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In many advanced signal processing tasks, such as pitch shifting, voice conversion or sound synthesis, accurate spectral processing
is required. Here, the use of Radial Basis Function Networks (RBFN) is proposed for the modeling of the spectral changes (or
conversions) related to the control of important sound parameters, such as pitch or intensity. The identification of such conversion
functions is based on a procedure which learns the shape of the conversion from few couples of target spectra from a data set. The
generalization properties of RBFNs provides for interpolation with respect to the pitch range. In the construction of the training
set, mel-cepstral encoding of the spectrum is used to catch the perceptually most relevant spectral changes. Moreover, a singular
value decomposition (SVD) approach is used to reduce the dimension of conversion functions. The RBFN conversion functions
introduced are characterized by a perceptually-based fast training procedure, desirable interpolation properties and computational
efficiency.
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1. INTRODUCTION

In the field of speech and audio processing a large number of
applications have been proposed up to the present which re-
alizes high-level transformations by combination of simpler
effects like time-scale modification, pitch shifting, amplitude
envelope modification, and spectral processing. Most of these
applications are based on a sinusoidal representation of the
signal. In this work we focus our attention on the spectral
processing item and we stress the importance of an accurate
representation of the spectrum and its characterization when
modeling real data in both audio processing and synthesis
applications. Among the most important and recent applica-
tions in which spectral processing is implied, time-scale and
pitch modification have been widely explored, especially in
the speech processing field, and the problem of correctly re-
producing the spectral characteristics has been stressed [1].
Recently, a new spectral processing approach has been pro-
posed by Stylianou et al. [2], where a conversion function was
build from training examples and was used to convert the
spectral features of a first speaker in the spectral features of
a second speaker, who uttered the same sentence. Besides the
field of speech processing, the sinusoidal modeling of sound
mainly interested the computer music field. Analysis-based
additive sound synthesis is effective due to the high quality
of tones generated, and to the high degree of control. In the
work by Horner and Beauchamp [3], additive synthesis based

on the Short-Time Fourier Transform (STFT) analysis is used
as the engine for sound generation purposes, and a dynamic
filter is used to gain realistic results with respect to pitch and
intensity variations. Among the other applications related to
computermusic, expressiveness processing of musical perfor-
mance has recently gained an increasing interest. In [4, 5] the
problem of controlling the high-level musical attributes of
a recorded performance by means of expressiveness models
and suitable sound processing techniques is faced.

This work proposes a new frequency-domain filtering
model suitable for the sinusoidal representation of sound.
The identification of the model parameters relies on a learn-
ing procedure based on collections of real data which rep-
resents, for example, the timbre identity of a given musical
instrument. Themethodhas proved to be useful in preserving
the spectral characteristics of sounds processed by transfor-
mations such as pitch or intensity modification.

The paper is organized as follows. The sinusoidal sound
analysis and resynthesis framework, as well as the mel-
cepstrum representation of spectral envelopes, is briefly re-
viewed in the first part of Section 2. In the remaining part
of Section 2, the structure to model the differences among
spectral envelopes is introduced, and the main features of
Radial Basis Function Networks, upon which the model
relies, are reviewed. In Section 3, the constructionof the train-
ing sets for the parametric identificationof theRBFNmodel is
shown with respect to some application examples, and a sin-
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gular value decomposition approach is proposed to reduce
the parametric dimension of the RBFN model.

2. SOUND ANALYSIS AND RESYNTHESIS
FRAMEWORK

The investigation relies on the well-known sinusoidal model
of the signal (here Spectral Modeling Synthesis, SMS) [6, 7].
The analysis algorithm acts on windowed portions (here
called frames) of the signal, and produces a time-varying rep-
resentation as sum of sinusoids (here called partials (the term
partials generalizes the term harmonics and is used to under-
line the fact that both harmonic and non-harmonic signals,
such as piano and bell-sounding tones, can be considered
here)).Assuming that the number of partialsH is constant for
all frames, for the ith frame the result of the sinusoidal mod-
eling is a set {(fh(i), ah(i),φh(i)), h = 1, . . . ,H} of triples
of frequency, magnitude and phase parameters describing
each partial, and a residual noise component that will not
be considered in this work. H is taken sufficiently high to
provide the maximum needed bandwidth, and zero magni-
tude is assigned to the exceeding partials for the spectra with
lower bandwidth. The re-synthesis of sound can rely both on
additive synthesis, or on the inversion of the analysis proce-
dure, that is, on anti-transforming the frame analysis and
overlap-and-adding the result with previous time-domain
frames.

