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This paper investigates the nonlinear effects of the Least Mean Square (LMS) adaptive predictor. Traditional analysis of the adaptive
filter ignores the statistical dependence among successive tap-input vectors and bounds the performance of the adaptive filter by
that of the finite-length Wiener filter. It is shown that the nonlinear effects make it possible for an adaptive transversal prediction
filter to significantly outperform the finite-length Wiener predictor. An approach is derived to approximate the total steady-state
Mean Square Error (MSE) for LMS adaptive predictors with stationary or chirped input signals. This approach shows that, while the
nonlinear effect is small for the one-step LMS adaptive predictor, it increases in magnitude as the prediction distance is increased.
We also show that the nonlinear effect of the LMS adaptive predictor is more significant than that of the Recursive Least Square
adaptive predictor.
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1. INTRODUCTION

The Least Mean Square (LMS) adaptive filter is widely
used in many applications partly due to the simplicity of
its implementation [1]. The simplicity belies the fact that
the adaptive LMS filter is a complex nonlinear estimator
[2, 3, 4, 5, 6, 7, 8, 9]. Traditional analysis of adaptive filter
performance is restricted to a statistical analysis of the LMS
algorithm under a set of independence assumptions that ig-
nore the statistical dependence among successive tap-input
vectors [1]. The Mean Square Error (MSE) of the LMS adap-
tive filter using these assumptions is bounded by that of the
corresponding finite-length Wiener filter, and the MSE of the
adaptive filter increases monotonically as a function of the
adaptation step-size. While simulations show that this sim-
plified analysis predicts the performance reasonably well in
many applications for small step-size, it was shown that in
some applications there is a large discrepancy between the

simulation results and what the independence analysis pre-
dicts [2, 3, 4, 5, 6, 7, 8, 9]. The reason for the discrepancy is
that these well-known assumptions mask the nonlinear ef-
fects that arise in LMS adaptive filters. It has been shown
that it is possible for the LMS adaptive filter to outperform
the finite-length Wiener filter in MSE for the cases of adap-
tive channel equalization for sinusoidal and first-order au-
toregressive process (AR1) interference suppression [9], and
adaptive noise cancellation for narrowband AR1 signals when
the primary and reference signals have slightly different fre-
quencies [7]. An error transfer function approach is also de-
rived in [9] to give an approximate expression for the total
steady-state MSE of the LMS adaptive channel equalizer.

In this paper, the nonlinear effects in a third application
of adaptive filters, adaptive prediction, is studied. The class of
input signals which will be considered for adaptive prediction
are the stationary and chirped narrowband input signals for
varying chirp rates and bandwidth. This class of signals has
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been used to represent a signal whose spectrum is frequency
offset and shifted with time in a nonstationary mobile com-
munications environment [10, 11]. They are different from
those considered in [2, 3, 4, 5, 6, 7, 8, 9] because they have
a time-varying Power Spectral Density (PSD). Since they do
not have a fixed PSD, the error transfer function approach [9]
is not directly applicable. However, since the chirped signal
has a constant spectral shifting rate, this special class of non-
stationary inputs can be analyzed as stationary inputs by an
unchirped transform defined below. It is proven in this paper
that the MSE of the standard LMS adaptive predictor with
a chirped input signal is equal to the MSE of a transformed
LMS adaptive predictor with the corresponding stationary in-
put signal. An error transfer function approach is derived for
the transformed LMS algorithm with stationary input signals
so as to approximate the MSE of chirped signal prediction.
To bound the performance of the LMS adaptive predictor,
the MSE of the optimal estimator (the infinite-length one-
step causal Wiener predictor) is calculated.

To compare the magnitude of nonlinear effects of the
LMS and RLS adaptive predictors, the error feedback transfer
function is also derived for the RLS algorithm. By comparing
the contributions of past errors to the current estimates in
the two algorithms, it is shown that the LMS algorithm uses
information from past prediction errors more effectively than
the RLS algorithm.

