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A key enabling technology for the proliferation of multimedia PC’s is the availability of fast video codecs, which are the basic
building blocks of many new multimedia applications. Since most industrial video coding standards (e.g., MPEG1, MPEG2,
H.261, H.263) only specify the decoder syntax, there are a lot of rooms for optimization in a practical implementation. When
considering a specific hardware platform like the PC, the algorithmic optimization must be considered in tandem with the
architecture of the PC. Specifically, an algorithm that is optimal in the sense of number of operations needed may not be the fastest
implementation on the PC. This is because special instructions are available which can perform several operations at once under
special circumstances. In this work, we describe a fast implementation of H.263 video encoder for the Pentium processor with
MMX technology. The described codec is adopted for video mail and video phone softwares used in IBM ThinkPad.
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1. INTRODUCTION

Recent advances in the personal computer (PC) industry have
provided the necessary computation power and storage re-
quired by many multimedia applications. These tremendous
technological advances have enabled the PCs to perform im-
age/video compression and decompression efficiently in soft-
ware only. Some examples include the popular software im-
plementations of JPEG standard used to exchange images
over the Internet, MPEG1 and MPEG2 decoders for music
videos and movies stored in CD-ROM and DVD-ROM, re-
spectively, and the H.263 standard for video conferencing and
video telephony. These software tools facilitate the introduc-
tion of desktop video, video based interactive multimedia ser-
vices, and desktop video conferencing to the general publics
with a PC. Some advantages of implementing the video codec
(COder/DECoder) in software for the PC are the elimination
of expensive hardware, the ease of upgrade through replace-
ment of software modules, and the wide availability of PCs.
Due to the fact that a great deal of parallelism exists in
many DSP algorithms including video encoding and decod-
ing, many microprocessors have been designed to support
dedicated hardware to exploit the parallelism. These special
hardware extensions give microprocessors the ability to pro-

cess multiple data with the same operation efficiently through
the addition of an SIMD (single instruction multiple data)
instruction set. This feature is often referred to as subword
parallelism, pack-arithmetic, or multimedia extension [1].
Indeed, many widely used general-purpose microprocessor
platforms are adopting various forms of this concept. Some
examples are the MMX instructions [2, 3] from Intel, VIS
instructions from Sun, and PA-RISC multimedia extensions
from HP.

Video coding requires tremendous amount of computa-
tions. There have been many fast algorithms proposed in the
literature to ease the computation load for various compo-
nents in a video codec. Typically these fast algorithms are
proposed and compared with each other by using the to-
tal number of operations as a criterion assuming a general-
purpose processor without considering the target hardware
platform. However, the comparisons can be misleading when
we consider a software implementation on a specific hard-
ware platform. Sometimes, we may have the case where algo-
rithm A has greater number of operations than algorithm B
while the implementation of algorithm A is faster than the im-
plementation of algorithm B on a hardware platform. This is
because each microprocessor has its own strengths and weak-
nesses which places bias on certain operations. For example,


mailto:pohhsu@microsoft.com
mailto:kjrliu@eng.umd.edu

Software optimization of video codecs on Pentium processor with MMX technology 101

some microprocessors may have dedicated hardware to exe-
cute the multiply-accumulate operation in one cycle. Then,
it will be advantageous to arrange an algorithm such that the
multiply-accumulate operation occurs frequently. Thus, we
see that the design of a fast software only video codec is highly
dependent on the hardware platform. Each component of the
video codec must be properly selected to take maximum ad-
vantage of the underlying hardware. Specifically, the selection
of a component should not always be the one with the lowest
number of operations but rather the one that takes the least
number of cycles to execute on the given hardware platform.

In this paper, we consider the problem of video codec
optimization on the Intel Pentium with MMX technology
processor, which powers a vast majority of the computers in
the world. MMX technology is an extension to the Intel ar-
chitecture and it provides fifty seven powerful SIMD instruc-
tions aimed to aid the exploitation of parallelism inherent
in many multimedia and digital signal processing applica-
tions. By taking advantage of the strengths of the hardware,
we present a fast software implementation of an H.263 video
encoder. The optimization of the encoder is performed iter-
atively through profiling and recoding to speed up the inner
loops. Traditional optimization techniques were used along
with the MMX instructions to achieve speedup. Optimization
techniques such as removal of loop invariant computation,
strength reduction, loop jamming, loop unrolling, and table
lookup were used. Loop unrolling was used often in tight
loops with MMX instructions to achieve speedup through
software pipelining.

