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Onset Detection in Surface Electromyographic Signals:
A Systematic Comparison of Methods
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Various methods to determine the onset of the electromyographic activity which occurs in response to a stimulus have been
discussed in the literature over the last decade. Due to the stochastic characteristic of the surface electromyogram (SEMG), onset
detection is a challenging task, especially in weak SEMG responses. The performance of the onset detection methods were tested,
mostly by comparing their automated onset estimations to the manually determined onsets found by well-trained SEMG examiners.
But a systematic comparison between methods, which reveals the benefits and the drawbacks of each method compared to the other
ones and shows the specific dependence of the detection accuracy on signal parameters, is still lacking. In this paper, several classical
threshold-based approaches as well as some statistically optimized algorithms were tested on large samples of simulated SEMG data
with well-known signal parameters. Rating between methods is performed by comparing their performance to that of a statistically
optimal maximum likelihood estimator which serves as reference method. In addition, performance was evaluated on real SEMG
data obtained in a reaction time experiment. Results indicate that detection behavior strongly depends on SEMG parameters, such
as onset rise time, signal-to-noise ratio or background activity level. It is shown that some of the threshold-based signal-power-
estimation procedures are very sensitive to signal parameters, whereas statistically optimized algorithms are generally more robust.
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1. INTRODUCTION

Analysis of electromyographic signals recorded from the skin
over the muscles by surface electrodes (SEMG) represents an
important tool in a variety of applications like neurological
diagnosis, neuromuscular and psychomotor research, sports
medicine, prosthetics, or rehabilitation. Processing of SEMG
(and other biosignals like EEG, ENG, ECG, etc.) can be con-
sidered a special field of applied signal processing, with the
main focus on an appropriate application of theoretical con-
cepts to extract specific information from small and often
noisy biosignals.

The instantaneous SEMG signal energy serves as a
measure of the current level of muscle activation [1], whereas
the determination of the exact onset and offset times of a
muscle contraction is useful in studies of motor control and
performance [2, 3, 4, 5, 6, 7, 8, 9, 10]. The latter is of par-
ticular importance in reaction time (RT) experiments, and
numerous methods were developed for SEMG onset detec-
tion. Although a comparison of results obtained with vari-
ous approaches was presented [11, 12, 13], an objective and
comprehensive assessment of their accuracy in SEMG onset
detection is still lacking. Due to the fact that the underly-
ing signal parameters including the “true” onset and offset
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times are unknown in real SEMG recordings, a rating by an
objective error measure is not possible. Therefore, the auto-
matically determined onsets are usually compared to results
obtained by visual inspection of the data by some well-trained
SEMG examiner. But a profound performance test should be
based upon a relevant statistical analysis which requires a
large amount of SEMG data with properly preset signal pa-
rameters. This analysis is difficult or even impossible with real
data due to the poor parameter reproducibility of successive
SEMG recordings, and due to inter- and intra-rater variability
introduced by the manually determined reference onset esti-
mates. To overcome this problem, simulated SEMG data were
used in this study for assessing the sensitivity of various detec-
tion methods to changes in signal parameters. Also, the struc-
ture of the various existing SEMG onset detection methods
was analyzed revealing several common components which
are identical in a logical way, but are formulated individually
by different authors. As basis for comparison, some funda-
mental algorithmic principles formulated in [12] were used
to express each method by these terms.

Detection algorithms introduced earlier by Hodges and
Bui [13], Bonato et al. [14], Lidierth [15], Abbink et al. [2],
and two new implementations of the model-based detector
proposed by Staude et al. [12] are included in this study. The
algorithmic layout of the methods is compared, and the de-
pendence of onset detection accuracy on signal parameters is
demonstrated. The use of a statistically optimal estimator as a
reference for the upper performance limit allows an absolute
performance ranking of each method. In addition, the meth-
ods were tested on real SEMG data obtained in a reaction
time situation.

2. ONSET DETECTION ALGORITHMS

2.1. General scheme of onset detection

As suggested in [12], the comparison of algorithmic struc-
tures is conducted by using the SEMG signal model and gen-
eral scheme of event (onset) detection shown in Figure 1. The
digitized SEMG signal may be represented by a real-valued se-
quence (xk)k≥1, where xk denotes the signal amplitude at a
particular discrete time instant k; thus a single SEMG record
(xk)k≥1 represents a sample observation of a discrete ran-
dom process (a zero mean discrete white Gaussian noise pro-
cess) (Wk)k≥1 exciting a linear system with transfer function
H(z). (Wk)k≥1 reflects the discharge timing and recruitment
of the elementary signal sources (i.e., the motor units) in-
volved; H(z) describes the shape of the discharges (i.e., the
action potentials) as well as the specific bioelectrical transfer
function between generator and recording site. Measurement
noise is neglected. H(z) is modeled by an all-pole represen-
tation (autoregressive (AR) filter) of order p

H(z) = 1
1+ a1z−1 + a2z−2 + · · · + apz−p

, (1)

where a1, a2, . . . , ap are the AR coefficients and z denotes
the complex frequency of the z-transform. The time domain
representation of this signal model is

xk = −
p∑
i=1

aixk−i +wk. (2)

As a particular feature of the signal model, the varianceσ2(k)
of the white noise excitation depends on the current state of
the muscle activity which is modulated by descending com-
mands from supraspinal levels as well as by feedback from
peripheral receptors [16]. Within this framework, the indica-
tion for the response onset to be detected is an abrupt change
in the variance profileσ2(k), that is, it changes abruptly from
a pattern σ2

0 (k) to a new pattern σ2
1 (k, t0) ≠ σ2

0 (k) at time
instant t0.

Computerized onset detection requires to determine
the unknown change time t0 as accurate as possible. Most
detection algorithms consist of up to three basic processing
stages (see Figure 1):

• signal conditioning,
• detection unit,
• post-processor.