2. BACKGROUND

The adaptive predictor application considered is the adap-
tive recovery of narrowband signals from embedded Additive
White Gaussian Noise (AWGN). The narrowband input sig-
nal is modeled as an AR1 process. It is shown in [11] that
the AR1 process provides a reasonable approximation to a
BPSK communication signal. The AR1 process satisfies the
recursive equation

sn = asn−1 + νn, (1)

where νn is a white noise process, with σ2
ν = Ps(1 − |a|2)

and Ps is the power of the AR1 process. The correspond-
ing chirped AR1 signal scn, where superscript c denotes the
chirped signal, has the following form [11]:

scn = aΩΨn−(1/2)scn−1 + νcn, (2)

where Ω = ejω0 , ω0 defines the initial center frequency
of the spectrum, Ψ = ejψ, ψ is the chirp rate which lin-
early shifts the center frequency with time, and νcn is a white
noise process with the same statistics as νn. This chirped
AR1 signal can be used to represent a signal whose spectrum
is frequency offset and shifted with time in a nonstation-
ary mobile communications environment. The chirped AR1
process and chirped sinusoid have been used to study the
tracking behavior of adaptive filters because they provide an
input signal with a single constant nonstationary component
[11, 12, 13, 14, 15]. Chirped signals are also used in con-
junction with OFDM communications and radar systems to
optimize power transmission over a wide bandwidth when
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Figure 1: LMS/RLS ∆-step predictor structure.

the propagation medium is time-varying [10].
At the receiver the signal is given by

xcn = scn +nn, (3)

where nn is the AWGN process with power Pn.
Figure 1 represents the linear ∆-step adaptive predictor

structure to be analyzed, where Wc(n) are the adaptive filter
weights. The weight update equation of the LMS algorithm is

Wc(n+ 1) = Wc(n)+ µXc∗(n)ecn, (4)

where µ is the step-size parameter of the adaptive algorithm,
Xc(n) is the adaptive filter input tap-vector at time n, and ∗
denotes the complex conjugate. For the ∆-step predictor,

Xc(n) =




xcn−∆
xcn−(∆+1)

...
xcn−(∆+M−1)



. (5)

The error update equation is given by

ecn+1 = xcn+1 −WcT (n+ 1)Xc(n+ 1). (6)

The finite-length Wiener predictor weight and the corre-
sponding MSE are given as

Wc
0 (n) = [Rc(n)]−1Pc(n),

Jcw(n) = Ps + Pn − Pc(n)HWc
0 (n),

(7)

where Rc(n) is the autocorrelation matrix of the input sig-
nal vector Rc(n) = E[Xc∗(n)XcT (n)], Pc(n) is the cross-
correlation of the input signal vector with the desired re-
sponse Pc(n) = E[Xc∗(n)xcn], and Jcw(n) = E[|xcn −
[Wc

0 (n)]TXc(n)|2] is the MSE of the finite-length Wiener
predictor. By setting ω = 0 and ψ = 0, R is the autocorrela-
tion matrix of the corresponding stationary baseband input
signal xn, P is the cross-correlation vector, Wiener predictor
is W0 = R−1P , and the Wiener MSE is Jw . It has been shown
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[11] that Jcw(n) of the Wiener predictor for the chirped in-
put signal xcn is equal to Jw of the Wiener predictor for the
corresponding stationary baseband input signal xn.

3. THE LMS PREDICTOR FOR CHIRPED
INPUT SIGNALS

The error transfer function approach derived in [9] provides a
method to approximate the total steady-state MSE of the LMS
adaptive filter without explicitly invoking the independence
assumptions for wide-sense stationary input signals, that is,
signals with a fixed PSD. For a chirped input signal xcn, the
PSD is constantly shifting with time, and this approach is not
directly applicable. However, the adaptive recovery of a nar-
rowband chirped signal using a ∆-step transversal predictor
has one important characteristic, that is, the frequency off-
set among the input signal taps is the chirp rate ψ, and the
frequency offset between the desired response xcn and input
signal vectorXc(n) is∆×ψ. By multiplying the chirped input
signal by a negative frequency offset sequence, we can trans-
form the chirped signal scn to its stationary form sn and leave
the noise component nn unchanged since the AWGN has a
constant spectral envelope across all frequencies. In the fol-
lowing, it is shown that the above transform will not change
the MSE of the LMS adaptive predictor for a chirped input
signal. This allows the error transfer function approach to be
applied to rotated LMS algorithm with the transformed input
signals in order to approximate the MSE of the standard LMS
adaptive predictor with chirped input signals.

