In the case of the multiplication, the binary-point posi-
tions of the inputs (mx′ , my′) correspond to those of the op-
eration input data (mx,my). The binary-point position of the
multiplier output is directly obtained from the binary-point
position of the operation inputs. Thus, the multiplier propa-
gation rules are given by the following expressions:

mx′ = mx,

my′ = my ,

mz′ = mx′ +my′ + 1.

(3)

For addition and subtraction operations, a binary point
position which is common to the operation inputs has to be
defined to align the operation input binary point. This com-
mon position must guarantee no overflow. The lack of ac-
cumulator guard bits to store the supplementary bits due to
overflow must be taken into account to determine the com-
mon binary-point position. Thus, to avoid overflow the com-
mon binary-point position mc must be valid for the output
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Ng Sx bmx b0 b−1 b−2 bnx

+ mx′

SB SB SB bmy b1 b0 b−1 b−2 bny

my′

gy my′′

SB SB bmz b1 b0 b−1 b−2 bnz

mz′
gz mz′′

Figure 9: Binary-point position for an addition with Ng guard bits. The parameter g defines the number of guard bits used by the data.

data z and is defined as follows:

mc = max
(
mx,my ,mz

)
,

mx′ = mc,

my′ = mc,

mz′ = mc.

(4)

If there are accumulator guard bits, the input and out-
put word-lengths are different. Then, a common reference
has to be defined to compare the binary-point positions. New
binary-point positions (mx′′ , my′′ , mz′′) referenced from the
most significant bit of the data with the minimum word-
length are computed for the inputs and the output as illus-
trated in Figure 9. A new parameter g corresponding to the
number of guard bits used by the data is introduced as fol-
lows:

mx′′ = mx′ − gx,

my′′ = my′ − gy ,

mz′′ = mz′ − gz.

(5)

Considering that the parameter gz is unknown to deter-
mine mc, it is fixed to Ng , which is the number of guard bits
available for the accumulator:

mc = max
(
mx − gx,my − gy ,mz −Ng

)
. (6)

The real number of guard bits used by the adder output
is equal to

gz = mz −mc ifmz > mc,

gz = 0 ifmz ≤ mc;
(7)

and, the binary-point positions of the adder inputs and out-
put are equal to

mx′ = mc + gx,

my′ = mc + gy ,

mz′ = mc + gz.

(8)

The scaling operations required to obtain a correct fixed-
point specification are inserted in the CDFG. For each op-
eration, as represented in Figure 4, a scaling operation is in-
troduced if the binary-point position of the data mx (or my)

is different from the binary-point position of the operation
inputmx′ (ormy′). For the operation output, a scaling oper-
ation is introduced if the binary-point positions mz′ and mz

are different.
The results obtained for the FIR filter example presented

in Figure 2 are given in Figure 10. The DFG associated with
the second basic block (B.B. 2) of the FIR filter is pre-
sented. A processor with an accumulator without guard bit
is considered. The data are annotated by their dynamic range
and their binary-point position. For the operation, the out-
put binary-point position is determined. A scaling operation
must be introduced between the multiplication and the ad-
dition to align the binary-point position before the addition.

3.4. Data type selection

In the floating-to-fixed-point conversion process, each data
type (word-length) is determined to obtain a complete fixed-
point format for each CDFG data. This process must explore
the diversity of the data types available in recent DSPs. Dif-
ferent elements of the data-path influence the computation
accuracy as described in [4]. The most important element is
the data word-length. Each processor is defined by its native
data word-length which is the word-length of the data that
the processor buses and data-path can manipulate in a sin-
gle instruction cycle [25]. For most of the fixed-point DSPs,
the native data word-length is equal to 16 bits. For ASIP
(application-specific instruction-set processor) or some DSP
cores like the CEVA-X and the CEVA-Palm [26], this native
data word-length is customisable to adapt the architecture to
the targeted applications. The computation accuracy is di-
rectly linked to the word-length of the data which are ma-
nipulated by the operations and depends on the type of in-
structions which are used to implement the operation.

Many DSPs support extended-precision arithmetic to
increase the computation accuracy. In this case, the data
are stored in memory with a greater precision. The data
word-length is a multiple of the natural data word-lengths.
Considering that extended-precision operations manipulate
greater data word-lengths, an extended-precision operation
is achieved with several single-precision operations. Conse-
quently, this operation execution time is greater than the one
of a single-precision operation.
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[−0.99; 0.99]
mx = 0

x[i− 1]

z−1

[−0.99; 0.99]
x[i]mx = 0

mz,mult = mh +mx + 1 = 1 ×

[−0.97; 0.97]
u

mu = 0

mc = max(mu,mAcc,mAcc)

mc = 3

+

Acc

[−0.19; 0.98]
h[i] mh = 0

[−6.26; 6.26]
mAcc = 3Acc

[−6.26; 6.26]
mAcc = 3

(a)

x[i− 1]

z−1

x[i] h[i]

×

mu1 = 1 u1 Acc

�

mu2 = 3 u2

+

Acc

Scaling operation
(right shift of 2 bits)

(b)

Figure 10: DFG representing the second basic block (B.B. 2) of the FIR filter specified in Figure 2. (a) The data dynamic range and the binary-
point position for the DFG2 are specified. (b) DFG2 after the insertion of the scaling operation is shown. u, u1, and u2 are intermediate
variables.