In an initial step, the observed SEMG signal passes through
a signal conditioning unit in order to enhance the spectral
content of the measured signal carrying information about
the onset of muscle activation. Frequently, a lowpass filter is
applied to reduce high frequency noise. More sophisticatedly,
an adaptive whitening filter can be used which eliminates
the spectral color that was introduced by the bioelectrical
channel H(z) but which is absolutely irrelevant for detection
of changes in the excitation signal. The observed SEMG signal
(xk)k≥1 is processed by a filter with transfer function

Hw(z) = 1+ b1z−1 + b2z−2 + · · · + bqz−q (3)

with the filter orderq and the filter coefficientsbi tuned to the
parameters of the shaping filter H(z). Obviously, for q = p
and bi = ai, the whitening filter represents the ideal inverse
filter Hw(z) = H−1(z) with respect to the transfer function
H(z). Therefore, with the parameters of H(z) exactly known,
the excitation (wk)k≥1 can completely be reconstructed. Usu-
ally, these parameters are unknown but can be estimated from
the measured signal by some least-squares technique, for ex-
ample [17].

In the next processing stage, a test function g(y1,
y2, . . . , yk) is computed from the (pre-conditioned) signal
(yk)k≥1 which serves as an indicator for the response on-
set. The test function uses some or even all of the past
samples to create an intermediate signal which is moni-
tored by the decision rule in order to determine whether
a change in the muscle activation pattern has occurred
(alarm time ta). Some onset detection methods directly use
ta as an estimate t̂0 for the SEMG onset time t0. Some
other methods use ta as a pure indicator for the exis-
tence of an onset and estimate t̂0 through additional post-
processing.

The decision rules of all methods will be written in
stopping rule notation,

ta = min
{
k ≥ 1 : g

(
y1, y2, . . . , yk

) ≥ h
}
, (4)
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Figure 1: Scheme of event detection in surface electromyographic signal (SEMG). The digitized SEMG xk is modeled by a white Gaussian
noise signal with dynamic varianceσ 2(k) exciting a linear system with transfer functionH(z). At t0, the signal variance changes from resting
activity σ 2

0 (k) to σ 2
1 (k, t0) of the active state. Most detectors employ up to three processing stages (signal conditioning, detection unit, and

post-processor) in order to detect an event (alarm time ta) and to determine an estimate for the unknown change time t0.

where h is an appropriate threshold. Each time a new data
point yk is available, the current value gk of the test function
is computed from the samples y1, y2, . . . , yk and compared
to the threshold h. As long as gk < h, this procedure is re-
peated sample by sample. At the first time instant ta, when
gk ≥ h, the procedure is stopped, and an event alarm is given.

Estimation of the exact change time t0 by the post-
processor usually starts after event alarm was given at ta, and
the estimate t̂0 of the unknown t0 is computed from the
samples y1, y2, . . . , yta+∆. Some methods employ a separate
signal conditioning unit which computes the input sequence
for the post-processor from the raw SEMG x1, x2, . . . , xta+∆.
Most algorithms require an additional amount ∆ of samples
after the alarm time, thus ta + ∆ represents the earliest time
instant when the final onset estimate t̂0 is available. The (op-
tional) change time estimation procedure is written as

t̂0 = f
(
y1, y2, . . . , yta+∆

)
, (5)

where f is an arbitrary function that computes the change
time from y1, y2, . . . , yta+∆.

In the following two sections, commonly used detection
methods are described within the framework of this basic
computational structure shown in Figure 1. The summary of
this analysis is presented in Table 1, together with the param-
eter values chosen for their performance evaluation.

2.2. Selected threshold-based onset
detection methods

Hodges and Bui

The detection algorithm proposed by Hodges and Bui [13] is
a representative for a large class of detection methods, known

as finite moving average (FMA) algorithms (cf. [5, 8, 18, 19]).
All these methods employ a fixed-size sliding test window,
and the output at time k is computed as the weighted
sum of the W signal samples yk−W+1, yk−W+2, . . . , yk con-
tained within the window. Within the framework of Figure 1,
the Hodges method first conducts some signal conditioning;
SEMG data samples are rectified and subsequently lowpass
filtered. From the pre-processed signal (yk)k≥1, the test func-
tion g(y1, y2, . . . , yk) at time k is computed as the mean of
yk−W+1, yk−W+2, . . . , yk, and muscle activity onset is identi-
fied at the instant when the test function exceeds the baseline
activity level by a specified multiple h of standard deviations.
The baseline activity is adaptively determined by averaging
the initial M samples of (yk)k≥1. The algorithm can be sum-
marized by the following decision rule:

ta = min
{
k ≥ W : gk ≥ h

}
,

gk = 1
σ̂0

(
ỹk − µ̂0

)
,

ỹk = 1
W

k∑
i=k−W+1

yk,

t̂0 = ta −W + 1,

(6)

where yk denotes the rectified and lowpass filtered SEMG
signal, and µ̂0 and σ̂0 are the mean and standard deviation
of the M initial samples of (yk)k≥1, respectively. After the
stopping rule signaled an alarm, the first index of the sliding
window is used as an estimate for the onset time t0, which is
a very simple post-processor. The Hodges method was imple-
mented with the following parameters: h = 2.5, sixth-order
digital butterworth lowpass filter with 50 Hz cutoff frequency,
W = 50, M = 200.
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Table 1: Characteristic properties of all examined onset detection methods.

H
od

ge
s

B
on

at
o

Li
di

er
th

A
bb

in
k

A
G

LR
st

ep

A
G

LR
ra

m
p

E
st

O
pt

Signal conditioning

Pre-whitening × × × ×
Data sample rectification × × ×
Data sample squaring × × × ×
Lowpass filtering × ×
Test function/decision rule

Moving average + simple threshold × × ×
χ2 test variable + double threshold ×
Likelihood ratio test × × ×
Post-processor/onset time estimation

Any threshold crossing ×
Threshold & duration-based selection of alarm time × ×
Search for maximum in (additional) test function × × × ×

Bonato et al.

The signal conditioning stage of the Bonato method [14] con-
sists of an adaptive whitening filter, with the filter parameters
estimated from the current SEMG data. The test function
is determined by two successive samples of (yk)k≥1 accord-
ing to

gk = 1

σ̂2
0

(
y2
k−1 +y2

k
)
, (7)

where σ̂0 is the standard deviation of the M initial samples of
(yk)k≥1. Note that gk is evaluated only for odd values of k.
The decision rule is

ta = min
{
k = 1,3,5, . . . : gk ≥ h

}
(8)

and the post-processor checks the resulting alarms for their
relevance. It accepts the onset decision only, if both following
rules apply:

• at least n out of m successive samples must exceed the
threshold in order to indicate the current muscle state
to be an active state,

• such an active state must last for at least T1 samples.