3.1. Equivalence of MSEs

For a chirped input signal xcn = scn + nn, n = 0,1,2, . . . ,
where scn has initial center frequencyω0 and chirp rateψ, we
define a transformed process,

xun = Ω−nΨ−n
2/2xcn, n = 0,1,2, . . . , (8)

where superscript u denotes the unchirped process. This op-
eration will transform the chirped input signal to a stationary
baseband signal, and it will change the formulation of the
standard LMS algorithm in (4) and (6).

Multiplying (6) byΩ−(n+1)Ψ−(n+1)2/2, and defining eun =
Ω−nΨ−n2/2ecn, n = 0,1,2, . . . (which is the transformed ver-
sion of the predictor error signal for chirped input process
using the LMS adaptive predictor), this transforms (6) to

eun+1 = xun+1 −WuT (n+ 1)Xu(n+ 1). (9)

In (9),

Wu(n+ 1)

=diag
{
Ω−∆Ψ−(n+1)2/2+[n−(∆−1)]2/2,

Ω−(∆+1)Ψ−(n+1)2/2+[n−∆]2/2,
...

Ω−(∆+M−1)Ψ−(n+1)2/2+[n−(∆+M−2)]2/2
}
Wc(n+ 1)

(10)

is the corresponding predictor weight in the transformed do-
main and

Xu(n+1) =




Ω−[n−(∆−1)]Ψ−[n−(∆−1)]2/2xcn−(∆−1)
Ω−(n−∆)Ψ−(n−∆)2/2xcn−∆

...
Ω−[n−(∆+M−2)]Ψ−[n−(∆+M−2)]2/2xcn−(∆+M−2)




(11)
is the transformed version of the chirped input signal vector
Xc(n+ 1). Applying (8) to the vector elements in Xc(n+ 1)
results in stationary baseband signals.

Using (10) and (11), (4) can be shown to become

Wu(n+ 1) = V∗∆
[
Wu(n)+ µXu∗(n)eun

]
, (12)

where

V∆
∆= Ψ∆−1 diag

{
Ψ1,Ψ2, . . . ,ΨM

}
(13)

is the chirp rotation matrix. Since eun is the transformed ver-
sion of ecn, they have the same power, that is,

E
[∣∣eun∣∣2] = E[∣∣Ω−nΨ−n2/2ecn

∣∣2] = E[∣∣ecn∣∣2]. (14)

Consequently, the MSE of the LMS adaptive predictor with a
chirped input signalxcn is equal to the MSE of a different LMS
adaptive predictor with a corresponding stationary baseband
input signal xun . Note that the two adaptive predictors have
the same length M and step-size µ. Equations (9) and (12)
define the error and weight vectors of the rotated LMS adap-
tive predictor. The only difference between these equations
and the standard LMS adaptive predictor for stationary input
signals as in (4) and (6) is that the weight vector is rotated
in frequency by the chirp matrix V∆ after each normal LMS
update, as shown in Figures 2 and 3.

3.2. Error transfer function approach for the rotated
LMS adaptive predictor

First, we decompose the rotated LMS adaptive predictor
weight into the sum of a time-invariant finite-length Wiener
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Figure 2: Rotated LMS ∆-step predictor structure.
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Figure 3: Rotation of weight updates in rotated LMS adaptive pre-
dictor.

predictor weight and a time-varying misadjustment compo-
nent

Wu(n) = W0 +Wu
mis(n). (15)

Wu
mis(n) is further decomposed as

Wu
mis(n) = W̄u

mis(n)+ W̃u
mis(n), (16)

where W̄u
mis(n) = E[Wu

mis(n)] is the mean weight misad-
justment corresponding to the weight fluctuation caused
by weight rotation. From (12), the weight misadjustment is
given by

Wu
mis(n+ 1) = V∗∆

{[
I− µXu∗(n)XuT (n)]Wu

mis(n)

+ µXu∗(n)e0

}
− (I−V∗∆

)
W0,

(17)

where I is the identity matrix. The mean weight misadjust-
ment is

W̄u
mis(n+ 1) = V∗∆(I− µR)W̄u

mis(n)−
(
I−V∗∆

)
W0, (18)

when n→∞, that is, the adaptive filter reaches steady state,

W̄u
mis = W̄u

mis(∞) = −(Λ+ µR)−1ΛW0, (19)

whereΛ ∆= V∆−I. Note that in (18), it is assumed that W̄u
mis(n)

is independent of Xu∗(n)XuT (n), and it is not necessary for
W̄u

mis(n) to be independent of Xu(n). This steady-state mean
weight misadjustment term corresponds to the lag weight
misadjustment of the LMS adaptive predictor with a chirped
input process as shown in [12].