Table 1: Word-length of the data which can be manipulated by dif-
ferent DSPs offering SWP capabilities for arithmetic operations.

Processor Data types (bits)

TMS320C64x (T.I.) [29] 8, 16, 32, 40, 64

TigerSHARC (A.D.) [28] 8, 16, 32, 64

SP5, UniPhy (3DSP) [30] 8, 16, 24, 32, 48

CEVA-X1620 (CEVA) [31] 8, 16, 32, 40

ZSP500 (LSI Logic) [32] 16, 32, 40, 64

OneDSP (Siroyan) 8, 16, 32, 44, 88

To reduce the code execution time, some recent DSPs
can exploit the data-level parallelism by providing SWP
(subword parallelism) capabilities. An operator (multiplier,
adder, shifter) of word-length N is split to execute k op-
erations in parallel on subwords of word-length N/k. This
technique can accelerate the code execution time up to a
factor k. Thus, these processors can manipulate a wide di-
versity of data types as shown in Table 1 for several recent
DSPs. In [27], this technique has been used to implement a
CDMA (code-division multiple access) synchronisation loop
into the TigerSharc DSP [28]. The SWP capabilities offer the
opportunity to achieve an average 6.6MAC per cycle with
two MAC units.

The main goal of the code generation process is to
minimise the code execution time under a given accuracy
constraint. Thus, our methodology selects the instructions
which respect the global accuracy constraint and minimise
the code execution time. The methodology flow is presented
in Figure 11. The input of this transformation is the CDFG

GBP CDFG Processor
model

Instruction
selection

Execution time
estimation

−→m

fSQNR(
−→
b ,−→m) fSQNR(

−→
b )

B
T(
−→
b )

Optimisation

SQNRmin CDFG
GWL

−→
b

Figure 11: Flow of the data type selection process. This optimisa-
tion process uses the SQNR expression fSQNR to evaluate the com-
putation accuracy. It requires selecting the instructions for each op-
eration and to evaluate the code execution time T . The data of the
output CDFG GWL are annotated with their optimised word-length
specified through the vector b.

GBP where all the data are annotated with their binary-point
position specified through the vector −→m. The output is the
CDFG GWL where all the data are annotated with their op-

timised word-length specified through the vector
−→
b . This

transformation leads to a complete fixed-point specifica-
tion. This optimisation process use the SQNR expression

fSQNR(
−→
b ,−→m) to evaluate the computation accuracy. Before

starting the optimisation process, for each operation, the dif-
ferent instructions which can be used are selected. During
the optimisation process, the application execution time is
estimated.



10 EURASIP Journal on Applied Signal Processing

3.4.1. Code execution time estimation

The processor is modelled by a data flow instruction set.
These instructions implement arithmetic operations. The in-
structions are obtained from one or several instructions of
the processor instruction set. Each data flow instruction jk
is characterised by its function γk, its operand word-length
bk, and its execution time tk. This execution time is obtained
from the processor model. For SWP instructions, the execu-
tion time is set to the processor instruction execution time
divided by the number of operations executed in parallel. For
the extended-precision instructions, the execution time is the
sum of the execution time of the processor instructions used
to implement this operation. A processor model example is
presented in Figure 12(a).

The global application execution time is estimated from
the instructions selected for the No operations of the CDFG.
Nevertheless, the goal is not to obtain an exact execution time
estimation but to compare two instruction lists and to se-
lect the one that leads to the minimal execution time. Thus,
a simple estimation model is used to evaluate the execution

timeT(
−→
b ) of the CDFG. This time depends on the type of in-

struction used to execute the CDFG operations and thus T is

a function of the vector
−→
b which specifies the word-length of

the CDFG operation operands. The time T(
−→
b ) is estimated

from the execution time ti and the number of executions ni
of each oi operation as follows:

T(
−→
b ) =

No∑
i=1

ti · ni. (9)

This estimation method is based on the sum of the
instruction execution times and leads to accurate results
for DSPs without instruction parallelism. For DSPs with
instruction-level parallelism (ILP), this method does not take
account of the instructions executed in parallel. Neverthe-
less, this estimation can be used to compare adequately two
instruction lists in the case of a processor with ILP.

For single-precision and SWP instructions, the gains due
to the transformation (code parallelisation) of the vertical
code into a horizontal one are similar. Indeed, the two in-
struction lists use the same functional units at the same clock
cycles. The difference lies in the functionality of the proces-
sor unit. For SWP instructions, the functional units manipu-
late fractions of a word instead of the entire word. Thus, the
gains due to the code parallelisation are identical with SWP
and single-precision instructions.