If this check holds true, the earliest beginning of this active
state epoch is taken as an estimate for the onset time t0.

As an important property, the method assumes that the
pre-whitened SEMG (yk)k≥1 before the response onset is
represented by a sequence of statistically independent zero
mean Gaussian random variables with equal variance. Thus,
with σ̂2

0 estimated from the measured sequence, the statistical
properties of the test function gk can be explicitly specified,
which facilitates a more sophisticated setting of the parame-
ters h, n, m, and T1. Further, the use of a double-threshold
scheme in the post-processor provides a higher degree of
freedom for selecting detection parameters. However, due to
the implicit maximum operation of the “n out of m” cri-
terion the accuracy with which the response onset can be

determined is limited by the sizem of the test window. More-
over, the down-sampling operation reduces time resolution
which may also lead to a less accurate onset estimation. Bon-
ato was implemented with the parameters h = 7.74, n = 1,
m = 5, T1 = 50, and M = 200.

Lidierth

Lidierth [15] proposed a full-wave rectification of the raw
SEMG as signal conditioning only. The test function and de-
cision rule of the Lidierth detection unit are identical to the
Hodges approach, but increased performance is achieved by
the extended post-processing rules:

• SEMG onset detection is accepted, if the test function
exceeds the threshold h to the active level for at least
T1 samples, and

• during T1, the test function may repeatedly fall be-
low the threshold, but each time not longer than
T2 samples.

Note that these post-processing rules represent a specific case
of the post-processor suggested by Bonato; with the param-
eters of the Bonato “n out of m” criterion set to n = 1
and m = T2, both post-processing rules are identical, thus
Lidierth is a composite of Bonato and Hodges. Lidierth was
implemented with parameters T1 = 90, T2 = 15, h = 3, and
M = 200.

Abbink et al.

Again, the “new” method copies the signal conditioning
and detection unit from already known methods, and
adds some specific fine tuning by extending the post-
processor function: Abbink [2] uses the Hodges signal
conditioning and detection unit approach, only changing
the cutoff frequency to 3 Hz and the window length
W to 1.

The post-processor stage of Abbink uses a less smooth ver-
sion (y′k)k≥1of SEMG, which is obtained by applying a but-
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terworth lowpass with 30 Hz cutoff frequency to the rectified
SEMG (i.e., the post-processor does his own signal condi-
tioning). Looking backwards from ta, the following rules are
applied:

t̂0 = arg max
N≤j≤ta

{
nlow(j)+nhigh(j)

}
,

nlow(j) =
j∑

i=j−N+1

Ind

{
1
σ̂0

(
y′i − µ̂0

)
< h2

}
,

nhigh(j) =
j+N∑
i=j+1

Ind

{
1
σ̂0

(
y′i − µ̂0

)
> h2

}
,

Ind(x) =
1 if x is true,

0 otherwise,

(9)

wherenlow(j) denotes the number of normalized amplitudes
smaller than the threshold h2 in the N samples directly pre-
ceding the onset time candidate j, andnhigh(j) is the number
of amplitudes larger thanh2 in theN samples directly follow-
ing j. Mean µ̂0 and standard deviation σ̂0 are estimated from
the initial M samples of (y′k)k≥1, respectively. The following
parameters were used for the simulations: h = 3, h2 = 3,
N = 200, and M = 200.

2.3. Detectors based upon statistically
optimal decision

If the signal generating process is (partially) known, detectors
based on statistically optimal decision rules can be used. In
this section, three algorithms are presented which are derived
from the model-based detection concept of [12]. In order
to determine an estimate of t0, these methods evaluate the
statistical properties of the measured SEMG signal before
and after a possible change in model parameters. Only basic
processing steps are described here (see [12] for details). The
specific implementations of the decision rules for the SEMG
signal model (see Figure 1 left) are given in the appendix.

For signal conditioning, all 3 methods employ an adap-
tive whitening filter for the reduction of irrelevant informa-
tion. Assuming optimal performance of the filter, the (re-
constructed) excitation signal (yk)k≥1 = (wk)k≥1 represents
a single realization of a statistically independent Gaussian
random process (Yk)k≥1. The statistical properties of an in-
dividual random variable Yk can be fully described by its
probability density function (PDF)

pσ(yk) = 1√
2πσ2(k)

e−y
2
k /2σ

2(k), (10)

which depends upon the (deterministic) variance profile
σ2(k). The model-based decision rules for this problem
depend on the a priori knowledge about the variance pro-
files σ2

0 (k) and σ2
1 (k, t0) before and after the change to be

detected.

Optimal estimator (EstOpt)

If the variance profilesσ2
0 (k) andσ2

1 (k, t0) are exactly known
(except the onset time t0), a statistically optimal decision rule

can be designed according to

ta = min
{
k ≥ 1 : gk ≥ h

}
,

gk = max
1≤j≤k

Skj ,

Skj =
1
2

k∑
i=j

[(
σ−2

0 (i)− σ−2
1 (i, j)

)
y2
i + ln

σ2
0 (i)

σ2
1 (i, j)

]
,

t̂0 = arg max
1≤j≤ta

Sta
j .