The recursive weight update equation (12) can be written
as

Wu(n) = V∗∆
[
Wu(n− 1)+ µXu∗(n− 1)eun−1

]

= V∗n∆ Wu(0)+ µ
n−1∑
j=0

V
∗(n−j)
∆ Xu

∗
(j)euj .

(20)

The adaptive filter output is

yun = WuT (0)V∗n∆ Xu(n)+ µ
n−1∑
j=0

euj X
uH(j)V∗(n−j)∆ Xu(n).

(21)

At steady state, V∗n∆ Wu(0) can be replaced with W0 + W̄u
mis,

thus the error process eun satisfies the recursive difference
equation

eun + µ
n−1∑
j=0

euj X
uH(j)V∗(n−j)∆ Xu(n)

= xun −
[
W0 + W̄u

mis

]TXu(n).
(22)

Using the approximations [9]

XuH(j)Xu(n) ≈ Mrux (n− j),
V∆ ≈ Ψ∆+(M−1)/2I, ψ� 1,

(23)

where rux (k) is the autocorrelation of the stationary input
signal xun , we have

XuH(j)V∗(n−j)∆ Xu(n) ≈ Mrcx(n− j), (24)

where

rcx(n− j)
∆= Ψ−(∆+(M−1)/2)(n−j)rux (n− j). (25)

Equation (22) can be approximated by a standard difference
equation with constant coefficients as

eun+µM
n−1∑
j=0

rcx(n− j)euj = xun −
[
W0+ W̄u

mis

]TXu(n). (26)

The left-hand side of (26) is the convolution of [eun, e
u
n−1,

eun−2, . . . , e
u
0 ] with [1, µMrcx(1), µMrcx(2), . . . , µMrcx(n)].

We can interpret the steady-state (n→∞) rotated LMS adap-
tive predictor error eun as the output of a time-invariant linear
system with transfer function H(z) driven by the wide-sense
stationary error processxun−[W0+W̄u

mis]TXu(n),whereH(z)
is given by

H(z) = 1
1+ µMR(z) , (27)

R(z) =
∞∑
m=1

rcx(m)z−m. (28)

The steady-state MSE of the rotated LMS adaptive predictor
is thus

Jlms=
1

2πj

∮
|z|=1

|H(z)|2
∣∣1−W0(z)− W̄u

mis(z)
∣∣2Suxx(z)

dz
z
,

(29)

where

W0(z) =
M+∆−1∑
j=∆

W0(j)z−j,

W̄u
mis(z) =

M+∆−1∑
j=∆

W̄u
mis(j)z

−j
(30)
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are the transfer functions of the finite-length Wiener pre-
dictor and mean weight misadjustment of the rotated LMS
adaptive predictor, respectively. Suxx(z) is the PSD of the sta-
tionary input processxun transformed from the chirped input
signal xcn.

The error transfer function approach can also be ap-
plied to the Normalized LMS (NLMS) algorithm as defined
below [9]

Wc(n+ 1) = Wc(n)+ µ
‖Xc(n)‖2

Xc
∗
(n)ecn (31)

with

H(z) = 1
1+ µR(z)/(Ps + Pn)

. (32)

4. BOUND OF THE ∆-STEP ADAPTIVE PREDICTOR

Using the recursive equations (4) and (6), it follows from [8]
that the LMS adaptive predictor is a nonlinear estimator
of xcn. The estimate is a function of all the past samples it
used in the recursion: {xcn−1x

c
n−2 · · ·xc−∞}. Denoting Clms

as the LMS estimator, we have

x̂n = Clms
[
xcn−1, x

c
n−2, . . . , x

c
−∞
]

(33)

and the estimation MSE is given by Jlms = E[|ecn|2].
The optimal MSE estimator Copt using the same data as

the adaptive predictor is given by

yn = Copt
[
xcn−1, x

c
n−2, . . . , x

c
−∞
]

= E[xcn | xcn−1, x
c
n−2, . . . , x

c
−∞
]
.

(34)

For wide-sense stationary input process, the performance of
∆-step prediction is bounded by that of the optimal MSE esti-
mator, which is the one-step infinite-length Wiener predictor.
The optimal estimator is independent of the prediction dis-
tance ∆.