The sinusoidal representation allows to control some of
the basic sound parameters, such as pitch and intensity, by
simply shifting or scaling the frequency and magnitude of
the partials. However, without an accurate spectral compen-
sation which reflects the natural sound characteristics, the
result of a transformation performed with a constant magni-
tude scaling is often unrealistic. The proposed spectral pro-
cessing method relies on learning from real data the spectral
transformations which occurs when such a musical param-
eter changes. With this perspective, a perceptually weighted
representation of spectral envelopes is introduced in the next
section, so that the perceptually relevant differences are ex-
ploited in the comparison of spectral envelopes.

2.1. Representation of spectral envelopes

To move from the original sinusoidal description to a per-
ceptual domain, the original spectral envelope is turned to
the mel-cepstrum spectral representation, by application of
the discrete cepstrum method [8]: for a given sinusoidal
parametrization, the magnitudes {ah,h = 1 · · ·H} of the
partials are expressed in the log domain and the frequen-
cies {fh,h = 1 · · ·H} in Hz are converted to mel fre-
quencies {λh} with the analytical formula λ = mel(f ) ≈
1127 log(1+ f/700) [9]. The real mel-cepstrum parameters
mi (i = 0, . . . ,M) are finally computed by minimizing the
following least squares (LS) criterion

H∑
h=1

(∣∣C(λh
)∣∣− 20 log10

(
ah
))2

(1)

with

|C(λ)| =m0 + 2
M∑
i=1

mi cos
(
πλi
2BH

)
, (2)

where M is the number of cepstral coefficients, m0 is the
frame energy, and BH = min{mel(fH),mel(Fs/2)} with Fs
being the sampling frequency. The normalization factor BH
ensures that the upper limit of the band corresponds to a
value of 1 on the normalized warped frequency axis. The aim
of this transformation is to catch the perceptually meaningful
differences among spectra by comparing the smoothed and
warped versions of spectral envelopes (see Figure 1 for an
example from a saxophone tone).

We call now ch = |C(λh)| = |C(mel(fh))| the hth
partial magnitude (in dB) of the mel-cepstrum spec-
tral envelope, and ∆C = {∆Ch,h = 1, . . . ,H}, with
∆Ch = (c(2)

h − c(1)
h ), the difference between two mel-

cepstrum spectral envelopes. By comparison of two dif-
ferent spectral envelopes is possible to express the de-
viation of each partial in the multiplicative form rh =
10 exp[∆Ch/20], and we call conversion pattern the set
{rh,h = 1, . . . ,H} generated by the comparison of two spec-
tral envelopes.

2.2. Spectral conversion functions

In this section, the parametric model for the conversion
functions is presented as well as the parameter identifi-
cation principles. The conversion is expressed in terms
of deviations of magnitudes, normalized with respect to
the frame energy m0, from the normalized magnitudes of
a reference spectral envelope. The reference spectral en-
velope can be taken from one of the tones in the data
set. If the tone in the data set are notes from a musi-
cal instrument, with a simple attack-sustain-release struc-
ture, we will always consider the sustain average spectral
envelopes, where the average is generally taken on a suffi-
cient number of frames of the sustained part of the tones.
Once the spectrum conversion function has been identi-
fied, the reference tone can be seen as a source for the
synthesis of tones with different pitch or intensity, and
correct spectral behaviour. Figure 2 resumes the steps in-
volved in the analysis-modeling-resynthesis process. More-
over, we are interested in keeping also the natural time-
variance of the source tone, as well as its attack-sustain-
release structure. To this purpose, we make the simplifying
hypothesis that the conversion function identified with re-
spect to the sustained part of notes can be used to pro-
cess every frame of the source note. In other words, the
law which describes the spectral behaviour of the sus-
tained part of a note, is assumed to well describe the be-
haviour in the remaining attack and release part of the
same note. This assumption has proven to be satisfactory
in most cases, on the base of informal listening tests con-
ducted on the processed tones. We further make the fol-
lowing assumptions on the structure of the conversion
function:
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Figure 1: Sustain average spectral envelope of a saxophone tone (upper figure, frequency axis in Hz), and frequency warped mel-cepstrum
envelope (lower figure, frequency axis in mel).