(11)

This detector referred to as EstOpt algorithm computes the
maximum likelihood (ML) estimate t̂0 of the unknown onset
time t0 provided that all remaining parameters of the signal
model are exactly known. The EstOpt decision rule is suited
for arbitrary but known dynamic variance profilesσ2

0 (k) and
σ2

1 (k, j), thus it shows optimal performance among all pos-
sible algorithms for sequential detection in this application.
Therefore, the EstOpt detector may serve as a reference for
performance rating. (Essentially, the test compares the log-
likelihood ratio

Skj =
k∑
i=j

ln
pσ1

(
yi, j

)
pσ0

(
yi
) (12)

between the two distributions before and after a possible
change at time j with a threshold h. Since the exact change
time t0 is unknown, it is replaced by its ML estimate, that is, a
maximum operator selects the largest value of the test func-
tion with respect to all possible change times 1 ≤ j ≤ k. Each
time a new data point yk is available, a test window with the
upper bound k fixed at the current observation and with its
lower bound j comprises all the observationsyj,yj+1, . . . , yk
after the hypothetical change time j. For each candidate j, the
log-likelihood ratio Skj is computed from the observations

within the test window. If the maximum of Skj with respect to
all hypothetical change times 1 ≤ j ≤ k exceeds the thresh-
old h, data acquisition stops and event alarm is given (alarm
time ta). The time j at which the maximum value is obtained
serves as the maximum likelihood estimate t̂0 of the unknown
change time t0.)

Approximated generalized likelihood-ratio detectors
(AGLRstep, AGLRramp)
If the variance profilesσ2

0 (k) andσ2
1 (k, j) are not known like

in EstOpt, they can be replaced by estimates. For this condi-
tion, the approximated generalized likelihood ratio (AGLR)
detector [20] is an appropriate tool to formulate the stopping
rule. First, the variance profiles are assumed to depend upon
several unknown parameters, that is,

σ2
0 (k) = σ2

0

(
k, θ0

)
,

σ2
1 (k, j) = σ2

1

(
k, j, θ1

)
.

(13)

The unknown parameter vector θ0, true up to t0, is estimated
from the firstM observations of the SEMG by ML techniques,
resulting in
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θ̂0 = arg sup
θ0

( M∑
i=1

lnpσ0

(
yi, θ0

))
, (14)

which is kept fixed throughout the remaining detection pro-
cedure. Next, a sliding window of fixed size W is continu-
ously shifted along the data sequence. For each location k of
the window, the ML estimate θ̂1 of the unknown parameter
vector θ1 after change is determined from the W data points
covered by the window, and the corresponding log-likelihood
ratio Ŝkk−W+1 is computed and compared with a threshold h.
Finally, after a change has been indicated, the exact change
time is estimated by an ML procedure from all possible can-
didates j ≤ ta. The AGLR decision rule can be summarized as

ta = min
{
k ≥ W : gk ≥ h

}
,

gk = Ŝkk−W+1,

Ŝkj = sup
θ1

1
2

k∑
i=j

[(
σ−2

0

(
i, θ̂0

)− σ−2
1

(
i, j, θ1

))
y2
i

+ ln
σ2

0

(
i, θ̂0

)
σ2

1

(
i, j, θ1

)],
t̂0 = arg max

W≤j≤ta

(
Ŝta+∆
j

)
,

(15)

where ∆ is an appropriate dead zone which ensures that a
minimum number of observations is available for parameter
estimation. Note that the maximization with respect toθ1 has
to be repeatedly performed for each combination (j, k) to be
tested. Therefore, the computational effort is dominated by
the number of operations required for computing θ̂1.

In this paper, two implementations of the AGLR decision
rule are used which differ in the complexity of σ2

1 (k, j). The
AGLRstep algorithm assumes a step-like variance profile with
constant but different variances before and after change. This
allows for a very efficient implementation of the method but
completely disregards the available information about the dy-
namic profile of the change itself. The AGLRramp algorithm
explicitly takes this information into account by assuming a
“ramp and hold”change profile. The unknown parameters θ1

of the transition are estimated from the actual observations.
Thus, comparison of the AGLRstep and AGLRramp methods
shows the advantage of using available information about the
change dynamics in the detection process. Their exact im-
plementations for the present signal model are given in the
appendix.

3. EVALUATIONOF DETECTION PERFORMANCE ON
SIMULATED SEMG RECORDINGS

3.1. Signal generation

All methods were tested for robustness and efficiency on a
set of simulated SEMG traces which were generated by us-
ing the signal model shown in Figure 1(left). The coefficients
of the shaping filter were determined from a representative
set of real SEMG data from a previous study [21] using

standard techniques of least squares parameter estimation
[17]. Model order was set to p = 8. A total number of 16000
segments, each consisting of 1000 data points (i.e., 1000 ms
record length) were generated. Figure 2 depicts the principle
and definitions. The response to be detected was modeled by
a rapid change in the variance σ2(k) from a pattern

σ2
0 (k) = σ2

noise (16)

to a new pattern

σ2
1

(
k, t0

) = σ2
noise + σ2

signalu
(
k, t0

)
, (17)

where t0 denotes the onset of the voluntary muscle activa-
tion, u(k, t0) describes the dynamic profile of the change,
and σ2

noise and σ2
signal are appropriate constants. The resting

activity σ2
noise 
 0 results from spontaneous firing of motor

units which occurs even if the muscle is not voluntarily acti-
vated. (Note that the usage of the term “noise” is technically
but not biologically motivated.) σ2

signal denotes the magni-
tude of the activation pattern. The dynamic change profile
was approximated by a unit ramp and hold transition

u
(
k, t0

) =


0 when k ≺ t0,(
k− t0

)
τ

when t0 ≤ k ≤ t0 + τ,

1 when k 
 t0 + τ,

(18)

where τ denotes the duration of the ramp. This finite slope
of the change profile reflects the limited dynamics within the
neuromuscular system [16], and τ was varied as it can be
observed in real data. The onset t0 of voluntary muscle acti-
vation was randomly varied between 400 ms and 600 ms, rel-
ative to the beginning of the trace. Change magnitude σ2

signal

was always set to 1 while background activityσ2
noise was varied

to create variable signal-to-noise ratios (SNR)

SNR = 10 · log10

σ2
signal

σ2
noise

[dB]. (19)

Several sets of simulated SEMG traces, each consisting of 4000
trials, were used for testing the onset detection algorithms.
The assessment of the onset detection accuracy was made
for the following range of parameters (referenced as Mixed
Trials):

• ramp duration τ uniformly distributed between 5 ms
and 30 ms,

• signal-to-noise ratio SNR uniformly distributed be-
tween 6 dB and 12 dB.

In particular, dependence on SNR and ramp duration were
studied. Sensitivity to SNR was investigated with the Mixed
SNR Trials data set:

• fixed ramp duration τ of 20 samples,
• SNR uniformly distributed between 6 dB and 12 dB.