An extended-precision instruction is achieved with sev-
eral single-precision instructions. Thus, in the best case and
after the scheduling stage, the extended-precision instruc-
tion execution time can be equal to the execution time of
the single-precision instructions. In this case, the single-
precision instructions must be favoured if the precision con-
straint is fulfilled to reduce the data memory size. Therefore,
the extended-precision instruction execution time is set to
the maximal value to select them only if the single-precision
instructions cannot fulfil the precision constraint.

This approach for the code execution time estimation can
be improved with more accurate techniques such as those
presented in [33, 34]. On the other hand, the optimisation
time will be increased.

3.4.2. Data type selection

In this section, the data type selection process is described.
For each CDFG operation oi, the different instructions,
achieving oi, are selected. Let Ii be the set specifying the
instructions selected for the operation oi. Let Bi be the set
specifying all the possible word-lengths for the oi operation
operands. Thus, for each operation oi, the optimised word-

length b̂i (b̂i ∈ Bi), that is, which minimises the global ex-

ecution time T(
−→
b ) and respects the minimal precision con-

straint, must be selected. Consequently, the application exe-

cution time T(
−→
b ) is minimised as long as the accuracy con-

straint (SQNRmin) is fulfilled as described with the following
equation:

min−→
b∈B

(
T(
−→
b )
)

subject to fSQNR(
−→
b ) ≥ SQNRmin . (10)

Considering that the number of values for each variable
bi is limited, the optimisation problem can be modelled with
a tree. This optimisation process is illustrated with an FIR fil-
ter example in Figure 12. To obtain the optimal solution, the
treemust be explored exhaustively. This technique leads to an
exponential optimisation time. To explore efficiently this tree
a branch-and-bound algorithm is used with four techniques
to limit the search space. These techniques are presented in
the next section.

3.4.3. Search space limitation

The tree modelling of this optimisation problem offers the
capability to exhaustively enumerate solutions. Nevertheless,
all the instruction combinations are not valid. Let us con-
sider two operations ol and ok where the ol operation in-
put is the ok operation result. In this case, the number of
bits ninl for the ol input fractional part cannot be strictly
greater than the number of bits noutk for the ok output frac-
tional part. Thus, the instruction tested for the operation ol
is valid if noutk ≥ ninl . If this condition is not respected, the
exploration of the subtree is stopped and a new instruction
is tested for the operation ol. This technique reduces signifi-
cantly the search space.

In the branch-and-bound algorithm, the partial solutions
are evaluated to stop the tree exploration if they cannot lead
to the best solution. At the tree level l, the exploration of the
subtree induced by the node representing bl can be stopped
if the minimal execution time which can be obtained during
the exploration of this subtree is greater than the minimal
execution time which has already been obtained. Consider-
ing that only the word-lengths b0 to bl are already defined,
the minimal execution time is determined by selecting for
the operation oj ( j ∈ [l + 1,No]) the instruction with the
minimal execution time t j .
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Instruction
jk

Function
yk

Execution time
tk

I/O operand word-length

bin 1 bin 2 bout

j1 MULT 0.25 8 8 16

j2 MULT 0.5 16 16 32

j3 MULT 1 32 32 64

j4 ADD 0.25 16 16 16

j5 ADD 0.5 32 32 32

j6 ADD 1 64 64 64

(a)

x[i] h[i]

o0 × I0 = { j1, j2, j3}

o1

I1 = { j4, j5, j6}

Acc

+

(b)

Operations oi

o0
j1

8× 8→ 16

o1
j4 j5 j6

16 32 64

j2

16× 16→ 32

j4 j5 j6

16 32 64

j3

32× 32→ 64

j4 j5 j6

16 32 64

Selected instruction
Operand data
word-length bi

(c)

Figure 12: Data word-length optimisation process for an FIR filter. (a) Model of the processor data flow instruction set. (b) FIR filter data
flow graph. (c) Model with a tree of the different solutions for the optimisation.

At the tree level l, the exploration of the subtree induced
by the node representing bl can be stopped if the maximal
SQNR which can be obtained during the exploration of this
subtree is lower than the precision constraint (SQNRmin).
The SQNR maximal value is obtained by fixing the word-
lengths bj ( j ∈ [l + 1,No]) to their maximal value. Indeed,
considering that the SQNR is a monotonic and nondecreas-
ing function, the SQNR maximal value is obtained for the
maximal operand word-length.

This optimisation technique based on a tree traversal is
sensitive to the node evaluation order. To find quickly a good
solution to reduce the search space, the variables with the
most influence on the optimisation process must be evalu-
ated first. The variables are sorted by their influence on the
global execution time. The influence of the operation oi on
the execution time is obtained from the number of times (ni)
that this oi operation is executed.