• Due to the changing nature of the spectrum with the
pitch λ0 of the tone, the conversion function is dependent
on the pitch of the note. From the above consideration the
function will then be a map F : R → RH , where H is the
maximum number of partials in the SMS representation.

•We adopt the following parametric form for the generic
conversion function:

F(λ0
) =


F1
(
λ0
)

...
FH
(
λ0
)
 = U∑

i=1

WiG
(
λ0; qi

)
, (3)

where G(λ0; qi) denotes a radial basis function with param-
eter vector qi, U is the number of radial basis units used, and
W = {Wi,j}i=1···U, j=1···H is aU×H matrix of output weights.
The jth component of the conversion function, Fj(λ0), can
be made explicit as

Fj
(
λ0
) = U∑

i=1

Wi,j ·G
(
λ0; qi

)
(4)

and describes how the magnitude of the jth partial will adapt
with respect to the desired fundamental frequency λ0.

2.3. Radial basis function network

The parametric model introduced in (3) is known in litera-
ture with the name of Radial Basis Function Network, RBFN,
and is a special case of feedforward neural network which ex-
hibit high performances in nonlinear curve-fitting (approxi-
mation) problems [10]. Curve-fitting of data points is equiv-
alent to finding the surface in a multidimensional space that
provides a best fit to the training data, and generalization is
the equivalent to the use of that surface to interpolate the
data. The radial functions G(·; ·) in (3) can be of various
kind. Typical choices are gaussian, cubic, sigmoidal functions.
Here, a cubic form G(x;µ) = (‖x − µ‖)3 is used. Now we
face the problemof identifying the RBFNparameters. As usu-
ally needed by the neural networks learning procedures, the
original data are organized in a training set. In our case, the
pitch values of the training set notes are stored in the input
training vector Tin = [λ(1)

0 , . . . , λ(N)
0 ], where each component

corresponds to a row of the output matrix Tout = R, with

R =


r1,1 r1,2 · · · r1,H
r2,1 r2,H
...

...
rN,1 rN,2 · · · rN,H

 . (5)
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Figure 2: Block diagram of the analysis-resynthesis schema. The steps in the analysis task are: (1) representation of the source and target
data by a mel-cepstrum based sinusoidal representation, (2) generation of a training set of conversion patterns, and (3) computation
of the parameters of the RBFN model which represents the conversion function. The re-synthesis task requires: (1) to represent the
source data by a sinusoidal model, (2) to compute at each frame the spectrum transformation, using the conversion function to compute
the amplitude of partials, and (3) to synthesize frames by mean of additive synthesis or inverse-Fourier transform. Note that no mel-
cepstrum representation is involved in the re-synthesis process, since the spectrum transformation is directly applied to the sinusoidal
representation.

R is a matrix whose rows are the spectral envelope con-
version patterns coming from the comparisons among the
spectral envelopes from the source data and those from the
target data. The way spectra are selected from both data set
and the way they in case are processed before the comparison,
strictly depends on the final high-level transformation to be
realized. In the next section, a practical case will be treated to
exemplify the training set generation procedure.