Since the finite-length Wiener predictor is not recursive,
it can be written as

x̂n = E
[
xcn | xcn−∆, xcn−(∆+1), . . . , x

c
n−(∆+M−1)

]
. (35)

To illustrate that the nonlinear effect is small for the
one-step LMS adaptive predictor, but increases in magni-
tude as the prediction distance ∆ is increased, Figures 4
and 5 delineate the data utilized by the adaptive predictor,
the finite-length Wiener predictor and the optimal estima-
tor for one-step and ∆-step prediction (∆ > 1). Figure 4
shows that for one-step prediction of xcn, the data avail-
able to the adaptive predictor and the optimal estimator
but not available to the finite-length Wiener predictor is de-
fined by the sequence [xcn−M,x

c
n−(M+1), . . . , x

c−∞]. The con-
tribution of this signal segment to the prediction of xcn
is negligible because the correlation of the desired signal
and the data segment is small. In contrast, for multiple-
step prediction shown in Figure 5, the additional data which
is available to the adaptive predictor and the optimal es-

· · · xcn−(M+3)x
c
n−(M+2)x

c
n−(M+1)x

c
n−M · · · xcn−3 x

c
n−2 x

c
n−1xcn

o

o

o

x̂finite-Wiener = E[xcn | xcn−1, x
c
n−2, . . . , x

c
n−M]

x̂optimal = E[xcn | xcn−1, x
c
n−2, . . . , xc−∞]

x̂adaptive = Cadaptive[xcn | xcn−1, x
c
n−2, . . . , xc−∞]

Figure 4: Information utilized by one-step adaptive predictor,
finite-length Wiener predictor, and optimal estimator. The data seg-
ment marked by arrows is the information available to adaptive
predictor and optimal estimator, but not available to finite-length
Wiener predictor in the prediction of xcn.

· · · xcn−(∆+M) x
c
n−(∆+M−1)· · ·xcn−(∆+1)x

c
n−∆ x

c
n−(∆−1) · · ·xcn−2x

c
n−1xcn

o

o

o

x̂finite-Wiener = E[xcn | xcn−∆, xcn−(∆+1), . . . , x
c
n−(∆+M−1)]

x̂optimal = E[xcn | xcn−1, x
c
n−2, . . . , xc−∞]

x̂adaptive = Cadaptive[xcn | xcn−1, x
c
n−2, . . . , xc−∞]

Figure 5: Information utilized by ∆-step adaptive predictor, finite-
length Wiener predictor, and optimal estimator. The data segments
marked by arrows are the information available to adaptive predictor
and optimal estimator, but not available to the finite-length Wiener
predictor in the prediction of xcn.

timator but not available to the finite-length Wiener pre-
dictor has two components, [xcn−1, x

c
n−2, . . . , x

c
n−(∆−1)] and

[xcn−(∆+M),x
c
n−(∆+M+1), . . . , x

c−∞]. The main contribution to
the prediction of xcn is the first term, because for a narrow-
band signal, the correlation of the first term with xcn is much
larger than the correlation of xcn with the second term. Note
also that the correlation of xcn with the first component is also
larger than the correlation of xcn with the predictor input sig-
nal [xcn−∆, x

c
n−(∆+1), . . . , x

c
n−(∆+M−1)]. With an increase in

the prediction distance ∆, there will be more information
available to the adaptive predictor than to the finite-length
Wiener predictor, and consequently the adaptive predictor
may outperform the finite-length Wiener predictor. Con-
versely, the adaptive predictor performance is bounded by
the one-step infinite-length Wiener predictor since they uti-
lize the same amount of information and there is misadjust-
ment noise associated with the adaptive predictor. Note that
Figures 4 and 5 are also applicable to RLS adaptive predictors,
that is, for one-step and multiple-step predictions. The LMS
and RLS adaptive predictors use information from the same
input data, so that any performance difference between these
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two algorithms must be explained from their difference in
adjusting the filter weights according to the feedback errors.