For applications with a great number of variables, the
optimisation time can become important. To obtain reason-
able optimisation time, the optimisation is achieved in two
steps. Firstly, the variables corresponding to the data word-
length are considered as positive real numbers and a con-
strained nonlinear optimisation technique is used to min-
imise the code execution time under accuracy constraint. The
optimisation technique is based on the sequential quadratic

programming (SQP) [35]. Let b̃i be the optimised solution
obtained with this technique for the variable bi. Secondly,
the technique based on the branch-and-bound algorithm pre-
sented previously is applied with a reduced number of values

per variable. For each variable bi, only the values which are

members of Bi and immediately higher and lower than b̃i are
retained. Thus only two values are tested for each variable
and the search space is dramatically reduced.

An optimisation time less than 200 seconds has been ob-
tained for the branch-and-bound algorithm with 35 variables
and four alternatives per variable. In this case, only the two
first techniques corresponding to the instruction combina-
tion restriction and the partial solution evaluation were used.
For the same application, this optimisation time is dramati-
cally reduced when two alternatives are tested for each vari-
able like for the last search space reduction technique which
achieves the optimisation in two steps.

3.5. Scaling operation optimisation

The previous methodology stages, that correspond to the de-
termination of the data word-length and the binary-point
position, lead to an optimised fixed-point specification in
terms of accuracy. Indeed, scaling operations have been in-
serted to maintain a sufficient computation accuracy. These
scaling operations are used to adapt the fixed-point format to
the data dynamic range or to insert additional bits in the inte-
ger part to avoid overflows. Nevertheless, these scaling oper-
ations increase the code execution time. The aim of this part
is to optimise the fixed-point data formats to minimise the
code execution time T(−→m) as long as the accuracy constraint
is fulfilled. The execution time is reduced by moving the scal-
ing operations. These scaling operation transfers modify the
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data binary-point position specified through the vector −→m.
Thus, this optimisation problem can be expressed as follows:

min−→m

(
T(−→m)

)
subject to fSQNR(

−→m) ≥ SQNRmin . (11)

3.5.1. Scaling operation transfers

Scaling operations based on a left-shift adapt the fixed-point
format to the data dynamic range. The number of bitsm used
for the integer part is reduced, because this one is too high
compared to the data dynamic range. This bit number re-
duction for the integer part can be delayed. Thus, this scaling
operation achieved with a left shift can be moved towards the
application graph sinks.

Scaling operations based on a right shift realise the in-
sertion of supplementary bits for the integer part to support
the data dynamic range increase. This supplementary bits in-
sertion can be brought forward. Thus, this scaling operation
achieved with a right shift can be moved towards the applica-
tion graph sources. Nevertheless, left-shift operations are in-
serted after a set of accumulations which use guard bits. This
operation ensures the guard bit recovering before spilling the
data in memory. In this case, the binary-point position is not
changed. Consequently, this operation must not be moved,
otherwise the guard bits would be lost.

To move the scaling operations, a propagation rule is de-
fined for each class of operations.When a right shift is moved
towards amultiplication operation, one of the inputsmust be
selected to receive the scaling operation. In the case of linear
systems, two alternatives are available to move a right shift.
These scaling operations can be moved towards the system
inputs or towards the coefficients. For this last case the degra-
dation of the SQNR is less important. But in the case of linear
filters, the degradation of the frequency response due to the
coefficient quantisation is more significant.

3.5.2. Architecture influence on the scaling
operation cost

Different classes of shift registers are available in DSPs to scale
the data. In some processors [24, 36], a specialised shift regis-
ter is located at the output or at the input of an operator and
several specific shifts can be achieved. Thus, the operator in-
put or output can be scaled without supplementary cycle.

For more flexibility, most of the recent DSPs offer a bar-
rel shifter which is able to perform any shift operation in
one cycle. In traditional DSPs [23, 24, 36] based on a MAC
(multiply-accumulate) structure, the registers are dedicated
to a specific operator. The barrel shifter is connected to the
accumulation register and can only scale efficiently the out-
put of an addition. To analyse the additional cost due to the
scaling operation, several experiments have been conducted
on the DSPStone benchmark [37]. Different locations of a
scaling operation in the applications have been tested. This
scaling operation requires between one and five cycles for the
TMS320C54x [23] and between one and four cycles for the
OakDSPCore [38]. These additional cycles required for the

scaling operation are due to the transfer between the regis-
ters. The evaluation of the scaling operation execution time
requires the knowledge of the data location before and after
the shift instruction. Thus, the instruction list used to imple-
ment the scaling operation has to be determined. This list is
obtained with the code selection stage.