Here, we make the hypothesis that the training set has
been computed with some strategy, which is part of the
training set generation block of Figure 2, and we sum-
marize the RBFN parametric identification procedure. The
centers µ of the radial basis functions are iteratively se-
lected with the OLS algorithm [11] which places the de-
sired number U of units (with U ≤ N) in the positions
that best explains the data. Once the radial units with cen-
ters µ1, . . . , µU have been selected, the image of Tin through
the radial basis layer can be computed as G = [G1 · · ·GU],
Gi = [G(λ(1)

0 , µi) · · ·G(λ(N)
0 , µi)]T (i = 1, . . . , U). The prob-

lem of identifying the parameters Wi,j of (4) can thus be
given in the closed form Tout = G ∗ W, the LS solution of
which is known to be W = ToutG+ with G+ pseudo-inverse
of G. As it can be seen, this parametric model relies on a
fast learning algorithm, if compared to other well-known
neural network models whose iterative learning algorithms
are quite slow (e.g., backpropagation or gradient descent al-
gorithms). To summarize the principal motivations why we
adopted the radial basis function network model, we em-

phasize that the RBFNs can learn from examples, have fast
training procedure, and have good generalizing properties,
meaning that if we use a training set of N tones having pitch
values of λ(1)

0 < λ(2)
0 < · · · < λ(N)

0 , the resulting conversion
function will furnish a coherent result in the whole interval
[λ(1)

0 , λ(N)
0 ].

3. EXAMPLE OF TRAINING SET GENERATION
PROCEDURE: A PITCH CONTROLMODEL

The proposed method is demonstrated in this section by us-
ing a conversion function to realize pitch transformations
which preserves the spectral identity of a musical instru-
ment. The procedure for the training set construction is
now reviewed (see Figure 3). From a data set of N notes we
want to construct N conversion patterns comparing the sus-
tained spectral envelope of each note with that of the note
selected as source note, whose pitch is modified each time
to match the others. Referring to Figure 2, the source data
is now the selected source note, and the target data is the
whole data set (note that the resulting training set will in-
clude the all-zeros pattern, corresponding to the compar-
ison of the source tone with itself). To this purpose, the
SMS representation of the source note undergoes a mod-
ification which includes the scaling of the frequencies of
partials, and optionally the interpolation of magnitudes to
preserve its formant structure. This option gives the possi-
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bility to use the a priori knowledge on the nature of sound
to improve the identification process. Voice, for example, is
known to be characterized by a formant structure which is,
for a given vowel, approximately constant with respect to
pitch variations. It is quite intuitive that, in such a case, pre-
serving the formants can lead to a conversion pattern set
with reduced magnitude range. We call waveform preserv-
ing the procedure where no formant preserving interpola-
tion is performed, otherwise the procedure is called formant
preserving.

In Figure 4, the two procedures are compared with re-
spect to a set of voiced sung notes. In the first case, where the
formant preserving procedure is not used, the frequencies of
partials of the source note are shifted without changing the
magnitudes. This implies that the formants shift as well, and
that the conversion patterns need to restore the energy in the
original position of formants with a positive contribute, as
well as to attenuate, with a negative contribute, the energy in
the positions where the formants moved due to the shift of
partials. The use of a formant holding pitch shift procedure,
which compute the new magnitude of partials by interpola-
tion on the original spectral envelope and prevent the for-
mants to move from their original position, lead to a conver-
sion pattern set with reduced range of correction. This train-
ing set models only the residual differences, where no simple
assumptions could have been made. We now treat the case
where the target data is a set of seven saxophone notes ranging
from a lower pitch of about 320 mel, to a higher pitch of 440
mel, andwewant to build the conversion function to correctly
reproduce the notes in the set by processing the sinusoidal
analysis of the central note. The waveform preserving proce-
dure was used to produce the training set, and in Figure 5,
the conversion patterns and the result of the RBF network
identification is shown for a set of seven saxophone notes.
As previously recalled, the interpolating surface provides the
best fit to the training data. The intersection of an orthogonal
plane with this surface, for λ0 = λ̄0, gives the correction of
the magnitude of partials when the pitch of the source note
is changed to λ̄0. The resulting spectrum is the one that best
approximates the real spectrumwith respect to the given data.