This paper is organized as follows. In Section 2, we briefly
describe the Intel Pentium with MMX technology processor
and point out some features that are relevant to software
optimization. In Section 3, we describe the design princi-
ple of the MMX technology. In Section 4, we describe the
type of instructions that the MMX technology provided.
In Section 5, we analyze the computational requirements of
the H.263 video encoder. In Section 6, we describe a fast im-
plementation of the H.263 video encoder. Lastly, we conclude
in Section 7.

2. INTEL PENTIUM WITH MMX TECHNOLOGY
PROCESSOR

The Intel Pentium with MMX technology processor is an ad-
vanced superscalar processor. An overview of the processor’s
architecture is shown in Figure 1. The key components of the
processor are a five stage pipelined architecture with dual exe-
cution pipelines (U and V pipe), separate instruction and data
L1 caches, four shared write buffers, instructions prefetching
unit, a branch target buffer (BTB), and a return to stack buffer
(RSB).

One salient feature of the processor is the ability to execute
up to two integer instructions every clock cycle using the U
andV pipes. However, the high execution rate can only be sus-
tained if certain rules and restrictions are followed in schedul-
ing the instructions. These rules and restrictions are of a direct
consequence of the underlying architecture of the processor.
Therefore, an understanding of the main components of the
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FIGURE 1: Architecture view of the Pentium with MMX technology
processor.

processor is paramount in software optimization. In this sec-
tion, we describe the main components of the processor and
discuss its relevance to high performance coding style.

The Pentium with MMX processor has two 16 Kilobytes
L1 caches. The Level 1 (L1) cache is a small piece of mem-
ory located on chip that is very fast, typical ten times faster
than main memory. One cache (instruction cache) is reserved
for fetched instructions and the other cache (data cache) is
reserved for data accesses. The two caches are independent
with its own internal 64-bit bus so that the processor can
load instruction and data in the same clock cycle. Each cache
is organized into 32-byte chunks called cache lines. The cache
line is the minimum unit for data transfer between the exter-
nal bus (e.g., memory) and the cache. On a read or write hit to
the L1 cache, the request can be done in just one clock cycle.
However, the processor bursts an entire cache line into the L1
cache when a read miss occurs and writes the data directly to
the main memory.
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The cache’s purpose is to exploit the temporal and spatial
locality found in typical code [4]. Temporal locality is based
on the idea that if an item is referenced, it is highly probable
that it will be referenced again soon. Spatial locality refers to
the idea that if an item is referenced, it is highly likely that
nearby items will be referenced. By requesting a cache line at
a time, neighboring items can be accessed in a fast manor.

Since data transfer from the L1 cache to the processor
is much faster than from main memory, a key to construct
good code will be to organize it in such a way that data are
reused as often as possible when it is in the L1 cache. First,
it is important to make sure that the size of the inner loops
is below 16 KB so that it can fit inside the L1 cache or the
L1 cache will thrash continuously. Second, the code should
be organized so that operations on the same set of data are
grouped together. This ensures reuse of the data while it is
still in the data cache. Lastly, the technique of allocation of
data ahead of time can be used to minimize the wait time.

The Pentium processor has two integer execution
pipelines called the U and the V pipes as shown in the center
of Figure 1. In the ideal case, two instructions can be exe-
cuted at the same time, one in each pipe, per processor cycle.
Each pipeline is divided into five execution stages that allows
overlapped execution of different instructions at one time.
The five stages are called the PF (prefetch) stage, the D1 (de-
code 1) stage, the D2 stage (decode 2), the E stage (execution),
and the WB (writeback) stage. In the PF stage, the instruc-
tions are prefetched, parsed, and pushed into an instruction
FIFO, which is located before the D1 stage. In the D1 stage,
two instructions from the instruction FIFO are examined to
determine whether they are pairable under current situation.
Either one or two instructions are pulled from the instruc-
tions FIFO depending on whether the two instructions are
pairable or not. In the D2 stage, the addresses of the memory
operands are calculated. The instruction is executed in the
E stage and the results are written back in the WB stage. To
take advantage of the dual pipelined execution of the Pentium
processor, the assembly code must be carefully scheduled to
follow a set of pairing rules. The pairing rules describe situa-
tions where the pipeline cannot be maintained at maximum
capacity due to data dependency, register contention, and
other restrictions imposed by the Pentium processor. There-
fore, it is important to schedule your assembly code to follow
the pairing rules so that the maximum throughput can be
achieved. One useful optimization technique for transform-
ing an inner loop that does not pair well into an improved
loop with better pairing is software pipelining [5, 6]. The ba-
sic idea is to partially unroll the loop by making several copies
and interleave them to achieve better packing in the execution
pipelines.