In homogeneous architectures a register file is connected
to a set of operators working in parallel like in VLIW (very
long instruction word) DSPs [28, 29]. For these architectures,
the barrel shifter can scale the input or the output of any
operation in one cycle. For processors with instruction-level
parallelism, the scaling operation cost depends on the op-
portunity to execute this operation in parallel with the other
instructions. To illustrate and quantify this concept, the ex-
tra cost due to a scaling operation has been measured on the
DSPStone benchmark implemented into the TMS320C64x
VLIW DSP [4]. For these applications based on a MAC op-
eration, the application execution times have been measured
with and without a scaling operation executed after the mul-
tiply operation. Let Tri and Tri be the code execution times,
respectively, with and without a scaling operation ri. The ex-
tra cost Cr defined in (12) corresponds to the ratio between
the additional execution time due to the scaling operation
(Tri − Tri) and the application execution time without this
scaling operation (Tri). This extra cost depends on the av-
erage IPC (instructions per cycle) obtained for the applica-
tion without a scaling operation. When the IPC is closed to
its maximal value, the extra cost can be relatively important
(47%). Indeed, most of the functional units are used and
supplementary cycles are required to execute the scaling op-
erations. When the IPC decreases, the extra cost diminishes
and can climb down to 0%. Thus, these results underline that
the scaling operation execution time can be evaluated only
during the scheduling stage:

Cr = Tri − Tri

Tri
. (12)

To optimise the scaling operation location, two ap-
proaches have been defined according to the DSP architec-
ture and more particularly the DSP instruction-level paral-
lelism (ILP).

3.5.3. DSPs without instruction-level parallelism

In this part, the approach proposed for processors without
instruction-level parallelism is explained. For this class of
DSPs, only one instruction is executed per cycle and the par-
allelism is specified through complex instructions. The flow
of the optimisation of the scaling operation location is pre-
sented in Figure 13. The input of this transformation is the
CDFG GWL where all the data are annotated with their opti-
mised fixed-point specification. The output is the CDFGGSO

where the location of the scaling operations has been opti-
mised. This optimisation process uses the SQNR expression

( fSQNR(
−→
b ,−→m)) to evaluate the computation accuracy. The

technique used to estimate the extra execution time due to
scaling operations and the algorithm proposed to minimise
this execution time are explained.
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Figure 13: Flow to optimise the scaling operation location for DSP without instruction-level parallelism. The execution time tri of the scaling
operation ri is estimated.

For a scaling operation ri, let tri be its execution time and
nri the number of times that ri is executed. The scaling op-
eration cost is defined as the product of ri and nri . For this
class of DSP architectures, the global execution time of the
NSO scaling operations located in the application CDFG is
determined with the following expression:

TSO =
NSO∑
i=1

nri · tri . (13)

The execution time tri is equal to the difference between
Tri and Tri . The times Tri and Tri correspond to the code ex-
ecution times, respectively, with and without the scaling op-
eration ri. The technique used to evaluate the times Tri and
Tri is represented in the right part of Figure 13. First of all,
the expression tree which includes the scaling operation ri
is extracted. Then a code selection is applied on this expres-
sion tree with (Ari) and without (Ari) the scaling operation.
The execution time is directly computed from the instruc-
tion list selected for the expression tree. It corresponds to the
sum of the different instruction execution times and it leads
to a sufficient accurate estimation of the code execution time
for this class of DSP architectures. Indeed, the parallelism is
specified through complex instructions and can be detected
during the code selection stage. Nevertheless, this technique
can be improved by taking account of the pipeline hazards
with the technique proposed in [39]. The adjacent instruc-
tions can be analysed to determine if a pipeline hazard can
occur.

The scaling operation optimisation problem is solved
with an iterative algorithm. For each iteration, a scaling op-
eration is moved and this transfer is validated if the accuracy
constraint is respected. The scaling operations are processed
by cost-decreasing order to consider costly operations first.
After each transfer, the application accuracy is evaluated. If
the accuracy constraint is no longer respected, the scaling op-
eration is replaced in the location which leads to the minimal
execution time and this operation will not be moved after. If
the accuracy constraint is still fulfilled, the scaling operation
transfer is validated. Then, the scaling operation costs are
computed. In the next iteration, the scaling operation with
the maximal cost is processed. The algorithm finishes when
no scaling operation can be moved.

For the FIR filter example presented in Figure 2, the scal-
ing operations have been optimised for the TMS320C50 ar-
chitecture model. The scaling operations are moved towards
the system input. The fixed-point C code generated before
and after the optimisation process are presented in Algo-
rithms 2 and 3, respectively. This optimisation process de-
creases the scaling operation execution time TSO from 120
cycles to 0. Thus, the global code execution time is reduced
by 36%. On the other hand, the output SQNR is reduced by
4.5dB.

3.5.4. DSPs with instruction-level parallelism

For processors with instruction-level parallelism, the estima-
tion of the execution time must be coupled with the schedul-
ing stage to take account of the partial instructions which are
executed in parallel. Indeed, the scaling operation cost de-
pends on the opportunity to execute this operation in parallel
with the other instructions. Thus, the goal of our approach is
to find the scaling operation location which enables the ex-
ecution of the shift operation in parallel with other instruc-
tions. The aim is to find the scheduling which minimises the
increase of time compared to the scheduling obtained with-
out the scaling operations.