5. THE COMPARATIVE PERFORMANCE OF THE LMS
AND RLS ALGORITHMS

For simplicity, we only compare the two adaptive algorithms
with stationary input signals xn. The weight update equation
of the exponentially weighted RLS adaptive algorithm is given
by [1]

W(n+ 1) = W(n)+Φ−1(n)X∗(n)en, (36)

whereΦ(n) =∑n
i=0 λn−iX∗(i)X(i)T is the input signal auto-

correlation matrix estimate at time n, and λ is the forgetting
factor of the RLS algorithm. Decompose the weight vector
as

W(n) = W0 +Wmis(n). (37)

The predictor error is

en = xn −WT(n)X(n)

= xn −WT
0 X(n)−

n−1∑
j=0

ejXH(j)Φ(j)X(n).
(38)

The steady-state error update equation of the RLS adaptive
predictor is given by

en +
n−1∑
j=0

ejXH(j)Φ−1(j)X(n) = xn −WT
0 X(n). (39)

The following two approximations are used at steady state:

Φ−1(j) ≈ (1− λ)R−1,

XH(j)Φ−1(j)X(n) ≈ (1− λ) trace
(
R−1E

[
X(n)XH(j)

])
.

(40)

Defining cr(j) = (1−λ) trace(R−1E[X(n)XH(n− j)]), (39)
becomes

en +
∞∑
j=1

en−j crj = xn −WT
0 X(n). (41)

To show the difference of the two algorithms in utilizing
past prediction errors, the error feedback equation of the LMS
algorithm (26) is rewritten for a stationary input signal as

en +
∞∑
j=1

en−j clj = xn −WT
0 X(n), (42)

where clj = µMrx(j). Figure 6 is a plot of clj and crj ,
j = 1,2, . . . ,50 for a narrowband AR1 input signal embedded
in AWGN, with AR1 pole location a = 0.99, SNR = 10 dB,
adaptive filter length M = 25. The LMS step-size µ = 0.01,
and the RLS forgetting factor λ = 0.9. The error feedback
coefficients of the RLS adaptive predictor exhibit a null for
small j, which means that the contributions from the most
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Figure 6: Error feedback coefficients of the LMS and RLS adaptive
predictors (µ = 0.01, λ = 0.9).

recent prediction errors to the current estimate at time index
n are nulled out. For the LMS adaptive predictor the most
recent prediction errors contribute more to the current esti-
mate than the time delayed prediction errors. Note that the
choices of µ and λ only affect the magnitudes, not the shapes
of the curves.

6. SIMULATIONS

For a chirped AR1 input, the autocorrelation of input signal
vectors rcx(k) is given by

rcx(j) = Ψ−(∆+(M−1)/2)jPsaj, (43)

where a is pole location of the transformed stationary base-
band AR1 input signal. Equation (28) becomes

R(z) = Psacz−1

1− acz−1
. (44)

The feedback transfer function in (27) is thus

H(z) = 1− acz−1

1− gcz−1
, (45)

whereac = aΨ−(∆+(M−1)/2),gc = (1−µMPs)ac . The steady-
state MSE approximation for the LMS adaptive predictor can
be computed from (29) using (45). Similarly, the steady-state
MSE approximation of the NLMS adaptive predictor can be
calculated from (29), (32), and (43). By setting ψ = 0, the
MSE approximation of the standard LMS adaptive predictor
for a stationary input signal is calculated.

In the following simulations for multiple-step prediction,
the NLMS adaptive predictors are used instead of the stan-
dard LMS adaptive predictors because the NLMS algorithm
is stable for relatively larger values of the adaptive filter step-
size (0 < µ < 2) [9], where the nonlinear effects of adaptive
algorithm are most significant. The MSEs of the finite-length
Wiener predictor and the optimal estimator are calculated
theoretically for AR1 input processes.
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Figure 7: Comparison of MSEs of one-step LMS adaptive predic-
tor with very narrowband input signal as a function of adaptation
constant µ. a = 0.999,M = 2, SNR = 1, chirp rate ψ = 5πe− 5.

Figure 7 is a plot of MSEs for one-step LMS adaptive pre-
dictors as a function of filter step-size µ with a chirped AR1
input signal, where signal initial frequencyω0 = 0.2π , chirp
rate ψ = 5πe − 5, AR1 process pole location α = 0.999,
signal power Ps = 1, SNR = 0 dB, filter length M = 2. Sim-
ulation results and theoretical calculations using both the
transfer function approach and the independence assump-
tions are plotted. These results are compared to the MSEs
obtained for the finite-length Wiener predictor and the opti-
mal estimator. It can be seen that in a small range of adap-
tive filter step-size parameters µ, the MSE from the error
transfer function approach and simulation results are smaller
than the MSE of the finite-length Wiener predictor. Extensive
simulations and analytical results show that for the one-step
LMS adaptive predictor, the nonlinear effect is small and ob-
servable only for very small filter length, very narrow band-
width input signals. One possible explanation of this phe-
nomenon is that under these conditions, the information in
{xcn−(M+1), x

c
n−(M+2), . . . , x

c−∞}which is available to adaptive
predictor but not available to finite-length Wiener predictor,
will have effective contributions to the prediction of current
signal xcn.