3. MMXTECHNOLOGY

MMX technology is an extension to the Intel architecture
whose aim is to improve the performance of multimedia and
communications algorithms. With the addition of the MMX
technology comes fifty seven new instructions, and eight new
64-bit registers. These new instructions allow an application

to exploit certain types of parallelism that exists in many
applications. It was first implemented on the Pentium pro-
cessor and has been added to the Pentium II processor as
well. The MMX technology was designed with the following
goals in mind. First, it is designed to significantly improve
the performance of multimedia, communications, and other
compute intensive applications. Second, the addition of the
MMX extension must provide full backward compatibility,
which means that applications written for older Intel proces-
sors must still be able to run. Third, the architecture should
be able to be scaled to keep pace with future Intel processors.
Lastly, the new instruction set provided by the MMX technol-
ogy will be composed of general-purpose instructions only.

The general-purpose MMX instruction set was designed
by analyzing a broad range of software applications in the
field of multimedia and communications such as computer
graphics (2D and 3D), image processing, music synthesis,
speech compression, image compression, video compression,
and video conferencing. In the analysis of these applications
from different domains, it is found that certain common char-
acteristics exist for a majority of the core time-consuming
code sequences. First, it is found that operations were typi-
cally performed on small native data types such as 8-bit pix-
els for image/video applications and 16-bit audio samples for
speech and music applications. Second, the memory access
patterns were found to be regular, recurring, and usually data
independent. Lastly, the computations on the data are typi-
cally localized and recurring. From these observations, it was
found that a salient feature of many multimedia algorithms
was the execution of the same set of operations on a large
number of small data elements. Therefore, the MMX tech-
nology adopted the SIMD (single instruction, multiple data)
architecture to enable exploitation of the data parallelism in-
herent in these applications.

For example, a common operation in image processing
and video coding is the pixel-wise addition of two equally
sized images. In this operation, the pixels located on corre-
sponding spatial locations from the two images are added
and clipped to form the resulting image. The basic underly-
ing computation of this process is the addition of two integer
arrays where each element is of a fixed size. We consider the
case of adding two integer arrays A and B together where
each array has four short integers. Normally, the native in-
structions of the microprocessor, such as the Pentium pro-
cessor, is designed under the single instruction single data
(SISD) architecture. This means that the microprocessor can
only operate on one set of data at a time. Therefore, the ar-
ray elements have to be added individually to form the result
in a sequential manner as shown in Figure 2. On the other
hand, SIMD instructions are designed to operate on multiple
data elements at a time. The main difference between SISD
instructions and SIMD instructions is that SISD instructions
operate on individual elements at a time while SIMD instruc-
tions operate on an array of elements at a time. As shown in
Figure 3, the four additions are done at the same time in
parallel. Therefore, we can see the benefit of having such an
SIMD instruction.

The eight new 64-bit general-purpose registers are logi-
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FIGURE 2: Scalar instruction scalar data (SISD).

cally defined by the MMX technology only. In actuality, these
eight registers are mapped onto the eight 80-bit floating-point
registers on the Pentium processor. The reason for this im-
plementation is to achieve full compatibility with existing op-
erating systems and applications. Current operating systems
save and restore the contents of the integer and floating-point
registers between context switching. Therefore, if a new set of
registers were defined for MMX then the existing operating
systems must be modified in order to save the information
on the new registers. By alias the MMX registers on top of
the floating-point registers, it is ensured that the contents of
the MMX registers are saved by existing operating systems
during context switching. Since the MMX registers and the
floating-point registers are physically the same, the registers
must be reset when switching from floating-point instruc-
tions to MMX instructions and vice versa. This brings us
to the point that the code should be partitioned in such a
way that there are no intermixing of MMX instructions and
floating-point instructions on the instruction level to avoid
frequent reset of the registers. However, it is acceptable to
mix MMX instructions and floating-point instructions on
the procedural level.

4., MMXTECHNOLOGY INSTRUCTIONS

The new set of SIMD instructions defined by MMX technol-
ogy performs parallel operations on multiple data elements
packed into the 64-bit register. Three new packed data types

Al0] | A[1] | A[2] | A[3] B[O] | B[1] | B[2] | BI3]

A[0] | ALl [A[2] | Al3]
+ + + +
BIO] | B[1] | B[2] | BI3]

FIGURre 3: Single instruction multiple data (SIMD).

and the 64-bit quad-word are defined as shown in Figure 4.
All four new data types are 64-bit wide and fit nicely inside an
MMX register. The packed data types contain several smaller
fixed-point data elements. The three packed data types are
packed byte, packed word, and packed doubleword. Basically,
packed byte contains eight bytes, packed word contains four
words (a word is a 16-bit quantity), and packed doubleword
contains two doublewords. The data inside an MMX regis-
ter is interpreted as one of these four new types depending
on the executed instruction. The MMX instruction sets in-
clude fifty seven new instructions to perform various opera-
tions on these four new data types. New instructions intro-
duced by the MMX technology includes packed arithmetic