Performance for extremely small SNR was evaluated with the
Fixed SNR Trials data set:
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Figure 2: Simulated SEMG.

• fixed ramp duration τ of 20 samples,
• fixed SNR of either 3 dB or 6 dB.

Sensitivity to ramp duration was investigated with the Mixed
Ramp Trials data set:

• ramp duration τ uniformly distributed between 5 ms
and 30 ms,

• fixed SNR of 10 dB.

All simulations were performed using MATLAB* (version
5.3, The MathWorks, Natick, MA) on an IBM-compatible PC.

3.2. Results of onset detection analysis

The aim of this paper is to objectively compare the perfor-
mance of commonly used onset detection methods. It should
be considered that several factors could influence detection
performance:

• algorithmic delay of onset detection,
• percentage of missed responses and false alarm rate,
• detection error bias, that is, average deviation between

estimated and true onset,
• reproducibility for signals with the same parameters,

• sensitivity of all attributes to SNR and onset ramp du-
ration.

The first two factors refer to the detection power of the al-
gorithm, that is, the ability of a method to signal an event
as early as possible (small delay of alarm time ta) com-
bined with a false alarm rate as low as possible. Actually,
due to the relatively high SNR, the majority of the simulated
SEMG responses could be detected within a reasonable time
range around the real onset, and the detection probability of
all algorithms was nearly 100%. We, therefore, focus on the
remaining 3 factors which are related to the accuracy of the
estimated change times t0.

Measures of detection performance

Figure 3 shows the probability density functions (PDFs) of
the onset error ε = t̂0 − t0 for all methods (Mixed Trials).
Two diagrams with different abscissa scales are used for im-
proved visibility. The optimal estimator EstOpt indicating the
upper performance limit provides a rather narrow distribu-
tion which is almost symmetrical to the origin. The AGLR-
ramp and AGLRstep methods are showing increasing asym-
metry and width of the distributions. While the PDF of the
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Figure 3: Probability density functions (PDFs) of onset estimation
errors for the Mixed Trials data set (SNR 6–12 dB, ramp duration
5–30 ms). Note the different abscissa scaling in (a) and (b).

AGLRramp method is still centered near the origin, the PDF
of AGLRstep is shifted towards higher onset errors. In the per-
formance ranking,Bonato and Lidierth follow with reasonable
results. Finally, Abbink shows worse results because the PDF
spreads to larger onset error values, and Hodges ranks low-
est because of a wide-spread distribution with additionally
strong (negative) bias.

Table 2 depicts mean and standard deviation of onset
estimation errors and the percentage of detected onsets with
an absolute error less than 100 ms for each method. The
100 ms limit was chosen because it comprises at least 99%
of all onset estimates computed from the Mixed SEMG Trials.
Note that, due to the very thin tail of the PDF, variations in
the limit will result in only minor variations of the result-
ing probability of detected onset. Analysis of the mean er-
rors in Table 2 shows that the AGLRramp algorithm provides

Table 2: Statistics for onset estimates based on SEMG data set
“Mixed Trials.”

Method
Detected Mean Error

onsets error STD

EstOpt 100.0% 0.6 ms 3.6 ms

AGLRramp 99.7% 0.2 ms 5.4 ms

AGLRstep 99.8% 4.2 ms 5.0 ms

Bonato 99.9% 4.0 ms 7.5 ms

Lidierth 98.9% 0.1 ms 11.1 ms

Abbink 99.6% 8.8 ms 10.4 ms

Hodges 99.9% −7.1 ms 11.8 ms

estimates very close to the “true” onset. AGLRstep, however,
yields a positive bias of 4.2 ms reflecting the fact that the step-
like change profile assumed by AGLRstep only represents an
approximation for the more gradual “true” change profile.
The improvement in bias obtained by using the more realis-
tic change pattern of the AGLRramp algorithm, however, is at
the expense of a slightly increased standard deviation. This
is because estimation of the additional parameter introduces
additional uncertainty to the final detection result.

The accuracy function

Pa = P
(∣∣t̂0 − t0

∣∣ ≤ a
)

(20)

shown in Figure 4 can be used as another measure of de-
tection performance. The accuracy function denotes the per-
centage of responses that were detected with an absolute error
smaller than or equal to a maximum tolerated error a for dif-
ferent values of a. For largea, the diagram reflects the general
ability of a method to detect an onset, whereas a particular
accuracy requirement of a method can specifically be assessed
at small values a. Thus, the more a curve approaches the up-
per left corner, the higher is the onset detection quality. As a
major result, the accuracy functions in Figure 4 confirm the
ranking already obtained from the PDFs shown in Figure 3.

Effect of signal to noise ratio

Figure 5 depicts the dependence of mean and standard de-
viation of the onset error on SNR (Mixed SNR Trials). All
methods show a systematic degradation of detection perfor-
mance for smaller SNR. Except the Hodges approach (sensi-
tivity to SNR of approximately 1 ms/dB), all methods show
a similar relative SNR sensitivity of the standard deviation
of approx. 0.5 ms/dB. Generally, the overall variability is sig-
nificantly smaller for the methods employing a whitening
filter (EstOpt, AGLRstep, AGLRramp, Bonato) and decreases
with increasing level of a priori knowledge used. Again, the
AGLRramp provides the smallest bias among all detectors
showing a zero mean estimation error close to the EstOpt ref-
erence (see Figure 5b). Most importantly, the AGLRramp de-
tector is the only approach which is nearly insensitive to SNR.
All other methods show biased results with an SNR sensitivity
of 0.3–0.8 ms/dB. The poor results of the Hodges approach
(sensitivity 3.3 ms/dB) demonstrate the general problem of
any simple adaptive threshold detector; the threshold level is
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Figure 4: Accuracy functions of onset estimates (Mixed Trials data
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curve is bent to the upper-left corner, the better is the onset detection
quality.

usually adapted to the background activity (noise) and thus
varies with SNR. The higher the noise level (decreasing SNR),
the larger the threshold and, consequently, the later the onset
will be detected.