The use of the conversion function permitted to produce
pitch shifted synthetic tones whose spectral envelope reflects
that of the notes in the data set, at least in the sustained part
of notes. To compare the synthetic tones with the real ones,
we used the spectral centroid

fsc =
∑H

h=1 fh · ah∑H
h=1 ah

(6)

which is known to be a good index of spectral similarity.
Figure 6 shows the effect of the conversion function used to
correct the spectral envelope when the pitch of the saxophone
source note is shifted.

3.1. Reduction of the parametric space

The conversion functions represent the behaviour of the
sound spectrum in an original space whose dimension is

equal in number to the number of partials used to describe
the spectrum. It is quite intuitive that the number of variables
involved is often redundant and should be reduced. To this
purpose, singular value decomposition (SVD) is used.

Let R be the N ×H matrix containing a conversion pat-
tern in each row, one for each of the N notes in the data
set (including the reference note). The singular value decom-
position theorem states that R can be decomposed into the
form

RN×H = UN×NSN×HVT
H×H, (7)

where U and V are unitary matrices. S is a N ×H pseudo-
diagonal matrix whose nonzero elements, called singular val-
ues, are nonnegative and by convention are given in decreas-
ing order.

The singular values in matrix S are used to compute the
rank of the decomposed matrix, which is the index of the
last nonzero element. When the decomposed matrix is not
square, as in our case, the rank of S will not be higher than
the lower dimension (N), and a rank lower thanN is indicated
by an abrupt decrease of the magnitude between two adjacent
nonzero elements in the diagonal. If we decide to use the first
P components, the new set of target conversion paths will be
given by

R̂N×H = ÛN×P ŜP×P V̂T
P×H, (8)

where the unwanted columns and/or rows of the original ma-
trices are not considered in the computation (note that for
P = N, V̂ is a base for the space spanned by the rows of R
and is R̂ = R). It should be noted that SVD is strictly re-
lated to principal component analysis (PCA), which is used
to extract the axis (or factors) of the new space, where the
higher amount of information is concentrated. Thus, choos-
ing P < N is the same as saying that we are satisfied of an
approximated version of the training set. This approximation
is as much accurate, as much as the variance explained by the
first P principal components. Let F = ÛŜ be the N × P new
matrix which represents the spectral conversion patterns, and
let V̂ be the matrix to return to the initial conversion patterns:
if we use the matrix F to train the RBFN, the dimensionality
of the conversion function F is reduced from H to P with
P ≤ N < H and the output of the RBFN will need to be mul-
tiplied by V̂ prior to its application to a spectral envelope (see
Figure 7).

3.2. Multiple conversion functions and applications

Let nowDfreq(λ0) be the conversion function identified fol-
lowing the procedure described in Section 3. The synthesis
formula is then

āh = Dfreq,h
(
λ0
) · ah (9)

and will produce the desired conversion of the spectrum each
time a pitch shift is performed on the pitch of the original
note. The same approach seen for pitch shifting can be used
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Figure 3: Schematic diagram of the computation of a conversion pattern to perform pitch shift with spectral correction.
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Figure 4: Conversion patterns generated from 7 voiced notes performing the same vowel: comparison between the waveform preserving
procedure and the formant preserving procedure.

to control other sound parameters implying spectral correc-
tion, like intensity. Consider now the comparison of couples
of tones having same pitch and different intensities, say Im
the minimum and IM the maximum intensity. In this case we
are interested in the construction of a conversion function
which allows us to switch from the intensity of the source
note to the intensity of the target note. No pitch shifting is
now implied in the construction of the conversion pattern
set. SayDint(λ0) = [Dint,1(λ0) · · ·Dint,H(λ0)]T the conver-
sion function that allows to switch from IM to Im. Note that
Dint(λ0) is still a function of frequency and not of intensity:
we are in fact assuming that it turns the original note with
intensity level IM into a note with intensity level Im, say on
the opposite side of the dynamic range of the instrument.
The only way to produce a tone with intensity level between
IM and Im is thus to weight the effect of the conversion
function. In this case, a simple interpolation can be used