63 87 0

Byte 7 | Byte 6 | Byte 5 [ Byte 4 | Byte 3 | Byte 2|Byte 1 |Byte 0

Packed bytes: 8 elements per operand

63 16 15

Word 3 Word 2 Word 1 Word 0

Packed words: 4 elements per operand
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0
0
Doubleword 0 ’
0

Doubleword 1

Packed doublewords (Dword): 2 elements per operand

63

Quadword 0

Quadword (Qword): 1 element per operand

FIGURE 4: Input data formats for MMX technology.
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TABLE 1: Summary of MMX instruction set.

Instruction Type Instruction

Description

Arithmetic P[ADD,SUB][B,W,D]

P[ADD,SUB]S[B,W]
P[ADD,SUB]US[B,W]

PMUL[H,L]W

PMADDWd

Add/subtract with wraparound
Add/subtract signed with saturation
Add/subtract unsigned with saturation
Multiply four words and store
high/low 32-bit result in register
Packed multiply and add

Comparison PCMPEQ[B,W,D]

Compare if equal

PCMPGT|[B,W,D] Compare if greater than
Conversion PACKSSWb Convert signed word/dword to signed
PACKSSDw byte/word using signed saturation
PACKUSWb Convert signed word to signed byte using
signed saturation
PUNPCK[H,L]Bw Interleave the high/low order 32-bit data
PUNPCK[H,L]Wd elements of the source and destination
PUNPCK[H,L]Dq operands across data type boundary
Logical PAND, PANDN Bitwise logical AND, AND NOT
POR, PXOR Bitwise logical OR, XOR
Shift PS[R,L]L[W,D,Q] Shift right/left logical without
carry across data type boundary
PSRA[W,D] arithmetic shift right
Data transfer MOV[D,Q] Transfers 32/64 bits between MMX
register and integer register or memory
EMMS EMMS Empty MMX technology state and clears

FP tag word

instructions, saturating arithmetic instructions, data manip-
ulation instructions, and logical instructions. The set of new
instructions introduced by MMX is summarized in Table 1.
The packed arithmetic allows the same arithmetic op-
erations to be applied to each individual data element of a
packed data type in parallel. For example, adding two packed
bytes together using PADDB will perform eight additions,
one for each byte, in parallel. Similarly, four and two arith-
metic operations are performed when working with packed
words and packed doubleword, respectively. Another key fea-
ture provided by the MMX instructions is the ability to per-
form signed or unsigned saturating arithmetic on each data
elements of a packed data type in parallel. In conventional
fixed-point arithmetic, we can only obtain the correct lower
order bits when overflow occurs. On the other hand, saturat-
ing arithmetic clips the result to the largest or the smallest
possible value for the given data type when overflow occurs.
Saturating arithmetic is found to be very useful in image pro-
cessing since it eliminates the clipping operations found at the
end of most image processing operations. The data manip-
ulation instructions provided by MMX technology are for
conversion between the new data types. These instructions
are very important when an algorithm requires higher fixed-
point precision in its intermediate stages. The pack instruc-
tions convert a bigger packed data type to a smaller packed
data type while the unpack instructions convert a smaller

packed data type to a bigger packed data type. In addition,
the unpack instruction can perform an interleaved merge
operation which can be used efficiently to perform insertion,
transposition, and other data manipulation operations.

5. GENERAL PROCESSING REQUIREMENTS
OF VIDEO CODECS

An analysis of the operations found in many video standards
reveals the implementation of many internal modules of a
video codec can benefit from using SIMD instructions such
as those provided by the MMX technology. From analysis, the
following characteristics are typically found in video codecs.
First, the input data and coefficients have usually eight to six-
teen bits of precision, which is ideal for fixed-point packed
data operations. Second, floating-point operations are typi-
cally not required. Third, the multiply-accumulate operation,
where the multiplication is often performed with constants,
is very common. Lastly, many operations require clipping to
a predefined range as a final step, which can be efficiently
implemented with saturating arithmetic. These observations
imply that many operations in a video codec are good candi-
dates for optimization using MMX instructions.

Standards based video codec achieves compression by ex-
ploiting the temporal and spatial redundancies inherent in
video signals. The main functional blocks of these video cod-
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TaBLE 2: Basic arithmetic operations in standard video codecs.