Degradation of performance with smaller SNR is partic-
ularly obvious from the accuracy functions in Figure 6 (Fixed
SNR Trials). For SNR = 6 dB, all methods provided accept-
able results (see Figure 6a) but decreasing signal quality to
SNR = 3 dB promptly reveals their specific quality and ro-
bustness (see Figure 6b). The optimal reference EstOpt still
detects 93% (SNR 6 dB) and 82% (SNR 3 dB) of all onsets
with an accuracy of 10 ms. AGLRramp and AGLRstep follow
closely with a near-zero rate of undetected onsets. Even for the
3 dB trials, more than 98% of onsets are detected with an abso-
lute error less than 50 ms. But all the purely threshold-based
methods (Abbink, Bonato, Lidierth, Hodges) cannot compete
with likelihood-based methods; especially for the 3 dB situa-
tion, their performance deteriorates extremely.

Effect of change dynamics

Figure 7 illustrates the dependence of mean onset error on
ramp duration τ (Mixed Ramp Trials). AGLRramp is de-
signed to compensate change dynamics, and, thus results are
closest to those of EstOpt. But Bonato, Lidierth, and AGLRstep
show a similar small sensitivity to ramp duration, only Abbink
and Hodges are rather sensitive. Variability of onset estimates
(around mean onset error) was not affected by variations in
ramp duration.

Generally, changing SNR predominately affects the onset
error PDF width and the percentage of undetected (missed)
onsets, whereas increasing ramp duration leads to a delayed
onset detection (onset error bias).
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Figure 5: Dependence of onset estimation error on signal-to-noise
ratio (SNR) for the Mixed SNR Trials data set (SNR 6–12 dB, ramp
duration 20 ms).

4. EVALUATIONOF DETECTION PERFORMANCE
ON REAL SEMG RECORDINGS

4.1. Data acquisition

All methods were additionally tested on real SEMG records
obtained in a reaction time situation. Briefly, five subjects
without any sign of neurological deficits were examined. They
performed rapid stimulus initiated transient lateral abduc-
tions of the index finger in response to a bright visual “go”
signal displayed at random times. During the experiment,
the tip of the index finger was fixed to a lever which restricted
movement to the horizontal plane. SEMG activity of the first
dorsal interosseus (FDI) muscle was recorded using an active
surface electrode (Liberty Mutual MYO 111). SEMG signals
were digitized for a period of 6 s around the stimulus onset
with a sampling rate of 1000/s. After short practice, each sub-
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Figure 6: Dependence of accuracy functions on SNR for constant
ramp duration of 20 ms.

ject produced 120 single responses. The recorded data were
visually inspected and only those responses which were def-
initely initiated between 100 and 400 ms after stimulus pre-
sentation were included to the test data set comprising a total
number of 587 responses.

As a major handicap of real data, the true response onset
t0 is unknown and, therefore, the onset error ε = t̂0 − t0 as
used before cannot be determined. But performance of the
methods can be assessed on a relative basis; to this, the onset
error ε = t̂0−tref was computed as the deviation between the
onset estimates t̂0 provided by the tested methods and the
onset estimates tref visually determined by a human expert.
In order to maximize the percentage of correct detection of
the methods, their decision thresholds were set individually
by taking the smallest value h for which the number of de-
tected responses with alarm times −50 ≤ ta − tref ≤ 200 ms
was maximum. The resulting thresholds are summarized in
Table 3.
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Figure 7: Dependence of mean onset error on ramp duration. Eval-
uation of Mixed Ramp Trials data set (SNR of 10 dB, ramp duration
5–30 ms).

Table 3: Statistics for real SEMG data set.

Method Threshold h
Detected Mean Error

onsets error STD

AGLRramp 200 100.0% 0.4 ms 3.6 ms
AGLRstep 200 100.0% 0.5 ms 3.5 ms
Bonato 20 99.8 % −0.8 ms 5.5 ms
Lidierth 3 99.5 % −2.3 ms 6.9 ms
Abbink 30 98.6 % −0.6 ms 9.8 ms
Hodges 5 99.0 % −7.5 ms 9.3 ms

Figure 8 depicts two representative SEMG recordings.
Onset estimates obtained with each method are indicated by
markers. If the SEMG signal shows a large SNR and a steep
change profile, all methods provide onset estimates close to
the expert reference (see Figure 8a). If SNR decreases, on-
set estimates across methods will become more variable (see
Figure 8b). The performance of the methods in real data on-
set detection is depicted by histograms of the onset error
(see Figure 9a) showing the deviations of the computerized
methods from the expert’s reference and by the correspon-
ding accuracy functions (see Figure 9b). Mean errors and
standard deviations are summarized in Table 3. Consistently,
the majority of SEMG recordings of this particular paradigm
had large SNR and steep slopes like the sample recording
in Figure 8a. This is reflected by the very narrow error his-
tograms (see Figure 9a) and the rapidly increasing accuracy
functions (see Figure 9b) indicating satisfactory performance
for the majority of methods tested. Only the Hodges method
provided onset estimates which were significantly smaller
(7.5 ms on average) than the expert’s decision, as indicated
by the skewed error distribution (see Figure 9a). The ranking
of methods is consistent with the ranking already obtained
in the simulation study attesting highest performance to the
GLR-based methods followed by the Bonato approach. Note
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Figure 8: Raw SEMG signals obtained in a reaction time experiment:
two sample traces (a) and (b) with different SNR. Onset estimates
of each method are indicated by markers. Dotted lines indicate the
expert’s reference.

the small difference between the AGLRramp and AGLRstep
algorithm indicating steep response profiles close to the step-
like pattern of assumed by the AGLRstep method.

5. DISCUSSION

All methods perform well in detecting the onset time in good
quality SEMG signals; thus, the difficulty to decide on the
appropriate method appears with low SNR when SEMG sig-
nals are disturbed for some reason. In any case, the choice is
also dependent on implementation issues like method com-
plexity, real-time implementation capability, and the required
CPU performance.