For a scaling operation rk located between the operations
oi and oj , the scaling operation cost ck,i j is defined with the
expression (14). The term ηi j defines the maximal number of
scaling operations which can be inserted between the oper-
ations oi and oj without increasing the execution time com-
pared to a solution without scaling operation. This term de-
pends on the operations oi and oj mobility and the proces-
sor resource usage rate. This term is computed from the op-
eration execution date obtained with a list scheduling algo-
rithms in a direct and forward sense. For this, the operation
oi is executed as soon as possible and the operation oj is ex-
ecuted as late as possible. When no scaling operation can be
inserted, the term ηi j is null and the cost is equal to its maxi-
mal value:

ck,i j = 1
1 + ηi j

. (14)

The scaling operation optimisation is achieved with an
iterative process made up of three steps corresponding to
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short h[32] = {−973, . . . , 29418, 32112,
29418, . . . ,−973};
short x[32];
short y;
int acc;

short fir (short input)
{
int i;

∗x = input;
acc = ∗x ∗ ∗h� 2;

for (i = 31; i > 0; i−−)
{

acc = acc +x[i]∗ h[i]� 2;
x[i] = x[i− 1];

}
y = (short) (acc);

return y;
}

Algorithm 2: Fixed-point C code for the FIR filter before the scal-
ing operation optimisation.

the scaling operation cost computation, the transfer of some
scaling operations, and the scheduling. The scaling opera-
tions are processed by cost-decreasing order. They are moved
as long as their cost is equal to one and the accuracy con-
straint is fulfilled.

4. EXPERIMENTS AND RESULTS

4.1. Floating-to-fixed-point conversion for
aWCDMA receiver

The aim of this part is to show the interest of our approach
to obtain an optimised fixed-point specification in the case of
a real-life application corresponding to a WCDMA receiver.
Especially, this experiment underlines the benefits provided
by the data type selection stage to reduce the code execution
time.

4.1.1. WCDMA receiver description

The considered application corresponds to a receiver used in
the base station for the third-generation telecommunication
systems. UMTS (Universal Mobile Telecommunications Sys-
tem) is based on the wideband code-division multiple-access
(WCDMA) norm [40]. The information data (DPDCH) and
the control data (DPCCH) are spread with an orthogonal
variable-spreading-factor code (OVSF), and then scrambled
by a specific spreading sequence (Kasami codes).

In the receiver part, the complex received signal is made
up of different delayed copies of the transmitted signal due to
the multipaths inside the radio channel. The RAKE-receiver
concept is based on the combination of the different multi-
path components to improve the quality of the decision on
symbols. Eachmultipath signal is processed by a finger which

short h[32] = {−973, . . . , 29418, 32112,
29418, . . . ,−973};
short x[32];
short y;
int acc;

short fir (short input)
{
int i;

∗x = input� 2;
acc = ∗x ∗ ∗h;

for (i = 31; i > 0; i−−)
{

acc = acc +x[i]∗ h[i];
x[i] = x[i− 1];

}
y = (short) (acc);

return y;
}

Algorithm 3: Fixed-point C code for the FIR filter after the scaling
operation optimisation.

correlates the received signal by a spreading code. The RAKE
receiver and the different finger structures are detailed in
Figure 14. The signal y(k) corresponds to the combination
of the different finger outputs yl(k). To combine the different
finger results, the complex amplitude αl of the lth path must
be estimated and removed for each multipath. The symbols
are decoded by multiplying the received signal with a syn-
chronised version of the code generated in the receiver. The
synchronisation between the code and the received signal is
realised by a delay-locked loop (DLL).

For each finger, the symbols (DPDCH/DPCCH) are es-
timated with the symbol decoder structure presented in
Figure 15. Thanks to the complex multiplication (CM1) of
the received signal by the conjugate of the Kasami code
c∗K (n) the unscrambling operation is performed. Then, the
phase distortion resulting from the transmission channel is
removed with the complex multiplication (CM2) with the
conjugate of the complex amplitude estimation (α̂∗l ). At last,
the despreading operation with OVSF code (cOVSFI (n) and
cOVSFQ(n)) transforms the wideband received signal into a
narrowband signal. This operation decodes the transmitted
symbols yl(k).

4.1.2. Data type selection

Recent DSPs like the TMS320C64x from Texas Instruments
provide a wide diversity of data types with the SWP capabili-
ties. The data type selection is a tradeoff between the compu-
tation accuracy and the code execution time. To illustrate the
different opportunities offered by this class of architectures,
the complex correlator used in the RAKE receiver has been
implemented with different data types. For each solution Si,
the execution time and the signal-to-quantification-noise ra-
tio (SQNR) metric are evaluated. The results are presented
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Figure 14: Schematic of the RAKE receiver and the finger for a base station. The RAKE receiver achieves the combination of the different
finger results.
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Figure 15: Symbol decoding subsystem for a base-station receiver.

in Table 2 and the word-lengths of the operation operands
are reported. These different results have been obtained by
using our methodology with different accuracy constraints

(SQNRmin). The execution time (Tnorm(
−→
b )) is normalised

in relation to the execution time of a classical implementa-
tion based on single-precision instructions (multiplication:
16× 16⇒ 32 bits; addition: 32 + 32⇒ 32 bits).