Function Arithmetic operations
DCT/IDCT ax+b, Ycix;
Quant./Dequant. Xi/Ci, XiCi

s )2
Motion Est./Comp. 2 1% = il 2= v

min(a, b), x; + x;j
Seixi, (i +x5)/2, (1/4) S x

shifts, comparisons

Color transformation

Huffman coding

ing standards are the discrete cosine transform (DCT), inverse
discrete cosine transform (IDCT), quantization, dequantiza-
tion, Huffman coding, motion estimation/compensation. In
addition, color transformation and various pre-processing
and post-processing filtering are an essential part to any ac-
tual video communication system. These major functional
blocks occupy a significant portion of the computational
load. From an examination of these functional blocks, cer-
tain basic arithmetic operations are found to form a major
portion of each functional block. In Table 2, we list some of
the major arithmetic operations found in typical standards
based video codecs. In most cases, these operations are inde-
pendently applied to a number of data elements or pixels and
thus can be efficiently done in parallel by SIMD instructions.
It is found that certain operations in the DCT/IDCT, quanti-
zation/dequantization, motion estimation, motion compen-
sation, and color transformation blocks are very suitable for
MMX implementation.

6. H.263 ENCODER IMPLEMENTATION DETAIL

The H.263 video coding standard was established by the
International Telecommunication Union (ITU) mainly for
providing real-time low bit-rate visual communication over
the telephone lines. In addition, it has been used to provide
compressed video contents by many Internet sites. For real-
time applications such as video telephony using the PCs, the
amount of available processing speed becomes an important
issue. In order to provide video telephony, each PC must be
capable of handling video and audio capture, video and audio
encoding, multiplexing, transmission, demultiplexing, video
and audio decoding, video display, and audio playback simul-
taneously. Among these tasks, video encoding is typically the
most computationally intensive and occupies a major portion
of the computational load in such a system. In this section,
we describe a fast implementation of an H.263 video encoder
under the Pentium with MMX processor platform.

6.1. Motion estimation

The major computational blocks in an H.263 video encoder
are motion estimation, motion compensation, DCT/IDCT,
quantization/dequantization, entropy coding, and inter/
intra-coding. Among these functional blocks, motion esti-
mation and DCT/IDCT are typically the most computa-
tional intensive portion of the encoder. To get an idea of
the computational load distribution of the functional blocks

Distribution of TMN H.263 encoder CPU load
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Figure 5: Distribution of CPU load for TMN H.263 video en-
coder. The abbreviations ME, MC, Q/DQ, stands for motion es-
timation, motion compensation, and quantization/dequantization,
respectively.

from a typical H.263 encoder, we encoded a video sequence
using the ITU TMN (test model near-term) H.263 video
encoder provided by Telenor to obtain a profile of the en-
coding computational load. Intel’s V-tune software package,
which is a visual optimization/profiling tool, was used to
monitor the encoding process. In Figure 5, we show the distri-
bution of CPU load obtained by the profiling. Indeed, we can
see that the motion estimation and the DCT/IDCT are the
most time consuming portions where the motion estimation
occupies a majority of the CPU power.

H.263 uses block matching motion estimation and com-
pensation to exploit the temporal correlation between adja-
cent frames. The basic idea of block matching is to parti-
tion the current image into nonoverlapping blocks and then
find the best prediction for each block in the current frame
from the previous frame. The search for the best prediction
is typically constrained to a search window where a block
of the same size is extracted from the previous frame and
compared with the original block to obtain the best match
as shown in Figure 6. Various block matching algorithms has
been proposed in the literature and basically they differ in the
matching criteria, search strategy, or block size. The method
that the TMN H.263 encoder employs is the full search block
matching algorithm using sum of absolute difference (SAD)
as the matching criterion. This method guarantees a global
minimum by exhaustively comparing all possible candidates
in the search space. However, the complexity of such a search
is prohibitively high as we can see from Figure 5 which makes
it impractical for real time software implementation.

Many fast blocking matching techniques have been pro-
posed in the literature to reduce the complexity of the motion
vector search by trading off the prediction efficiency. These
techniques can be divided into two categories, namely fast
matching or fast search. In fast matching, different matching
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criteria that requires fewer computations, [7], than the sum
of absolute difference (SAD) or the mean square error (MSE)
are used. Also, sub-sampled approach such as using SAD from
a smaller set of pixels as the matching criterion, [8], has been
proposed. In fast search, the SAD or MSE criteria is typically
still used but the average number of points searched is smaller
than the total number of points in the entire search space. The
fast search approaches include the 2D log search [9], conju-
gate direction and one-at-a time search [10], three step search
[11], gradient descent search [12], and predictive search [13].
A common theme among these methods is the exploitation
of the unimodal error surface assumption which is generally
not true. This assumption states that the matching differ-
ence is monotonically increasing as a particular vector moves
further away from the desired global minimum. However, it
seems like a reasonable assumption in a small neighborhood
around the global minimum. Therefore, a search procedure
using the monotonicity of error surface assumption is in dan-
ger of being trapped around a local minima.