Simple threshold-based methods are very popular be-
cause of their intuitive and easy implementable structure. In
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Figure 9: Analysis of deviations between estimated change times
and expert’s reference obtained on real SEMG signals with different
computerized detectors.

most cases, SEMG signals have a good SNR, so these methods
are well applicable with the main limitation that SNR should
be larger than 10 dB. But SEMG of small and deep muscles
as well as SEMG recorded in patients with neuromuscular
diseases may not fit into this SNR requirement, which calls
for application of more sophisticated approaches.

Generally, purely threshold-based methods represent a
tradeoff between detection precision and detection proba-
bility. A relatively low threshold level results in early onset
detection but also causes more false alarms. High threshold
levels, however, will usually lead to delayed or even missed
onset detection. Although this delay can be partly compen-
sated by subtracting an appropriate constant value from the
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alarm time, the large variability of resulting change time esti-
mates and their systematic dependence on change dynamics
confine the application of simple threshold-based methods if
SNR is low and/or highly accurate change time estimation is
required.

Analysis of simulated as well as real SEMG data showed
that appropriate signal conditioning of the measured raw
SEMG is a prerequisite for high detection performance. Low-
pass filtering the (full-wave-rectified) SEMG before com-
puting the test function substantially reduces the risk of
false alarms. But it causes a very smooth incline of the
pre-processed signal near the onset and thus will lead to
increased variability of estimated change times. Simple-
threshold detectors like Hodges are known for their results
being very sensitive to the parameters of the lowpass filter
used [13]. The Abbink approach suffers from this dilemma,
too, despite of the more sophisticated change time estimation
procedure.

Application of an adaptive pre-whitening filter proved to
be superior to the less specific lowpass filter. Simulations with
white Gaussian SEMG signals have shown that Bonato and
Lidierth almost have the same onset error distribution,
which is a consequence of their resembling detection strate-
gies. Analysis of the more realistic colored SEMG data (see
Figure 4) as well as analysis of real SEMG signals (see
Figure 8) demonstrated the distinct performance gain of Bon-
ato due to the use of an appropriate pre-whitening filter. Gen-
erally, the implicit highpass characteristic of the whitening fil-
ter preserves or even improves change dynamics as desired but
accentuates the higher frequencies of possibly superimposed
additive noise [22]. Therefore, we can expect good perfor-
mance of the whitening filter provided that the noise is small
compared to the variance profile σ2(k).

If higher robustness to changes in signal parameters and
high detection precision is required, a pre-whitening filter
together with a statistically optimized decision rule is the
first choice. Consistently, the two model-based approaches
AGLRstep and AGLRramp provided higher detection power
and more accurate change time estimates than the unspe-
cific detectors both for the simulated and real SEMG signals.
Particularly, these methods were most robust with respect to
variations in signal properties such as SNR and change dy-
namics. However, model-based approaches are usually asso-
ciated with higher computational efforts, particularly, when
the dynamic of the change is not known and has to be esti-
mated from the data. Results show only minor loss of per-
formance for the computationally more efficient AGLRstep
algorithm compared to the more specific but more complex
AGLRramp algorithm. In order to reduce the computational
effort of such more complex parametric detectors, a step-like
stopping rule according to (31) may be combined with the
ML change time estimator as shown in (37). This allows for
an efficient implementation of the detection procedure, since
the time-consuming estimation of the onset shape profile is
only initiated once a change has been indicated.

An important aspect of computerized onset detection
is post-processing. Generally, combining an arbitrary stop-
ping rule with a post-processor testing multiple alarm/change

times for their plausibility can improve detection perfor-
mance. Particularly, the detection threshold can be reduced
since false alarms can be partly compensated by the post-
processor. The use of an adequate post-processor is par-
ticularly important when the SEMG signal contains mul-
tiple changes indicating different levels of muscle activa-
tion. In this case, the detection unit produces a sequence
of change times indicating possible transitions between dif-
ferent levels of muscle activation. A post-processor then
groups the segments according to their variance merging
segments with similar variance together. Combinations of
GLR-based decision rules and post-processor have been suc-
cessfully applied for the detection of pre-motor silent peri-
ods in SEMG signals [22] and for the detection and classi-
fication of events in the uterine EMG [23]. But any of the
post-processors presented is also dependent on signal con-
ditioning and alarm time generation. This means that any
impairment caused by signal conditioning will nevertheless
affect detection.

6. EPILOGUE: DESIGN, PRESENTATION, AND
COMPARISONOF ALGORITHMS

“An algorithm must be seen to be understood and the best
way to learn how an algorithm works is to play with it.”
(Donald Knuth, in “The Art of Computer Programming,”
[24]).

Every algorithm has embedded parameters, and it works
only properly if these parameters are appropriately chosen.
“Good” parameters are often determined by trial and error
using simulated data. Despite the importance of finding and
choosing the right parameters, usually little emphasis is de-
voted to this step by papers about algorithms, presumably
because there is no clear mathematical theory behind it (i.e.,
scientifically accepted).

The presentation of algorithms to the scientific commu-
nity is usually done by writing about

(1) the practical and mathematical background,
(2) a useful class of models,
(3) a description of the algorithm(s),
(4) a theoretical analysis of the behavior in some limiting

cases,
(5) a table of numbers showing the performance of the al-

gorithm tested on simulated data, while keeping some
parameters in the signal model and the algorithm
fixed,

(6) as in (4), but also with information about competing
algorithms,

(7) a plot of a signal together with the corresponding
output of the algorithms in question.

What typically is missing is a tool

(a) to check and interactively change the signal and to
find good parameters for the algorithms for other ap-
plications,

(b) to compare different algorithms with arbitrary com-
binations of parameters,
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(c) to check the behavior of the algorithm(s) with real

data.

These aspects are even more valid in the case of on-line
algorithms. In the statistical community, new ways to present
results using the internet were emphasized [25], and several
groups are currently working on software tools which allow
a user with any standard browser to visualize and change sig-
nals and algorithms. To our experience, systematically but
inductive trying of all the parameters in both the model
and the algorithm yields quickly an idea about interesting
neighborhoods in parameter space, quality, and stability of an
algorithm. Software tools appropriate for this purpose should
be easy to use and should not require a comprehensive instal-
lation procedure: neither many researchers nor referees do
have the time to reprogram a new algorithm in their own
favorite programming environment to evaluate new signal
processing procedures. To illustrate this point, an onset de-
tection program designed in MATLAB* will be made avail-
able to the readers by the authors, which allows to visual-
ize the model described above, to change its parameters and
to see the output of some selected algorithms. Using such
tools simplifies to assess an algorithm or method, but requires
to own a MATLAB* license up to now. But there are some
developments to overcome this problem (e.g., compiler ver-
sion) in near future, which will allow the software package to
be made available through the internet.