Before determining the RAKE-receiver fixed-point spec-
ification, the accuracy constraint must be defined. This min-
imal value of the SQNR (SQNRmin) is defined according
to the system performance constraints. In the case of the
WCDMA receiver, the performances are specified through
the maximal value of the bit error rate (BER). The accu-
racy constraint has been defined so that the system out-
put BER is slightly modified after the fixed-point conver-
sion process. Compared to the floating-point implementa-
tion, the maximal BER degradation due to fixed-point com-
putation is fixed to 5%. The SQNR minimal value is ob-
tained with a floating-point simulation with the technique
explained in Section 3.1.3. For the WCDMA receiver, this

accuracy constraint determination process leads to a mini-
mal SQNR equal to 12.5dB.

The WCDMA receiver fixed-point specification has been
obtained with our methodology. The input data (receiving
Nyquist filter output) word-length was fixed to 8 bits. The
word-lengths of the main data for the symbol decoding sub-
system of the RAKE receiver are summarised in Table 3. For
this experiment, the Texas Instruments code generation tool
is used to benefit from the high performance of the C com-
piler and more particularly the software pipelining tech-
nique. Thus, the C source code is modified to include the dif-
ferent data types from the fixed-point specification. Intrinsic
functions are used to express the data parallelism. The data
parallelisation must be achieved by the user to exploit the
processor SWP capabilities.

To analyse the improvement due to the data type selec-
tion stage, the execution times of the code obtained with a
classical implementation based on single-precision instruc-

tions (Tunopt(
−→
b )) and with our methodology (Topt(

−→
b )) have

been measured. In the classical approach, the data types are
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Table 2: Results of the complex correlator implementation for dif-
ferent data types. Tnorm is the execution time normalised in relation
to the classical implementation (impl. 2) execution time.

Si Tnorm
SQNR
(dB)

Operand word-length (bits)

Multiplication Addition

bits × bits⇒ bits bits + bits⇒ bits

1 0.6 51 8× 8⇒ 16 16 + 16⇒ 16

2 1 89 16× 16⇒ 32 32 + 32⇒ 32

3 1.55 151 32× 16⇒ 32 32 + 32⇒ 32

4 2.1 170 32× 16⇒ 64 64 + 64⇒ 64

Table 3: Data word-length for the symbol decoding subsystem of
the RAKE receiver. The data and the operations are presented in
Figure 15.

Operations Data Data type (bits)

xl 8

CM1
MULT 8× 8→ 16

ADD 16 + 16→ 16

CM2
MULT 16× 16→ 32

ADD 16 + 16→ 16

M3 MULT 16× 16→ 32

A1 ADD 16 + 16→ 16

A2 ADD 16 + 16→ 16

yl 16

not optimised and thus only the single-precision instruc-
tions are used (multiplication: 16 × 16 ⇒ 32 bits; addition:
32+32⇒ 32 bits). Given that the two floating-to-fixed-point
conversionmethods presented in Section 2.1 do not optimise
the data type, the results obtained with these approaches cor-
respond to the classical implementation. In our approach,
the code is obtained from the fixed-point specification deter-
mined with our floating-to-fixed point conversion method-
ology. The accuracy constraint and the DSP architecture of-
fer the opportunity to use the SWP instructions. To com-
pare these two approaches, the ratio F between the two ex-

ecution times Tunopt(
−→
b ) and Topt(

−→
b ) is computed. This im-

provement factor F, defined in (15), corresponds to the ac-
celeration factor due to the data type selection:

F = Tunopt(
−→
b )

Topt(
−→
b )

. (15)

Different experiments have been achieved on the symbol
decoding and the synchronisation subsystems for several val-
ues of the fingers number. The results, presented in Table 4,
underline the benefit of the SWP instructions. Our approach
reduces the code execution time by a factor between 1.91 and
3.51.

4.2. Optimisation of the scaling operation location

In this section, some experiments have been conducted
to show our approach’s interest to optimise the scaling

Table 4: SWP improvement factor F. This factor F corresponds to
the acceleration factor due to the data type selection.

Code execution time

Number improvement factor F

of fingers Symbol decoding Synchronisation

subsystem subsystem

1 2.83 1.91

2 2.79 2.79

4 3.51 3.18

operation location for DSP based on conventional architec-
ture. These experiments are achieved with the C50 and the
C54x DSPs from Texas Instruments. These two processors
are based on a classical MAC structure. The C54x DSP is
made up of an accumulator with eight guard bits and a barrel
shifter connected to the accumulator register. The C50 offers
no guard bits and the scaling capabilities based on specialised
shift registers are limited. A prescaler register is available to
shift the data which are loaded frommemory and a postscaler
register provides the capability to shift the data when they are
stored in memory.