In our video encoder, we employed a fast search block
matching that is based on the three step search [11]. In this
scheme, we start our search at the center of the search re-
gion. From the starting point, we search its eight surround-
ing neighbors to find the best matching out of all nine points.
If the starting point was found as the best match, we stop
the process and declare it as the motion vector. Otherwise,
we set the newly found best match as the new starting point
and repeating the process over again. We note that the com-
putation of the matching criteria for the eight neighboring
points of a starting point might be needed in the search pro-
cess of future starting points due to overlap. Therefore, the
computed matching scores are stored so that they can be ac-
cessed instead of computed later if needed. Along with the
searching strategy, we tried several different matching crite-
rions including the MSE, MAD, and the error variance. In
terms of computational complexity, the MAD matching cri-
terion required the least amount of computation. However,
the error variance matching criterion which is the variance of
the difference between the block and its prediction resulted
in better prediction among the three. We have implemented
the MAD and error variance matching measure using MMX
instructions, which significantly improved the speed of these
operations. The computation of the MAD matching crite-

rion involves evaluation of the following types of arithmetic
operation:

15 15
MAD = > > |y(m,n)-x(m,n)|, (1)
m=0 n=0

where each element of x and yy are eight-bit quantities. Since
the same arithmetic operation is applied to each element in-
dependent of other elements, we can take advantage of the
inherent instruction level parallelism through MMX instruc-
tions. We note that the resulting dynamic range of subtrac-
tion between two eight bits unsigned numbers is nine bits.
Therefore, if we perform full precision subtraction with x
and y, we must work with 16-bits quantities which reduces
the parallelism to four instead of eight. However, the abso-
lute difference between two 8-bits numbers x and y can be
performed in 8-bits precision using saturating arithmetic as
follows. We first compute x — ¥ and y — x using saturat-
ing arithmetic and then we logically OR the two differences
together to form the absolute difference. If x equals to y,
then the computation produces the correct result. If x does
not equal to ), we note that one of the two quantities x — y
and y — x is the absolute difference while the other one will
be saturated to zero. Thus the correct result can be obtained
by logically OR the two differences together. Therefore, we
can perform the absolute difference using eight-bit precision,
which will allow us to work on eight elements at a time. On
the Pentium processor, we have obtained a speedup of about
six times over a pure C implementation.

6.2. Motion compensation

The purpose of motion compensation process for the decoder
is to generate the prediction image block by block using the
previous image and the set of motion vectors. The motion
vectors are allowed to take on either integer or half pixel
values. For blocks with integer motion vectors, the prediction
block is generated by copying the appropriate block indexed
by its motion vector from the previous image. On the other
hand, the prediction block of blocks with half pixel motion
vectors needs to be generated by bilinearly interpolating the
appropriate region in the previous image.

On the encoder side, the motion compensation process
is closely tied to the motion estimation process. In order to
perform motion estimation, we must generate each candidate
blocks through motion compensation followed by computa-
tion of the matching criterion. Typically, the motion vector
search is done using full integer accuracy until the best match
is found. Then, a half pixel (i.e., 0.5) motion vector search
is done centered on the best integer motion vector. Thus,
we must generate the eight candidate half pixel blocks using
bilinear interpolation at the end of the best integer motion
vector search to find the best half pixel accurate motion vec-
tor. This process involves averaging two pixels or four pixels
to find the missing pixels where special attention must be
paid to ensure that proper rounding is performed. We can
organize the computation into three cases according to the
motion vector. In the first case, only the vertical component
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of the motion vector contains a half pixel component. In the
second case, only the horizontal component of the motion
vector contains a half pixel component. In the third case,
both the horizontal and vertical components of the motion
vector contain half pixel components. For the first case, we
need to perform averaging across adjacent rows to find the
predicted value. For the second case, we need to perform av-
eraging across adjacent columns to find the predicted value.
In these two cases, the predicted pixel Y is obtained from the
two pixels X; and X» by

Y=X1+X2+1. (2)

2

For the third case, we need to perform averaging across the
adjacent rows and columns to find the predicted value. In this
case, given four pixels X7, Xo, X3, and X4, the predicted pixel
Y can be obtained by

X1 +Xo+X3 +X4+2

Y = 1

3)

For our encoder, we take advantage of the MMX technol-
ogy to perform the motion compensation process. We con-
sider the first case where we are averaging across the rows to
obtain the predicted value. Ideally, we want to take advantage
of the instruction level parallelism by performing the aver-
aging process on eight pixels on two adjacent rows at a time.
However, we first note that the additions cannot be performed
on the eight elements in parallel because of possible overflow.
Furthermore, the MMX technology does not support paral-
lel shift on byte elements (the smallest size it support is on
word elements). Thus, in a straightforward implementation,
we will have to convert the pixel from an eight-bit quantity
to a sixteen-bit quantity, which reduce the parallelism from
eight to four.