APPENDIX

In this section, the implementation of the AGLRstep and
AGLRramp decision rules for the present signal model are
shortly described.

The structure of the tests depends upon the variance pro-
files before and after the response onset t0 which, according
to the process model, are

σ2
0 (k) = σ2

noise, (21)

σ2
1

(
k, t0

) = σ2
noise + σ2

signalu
(
k, t0

)
, (22)

respectively. The variance pattern σ2
0 (k) before change (i.e.,

response onset) depends upon a single parameter

σ2
0

(
k, θ0

) = θ0 = constant, (23)

which is equal to the unknown variance σ2
noise. The ML

estimate of θ0 can be obtained from the initial M data points
according to

θ̂0 = arg sup
θ0

M∑
i=1

−1
2

(
lnθ0 +

y2
i

θ0

)
. (24)

Differentiation with respect to θ0 and solving the resulting
likelihood equation

1
2

 1

θ2
0

M∑
i=1

y2
i −

M
θ0

 = 0 (25)

leads to

σ2
0

(
k, θ̂0

) = θ̂0 = 1
M

M∑
i=1

y2
i . (26)

Thus, the estimated variance profile before change is equal to
the average signal energy within the reference window.

Determination of the variance pattern σ2
1 (k, j) after

change is more complicated since it depends upon the dy-
namic change profile u(k, j) which, generally, is not known.
This issue is addressed in the next paragraphs.

AGLRstep detector

The AGLRstep detector simply assumes an approximately
constant variance profile of unknown magnitude θ1 after
change, that is,

σ2
1

(
k, j, θ1

) = θ1 = const. (27)

In this case, the log-likelihood ratio in (14) can be written as

Ŝkj = sup
θ1

1
2

k∑
i=j

[(
θ̂−1

0 − θ−1
1

)
y2
i + ln

θ̂0

θ1

]
, (28)

where θ̂0 is the estimated variance before change according
to (26). Maximization with respect to θ1 is explicitly possible
by replacing θ1 by its ML estimate

θ̂1(j, k) = 1
k− j + 1

k∑
i=j

y2
i , (29)

which leads to

Ŝkj =
k− j + 1

2

(
θ̂1(j, k)
θ̂0

− ln
θ̂1(j, k)
θ̂0

− 1

)
. (30)

Thus, the AGLRstep decision rule can be summarized as

ta = min
{
k ≥ W : gk ≥ h

}
,

gk = Ŝkk−W+1,

Ŝkj =
k− j + 1

2

(
ρ̂(j, k)− ln ρ̂(j, k)− 1

)
,

t̂0 = arg max Ŝta+∆
j ,

(31)

where

ρ̂(j, k) = θ̂1(j, k)
θ̂0

=
(
1/(k− j + 1)

)∑k
i=j y2

i

(1/M)
∑M
i=1 y

2
i

(32)

denotes the ratio between the estimated variances before
(reference window) and after change (test window), respec-
tively. This decision rule can be implemented in a completely
recursive manner. The AGLRstep algorithm was implemented
with parameters W = 25, h = 10, ∆ = 100, and M = 200.
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AGLRramp detector

The AGLRramp detector uses a more complex test function
which also takes the dynamic change profile into account. It
assumes that the shape u(k, j) of the additive change in the
variance profile is known but its exact magnitude σ2

signal is
unknown, that is,

σ2
1

(
k, j, θ1

) = θ0 + θ1u(k, j). (33)

Then, the log-likelihood ratio in (14) can be rewritten as

Ŝkj = sup
θ1

1
2

k∑
i=j

[(
1

θ̂0
− 1

θ1u(i, j)+ θ̂0

)
y2
i

+ ln
θ̂0

θ1u(i, j)+ θ̂0

]
,

(34)

where the unknown magnitude θ1 is the only parameter to
be determined. Differentiating the log-likelihood ratio with
respect to θ1 results in a likelihood equation which cannot be
explicitly solved. Therefore,θ1 is estimated from the observed
sequence according to

θ̂1(j, k) =
∑k
i=j
(
y2
i − θ̂0

)
∑k
i=j u(i, j)

(35)

by exploiting the statistical independence of the data se-
quence. The resulting AGLR decision rule for the detection of
an additive change with known dynamic profile but unknown
magnitude is

ta = min
{
k ≥ W : gk ≥ h

}
,

gk = Ŝkk−W+1,

Ŝkj =
1
2

k∑
i=j

[(
s

1

θ̂0
− 1

θ̂1u(i, j)+ θ̂0

)
y2
i

+ ln
θ̂0

θ̂1u(i, j)+ θ̂0

]
,

θ̂1(j, k) =
∑k
i=j
(
y2
i − θ̂0

)
∑k
i=j u(i, j)

,

t̂0 = arg max
W≤j≤ta

Ŝta+∆
j ,

(36)

where θ̂1(j, k) is individually determined for each combina-
tion (j, k) according to (35).

If the exact profile is also unknown, the test may in-
clude more maximizations which determine the ML esti-
mates of the unknown parameters, too. Particularly, u(k, j)
may be replaced by a set of N template profiles u(k, j)(n),
n = 1,2, . . . , N, together with an additional maximization
which selects the most likely template according to

Ŝkj = max
1≤n≤N

1
2

k∑
i=j

[(
1

θ̂0
− 1

θ̂(n)1 u(i, j)(n) + θ̂0

)
y2
i

+ ln
θ̂0

θ̂(n)1 u(i, j)(n) + θ̂1

]
.

(37)

The AGLRramp algorithm was implemented with parameters
W = 25, h = 10, ∆ = 100, M = 200, and a set of N = 8
shaping functions with ramp durations τ = 5,10, . . . ,40 ms.
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