The different experiment results are given in Table 5. The
scaling operation execution time TSO is given before and after
the optimisation of the scaling operation location to analyse
the improvement due to the optimisation process. The exe-
cution time TSO (number of cycles) corresponds to the appli-
cation execution time difference with and without the scaling
operations. The accuracy degradation ΔSQNR (dB) due to the
scaling operation transfers is measured.

The two first applications correspond to a finite impulse
response and an infinite impulse response filters. The com-
plex correlator achieves the correlation between a complex
signal and a complex bipolar code made up of N points. The
four last applications are used in the WCDMA receiver for
third-generation telecommunication systems. These applica-
tions are described in the previous section. The receivers for
the mobile terminal (MT) and for the base station (BS) are
similar except for the location of the phase removing process-
ing. In the base station the phase removing is achieved during
the symbol decoding and in the mobile station the phase re-
moving is achieved after the symbol decoding and before the
output finger combination.

For the C54x, the guard bits ensure a fixed-point speci-
fication with a limited number of scaling operations. Except
for the IIR filter, these scaling operations correspond to left
shifts required to align the guard bits before storing in mem-
ory the data which was in the accumulator register. Thus,
these scaling operations cannot be moved and the scaling op-
eration optimisation does not reduce the scaling operation
cost. In the IIR filter, the guard bits are not sufficient to limit
the number of scaling operations. A scaling operation is re-
quired to adapt the format of the recursive and the nonre-
cursive part outputs. This scaling operation can be moved to
reduce the scaling operation cost.

For the C50, the lack of guard bits leads to a fixed-
point specification with a high execution time for the scaling
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Table 5: Optimization of the scaling operation location for different applications implemented in the C54x and the C50 DSPs. The scaling
operation execution time TSO (number of cycles) and the SQNR degradation ΔSQNR (dB) are evaluated.

TMS320C54x TMS320C50

Applications Initial After optimisation Initial After optimisation

TSO ΔSQNR TSO TSO ΔSQNR TSO

FIR 32-tap filter 1 0 1 128 −4.5 0

Second-order IIR filter 3 −8.6 2 7 −8.6 0

Complex correlator (N = 32) 1 0 1 160 −18.26 0

Complex correlator (N = 128) 1 0 1 896 −29.9 0

MT symbol decoding (SF = 32) 1 0 1 128 −12.4 0

BS symbol decoding (SF = 32) 1 0 1 128 −9.5 0

MT RAKE receiver (SF = 4) 9 0 9 80 −12.6 0

BS RAKE receiver (SF = 8) 5 0 5 50 −2.5 0

operations. Indeed, these scaling operations are inserted to
code the fixed-point data with the maximal accuracy. The
limited scaling capabilities do not provide the opportunity to
scale efficiently the data between two arithmetic operations.
In this case, the scaling operation execution time depends on
the number of bits to shift. The optimisation process reduces
dramatically the scaling operation execution time by mov-
ing these operations towards the application inputs. When
the scaling operations are located at the application inputs,
the execution time of the scaling operations TSO is null. In-
deed, the prescaler register can scale the inputs when they are
loaded from memory, with no supplementary cycle. Never-
theless, these scaling operation transfers degrade the compu-
tation accuracy.

These different results show the benefits provided by
the optimisation of the scaling operation location and by
the guard bits. They underline the necessity to take account
of the DSP architecture to obtain an optimised fixed-point
specification.

5. CONCLUSIONS

Efficient application implementation in embedded systems
requires using fixed-point arithmetic. The reduction of the
application time-to-market needs to develop high-level tools
which automate the floating-to-fixed-point conversion. In
this paper, a new methodology for the floating-to-fixed-
point conversion has been proposed. This approach min-
imises the code execution time under an accuracy constraint.
Compared to the previous methodologies, the DSP architec-
ture is taken into account to optimise the fixed-point specifi-
cation. The fixed-point data types and the scaling operation
location are optimised to reduce the code execution time.
These two optimisation processes are achieved efficiently
thanks to the use of an analytical technique to evaluate the
computation accuracy. Indeed, this technique reduces dra-
matically the optimisation time compared to a simulation-
based approach.

Different experiments have been conducted to analyse
the efficiency of our approach. The results obtained for the
data type selection underline the tradeoff between the accu-
racy and the code execution time which can be obtained with

the recent DSPs. Moreover, the ability of our technique to re-
duce significantly the execution time with SWP instructions
compared to a classical implementation has been demon-
strated through the WCDMA receiver example. Indeed, this
technique reduces the code execution time by a factor be-
tween 1.9 and 3.5. The experiments on scaling operations
show that their execution time can become important. The
use of guard bits or the optimisation of the scaling operation
location reduces significantly the code execution time.
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