Fortunately, there is another way to perform this oper-
ation while preserving the parallelism to eight and achieve
proper rounding at the same time. We consider the case of
averaging two integers X; and X> to form Y as shown in
(2). Suppose we simply perform the following operations to
form Y;:

Yi=X1>1+Xo>1, (4)

where > indicates a right shift. Comparing Y and Y; reveals
that the following relationship holds:

Y=X1>1+Xo>1+Z, (5)

where Z is the logical OR of the least significant bit of X;
and X». Based on this observation, we can perform the av-
eraging of two arrays of eight pixels in the following way to
preserve the maximum parallelism of eight. First, we con-
struct a new array whose element contains the logical OR of
the least significant bit for the corresponding elements of the
two arrays using the 64-bit logical OR and 64-bit logical AND
instructions provided by MMX technology. In essence, this
step generates an array Z. Next, we need to perform the shift
operation on each byte element of the array. As we have

pointed out, we cannot perform parallel shift on byte
elements directly. However, this can be done in two steps
since we are working on eight bytes at a time. First, we zero
out the least significant bit of each byte element in the two
input arrays. Then, we simply regard the eight bytes as one 64-
bit quantity and perform a 64-bit logical shift by one to obtain
the desired result. Afterwards, the three arrays are added in
parallel to get the final result. Similarly, the averaging process
for the second case can be done in the same way by first trans-
posing the block of data. Furthermore, the third case can be
computed in a similar manner by separating the computation
between the two least significant bits and the rest.

6.3. DCT and quantization

The H.263 encoder uses DCT to reduce the spatial redun-
dancy of the video sequence. The input to the DCT is either
the image or the prediction residual depending on whether
the frame is intra-coded or inter-coded. The input is sub-
divided into eight by eight blocks and transformed using a
2D DCT followed by quantization. For a frame that required
motion estimation, its previous quantized frame needs to
be reconstructed at the encoder. The reconstruction process
simply reverses of the encoding process where the quantized
input signal is first dequantized followed by the application
of the IDCT. The DCT is popular in image compression be-
cause it achieves good energy compaction and it has many
fast algorithms available.

Let s(v, x) be the 2D input sample values and S (v, u) be
the 2D DCT coefficients, then the mathematical definitions
of the eight by eight 2D DCT and its inverse IDCT for the
H.263 video standard are defined as follows:

7

S(v,u) = C(v)C(u) Z > sy, x)
=0 x=0
2x + 1)urr Ry +1vm
S
s(y,x) = Z C(v) Z MS( )
v=0
(2x+1)uTr Ry +1vm
XCOS[ 16 ]COS[ 16 ]

where x,y,u,v = 0,...,7 and the normalization factor C is

defined as
C(x) = a (7)

An important property of the 2D DCT/IDCT is its sep-
arability. This implies that the transform can be computed
by applying 1D DCT/IDCT on each row and then applying
1D DCT/IDCT on the columns of the results or vice versa.
A quick examination of the above equations reveals that di-
rect computation of the 2D DCT/IDCT using 1D DCT/IDCT
requires 1024 multiplications and 896 additions, which is a
prohibitively large number of operations. Fortunately, many
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fast algorithms have been proposed for efficient computation
of the 2D DCT/IDCT in the literature [14, 15]. There are
three main approaches in fast 2D DCT/IDCT computations
namely 1D based, 2D based, and statistical based. The 1D
based approaches compute the 2D DCT/IDCT using fast 1D
DCT/IDCT.

We note that given any fast DCT algorithm, a fast IDCT
with the same computational complexity can be easily con-
structed. A fast IDCT can be obtained by simply reversing the
flow graph of a fast DCT. This is because the DCT/IDCT is an
orthonormal transform, which implies that the inverse of the
transform is simply the transpose of the transform and the
transpose can be obtained by transposing the flow graph [15].