Figure 8 plots the MSEs of a 40-step NLMS and RLS adap-
tive predictors for a stationary and a chirped input signal with
chirp rate ψ = 5πe − 4, signal pole location a = 0.99, input
signal power Ps = 1, SNR = 20 dB, and M = 25. For NLMS
predictors, the MSEs obtained by the error transfer function
approach and the simulation results are compared for both
stationary and chirped inputs. The simulation results of the
RLS adaptive predictor for stationary inputs reveal that the
nonlinear effects are negligible for RLS algorithms. Compar-
ing the results with Figure 7, the range of the adaptive filter
step-size µ over which the NLMS adaptive predictors outper-
form the finite-length Wiener predictor is much larger, and
the magnitude of the nonlinear effect is significant at optimal
step-size (in this case, the optimal step-size for the adap-
tive predictor to achieve minimum MSE is about µ = 0.8).
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Figure 8: MSEs of NLMS and RLS 40-step predictors as a function
of adaptation constant, with SNR = 20 dB,M = 25,a = 0.99, chirp
rate ψ = 5πe− 4.
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Figure 9: MSEs of NLMS predictor at optimal step-size as a function
of prediction distance ∆, with SNR = 20 dB, M = 25, a = 0.99,
chirp rate ψ = 5πe− 4.

One possible explanation for this is that for multiple-step
prediction, the additional data which is available to adaptive
predictors but not available to the finite-length Wiener pre-
dictor consists of two parts: {xcn−1, x

c
n−2, . . . , x

c
n−(∆−1)} and

{xcn−(∆+M),xcn−(∆+M+1), . . . , x
c−∞}, and for one-step predic-

tion, only the second part is available. The main contribution
to the nonlinear effects is the first part and with the increase
of prediction distance ∆, the correlation between the desired
response xcn and the second part decreases, and the second
part has less contribution to current estimation.

Figure 9 compares the MSEs of the finite-length Wiener
predictor, the optimal estimator with the MSEs obtained in
simulations achieved at optimal step-size µopt as a function
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Figure 10: MSEs of 40-step NLMS adaptive predictor at optimal
step-size as a function of input signal pole location a, with SNR =
20 dB, M = 25, chirp rate ψ = 5πe− 4.

of prediction distance ∆. It shows that with the above pa-
rameters, the LMS adaptive filter outperforms Wiener filter
for ∆ ≥ 5 and the nonlinear effect becomes more significant
with increasing ∆.

Figure 10 is a plot of the various MSEs versus input signal
pole locationa for a 40-step predictor. It shows that the range
of input signal pole location over which the nonlinear effect
is observable is from about 0.75 to around 1. This range is
also much larger compared to the one-step prediction case.

7. CONCLUSIONS

In conclusion, this paper shows that for very narrowband
input signals, either stationary or nonstationary, traditional
analysis using the independence assumptions is not valid and
the nonlinear effect of the adaptive filter must be considered.
For narrowband input signals embedded in AWGN, the LMS
adaptive predictor can outperform the finite-length Wiener
predictor in steady-state MSE. These cases arise when the
adaptive filter uses more information than the finite-length
Wiener filter. It shows that the nonlinear effect of one-step
LMS adaptive predictors is small and only observable for a
narrow range of input signal and adaptive filter parameters,
and it is significant for multiple-step LMS adaptive predic-
tors for a wide range of parameters. A transform is defined to
convert the chirped input signal to baseband stationary in-
put signal, and an error transfer function approach is derived
for chirped input signals to approximate the total steady-
state MSE of the LMS adaptive predictors. The performance
of the one-step infinite-length Wiener predictor is used as
the optimal estimator to bound the performance of adaptive
∆-step predictors. The nonlinear effects are much larger
for the LMS adaptive predictor than for the exponentially
weighted RLS predictor for the case examined.
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