although one is not guaranteed on whether the model will
reproduce or not the original spectral behaviour of the in-
strument with respect to changes of the intensity level. Let us
define D′int(λ, I) = Dint(λ) · α(I), where the function α(I),
ranging from 1/Dint(λ0), for I = IM , to 1, for I = Im, weights
the effect of the conversion function. Then, the resynthesis
formula that compute the new amplitudes for the intensity
level I ∈ [Im, IM] is

āh = D′int,h
(
λ0, I

) · ah, (10)

where ah is the magnitude of the hth partial of a source tone.
A logarithmic function for the function α(I) has shown to be
suitable to perform an effective control on the range [Im, IM].

Multiple conversion functions can be used at the same
time to take into account different control parameters. This
can be the case of simultaneous control of pitch and intensity
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Figure 5: (a) The 7 waveform preserving conversion patterns resulting from 7 sax notes. (b) Interpolating surface provided by the RBFN.
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of a tone. If Dfreq and Dint are two conversion functions
relative to pitch and intensity, the synthesis formula will be

āh = Dampl,h
(
λ0
) · Dint,h

(
λ0
) · ah. (11)

Again, a simple interpolation can be used although one is
not guaranteed whether the model will reproduce or not the
original spectral behaviour of the instrument with respect to
changes of the intensity level:

āh
(
λ0, I

) = Dfreq,h
(
λ0
)·(α(I)·Dint,h

(
λ0
)+(1−α(I)

))·ah
(12)

with α(I) being a logarithmic function assuming values in
[0,1] as I changes from Im to IM . Of course a conversion
function with two inputs (frequency and intensity) would be
needed for a more complete and accurate model.

As a last application field that can benefit from this re-
search, we cite the modeling and control of expressiveness in
digitally recordedmusic performances [5, 12]. From the anal-
ysis of performances played with different expressive inten-
tions, it was possible to understandwhich are themost impor-
tant parameters on which the musicians rely to change the ex-
pressiveness of the performance. Among these, tempo, inten-
sity, energy envelope, legato-staccato, and brightness are the
most important. The proposed spectral processing method
was used to learn the spectral features of the performing in-
strument from different performances of the same musical
excerpt, so to catch the spectral differences occurring when
playing bright instead of dark, or heavy instead of light. The
resulting conversion functions were then used, together with
other sound effects such as pitch shifting, time stretching
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Figure 7: Reduction of the parametric model. The example is relative to a conversion function for pitch control, and the training data is
made of five violin notes. Here, (a) is the original conversion patterns matrix R, (b) is the matrix F with P = N = 5, (c) is the interpolating
surface for the matrix F and (d) is (c) after multiplication by the principal components matrix V̂.

and envelope control, to realize the sound transformations
required by the model of expressiveness [4].

4. DISCUSSION AND CONCLUSIONS

A spectral processing model suitable for the sinusoidal rep-
resentation of sound has been proposed. The identification
procedure is characterized by a fast perceptually based learn-
ing procedure and the possibility of learning from sound ex-
amples has been stressed. Moreover, due to its low compu-
tational cost, the model is suitable for real time applications
such as expressive processing or sound synthesis. The method
has been applied to pitch shifting with spectral correction,

and the spectral centroid of the synthesized sound has been
compared with the spectral centroid of the real target sound,
showing the effectiveness of this approach.

When notes with simple attack-sustain-release structure
were considered, the simplifying assumption that a unique
conversion function was sufficient to model the different
part of the note has been made. Although informal listen-
ing tests showed that this assumption was satisfactory in most
cases, amodelwith time-varying parameterswould have been
more adequate to fit the general case where attack, decay
and different portions of sound presenting peculiar spec-
tral characteristics. These aspects will be considered in future
works.
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