For our encoder, the direct fast 2D DCT developed by
Feig [16] and the scaled 1D DCT developed by Arai et al.
[17] were considered as candidates. The Feig 2D DCT is the
most efficient algorithm proposed in the literature in terms
of number of operations. It is a true 2D method that requires
54 multiplications, 462 additions, and six multiplications by
1/2 which can be done by arithmetic shifts. On the other
hand, the most efficient 1D DCT proposed in the literature
is by Arai et al. This method requires 13 multiplications and
29 additions. However, eight of the thirteen multiplications
can be absorbed into the quantization stage and thus the 1D
DCT can be computed with 5 multiplications and 29 addi-
tions. Therefore, the 2D DCT can be computed by applying
this fast 1D DCT on the rows and the columns using a to-
tal of 80 multiplications and 464 additions. This is the best
known approach for computing a separable 2D scaled DCT.
Therefore, the computational complexity of the separable ap-
proach is higher than the direct 2D approach. However, in
terms of implementation, the 1D DCT approach was better
suited for MMX instructions than the direct 2D approach
due to the computational flow. The separable 2D DCT was
implemented in assembly and takes advantage of the MMX
instructions. The capabilities to multiply several elements to-
gether in parallel and multiply/accumulate were provided by
the MMX technology, which we found to be extremely useful.

7. EXPERIMENT

We compared the speed of our optimized implementation
of an H.263 encoder against the TMN H.263 encoder. For
comparison, both encoders were used to compress 100 frames
of two test sequences and the total time needed was recorded.
The hardware platforms used were a Pentium 200 MHz with
MMX and a Pentium II 400 MHz computer and the results
are summarized in Table 3. As we can see, the TMN en-
coder compresses only two frames per second on the Pen-
tium 200 MHz. Moreover, the number of frames compressed
per second will be significantly lowered on real communica-
tions applications due to the fact that the CPU power have to
be distributed among many processes instead of just on the
video encoder. On the other hand, our optimized encoder
compresses about 23 frames per second on the same plat-
form, which is about 10 times faster than the TMN encoder.
The distribution of the CPU load for our optimized H.263
encoder is shown in Figure 7. The “surprising” outcome is

TABLE 3: Speed comparison between H.263 TMN encoder and our
optimized H.263 encoder. The amount of time needed to encode
100 frames on Pentium 200 MHz with MMX is shown in Time 1
and on Pentium IT 400 MHz with MMX is shown in Time 2.

Encoder Sequence File Size PSNR  Timel Time?2
TMN Miss America  11.3KB  37.1dB 46.6s 14.2s
Encoder Carphone 33.8KB  33.2dB  42.3s 13.8s
Optimized  Miss America  17.3KB  37.1dB 43s 1.5s
Encoder Carphone 40.8KB  33.1dB 4.5s 1.6s
Distribution of the optimized H.263 encoder
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Ficure 7: Distribution of CPU load for our optimized H.263
video encoder. The abbreviations ME, MC, Q/DQ + scaling,
stands for motion estimation, motion compensation, and quanti-
zation/dequantization plus scaling for IDCT/DCT, respectively.

that with MMX, Q/DQ + scaling becomes the largest com-
ponent. This is somewhat unexpected from other computing
platforms.

As we can see, the optimized encoder is fast enough so
that the CPU can be shared with other processes and we still
can obtain good frame rate. The drawback of our optimized
encoder is lowered compression efficiency. This is because we
chose a fast motion estimation algorithm that traded com-
pression efficiency with computation complexity. In conclu-
sion, we note that for real-time applications, the compression
efficiency must be balanced with the encoding speed for a
given bandwidth to achieve maximum throughput (i.e., re-
ceived frame rate).

8. CONCLUSION

In this paper, we considered the problem of software opti-
mization of video codecs on the Pentium with MMX plat-
form. We first reviewed the architecture of the Pentium pro-
cessor by pointing out features that are relevant to software
implementation. Then, we described the concept of SIMD
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architecture and reviewed the MMX technology. Finally, we
described an actual implementation of a fast H.263 video en-
coder utilizing the MMX technology. The “surprising” out-
come is that with MMX, Q/DQ + scaling becomes the largest
component, which is somewhat unexpected from other com-
puting platforms. The H.263 video encoder is composed of
several different components. The optimization is done by
selecting fast algorithms for each component that takes ad-
vantage of the underlying hardware platform. This is dif-
ferent from the traditional approach of constructing a fast
video encoder by selecting the fastest algorithm in terms of
number of arithmetic operations for each component. The
reason behind this is that each hardware platform has its
own strengths and weaknesses, which is translated to the
fact that certain operations can be done more efficiently.
Thus, the fastest algorithm in term of number of opera-
tions might not result in the fastest implementation on a
specific hardware platform. We compared the speedup with
the H.263 standard TMN video encoder and found that the
speedup is about tenfold at the expense of compression effi-
ciency.
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