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A conceptually new approximation method to study the time-frequency properties of dynamical systems characterized by linear
ordinary differential equations is presented. We bypass solving the differential equation governing the motion by writing the
exact Wigner distribution corresponding to the solution of the differential equation. The resulting equation is a partial differential
equation in time and frequency. We then show how it lends itself to effective approximation methods because in the time frequency
plane there is a high degree of localization of the signal. Numerical examples are given and compared to exact solutions.
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1. INTRODUCTION

Many dynamical systems are governed by an equation of mo-
tion that is an ordinary differential equation with a known
driving function. In particular, by

an
dnx
dtn

+ an−1
dn−1x
dtn−1

+ · · · + a1
dx
dt

+ a0x = f(t), (1)

where f(t) is the driving force and x(t) the state function.
Often, one wants to study the time-frequency properties of
the solution. That would be done by solving (1) and putting
the solution into a time-frequency distribution such as the
Wigner distribution. However, only in rare cases one is able
to solve (1) exactly, and even in those cases f(t) must be
necessarily of a simple form (constant, sinusoid, polynomial,
etc.). Alternatively, one can attempt to solve the differential
equations approximately and substitute the solution into the
Wigner distribution. However this is generally problematic
because of the many possible regimes and we point out that
even in the relatively simple case of the so-called gliding tone
problem (to be discussed in Section 3) approximate solutions
are quite involved.

Since the introduction of time-frequency methods, it has

been realized that signals which may be complicated as a
function of time or frequency are often simple in the time-
frequency plane. We have developed an approach that takes
advantage of this in a direct way. Our procedure is as follows.
In contrast to the standard methods where one solves the
differential equation and then uses a time-frequency distri-
bution, for example the Wigner distribution, to ascertain the
time-frequency properties of the solution, we show that one
can obtain a differential equation for the Wigner distribution
of the solution and hence bypass the necessity for solving (1).
That is, if the Wigner distribution is defined by

W(t,ω) = 1
2π

∫
x∗
(
t − 1

2
τ
)
x
(
t + 1

2
τ
)
e−jτωdτ, (2)

we obtain an exact equation of motion for W(t,ω) directly
and show that one can approximate the Wigner distribution
effectively and directly.

In Section 2, we outline the method for obtaining an exact
equation of motion for the Wigner distribution correspond-
ing to the solution of (1). Then we show the exact solution
to the gliding tone problem because its solution is crucial
to our approximation method. Subsequently, we present our
approximation method.
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2. FROM EQUATIONS IN TIME TO EQUATIONS
IN TIME-FREQUENCY

We have developed a method that allows us to rewrite the
original problem, (1), in the Wigner domain [1, 2]. We now
describe briefly our solution. We rewrite (1) as

[
anDn + an−1Dn−1 + · · · + a1D + a0

]
x(t) = f(t) (3)

and put it in the polynomial notation

Pn(D)x(t) = f(t), D = d
dt
. (4)

We have shown that the differential equation for the Wigner
distribution of x(t) is [1]

P∗n (A)Pn(B)Wx,x(t,ω) = Wf,f (t,ω), (5)

where

A = 1
2
∂
∂t
− jω, B = 1

2
∂
∂t
+ jω, (6)

and the star sign stands for complex conjugation of the con-
stants a0, . . . , an. The distribution Wf,f (t,ω) is the Wigner
distribution of the driving force f(t).

Using (5) we have been able to solve exactly the gliding
tone problem which will be described in Section 3. The exact
solution to the gliding tone problem is important not only for
its own sake but because the approximation method makes
use of the result obtained solving this problem. We point out
that the gliding tone problem has a long history.

The possibility of writing a differential equation for the
Wigner distribution was initiated by Wigner wherein he wrote
the equation of motion for the Wigner distribution corre-
sponding to the solution to the Schrödinger equation. From
the very start of the field approximation methods were devel-
oped and in fact Wigner himself addressed that issue in his
original paper where he calculated the quantum correction
to the second virial coefficient of a gas [3, 4, 5]. However,
these methods are based on expansion of the Wigner distri-
bution in powers of Planck’s constant, � and the recent books
by Schleich, Scully, and Zubairy and the references therein
describe these methods [6, 7]. However, our approximation
goals and methods are different because we are not expand-
ing in a small parameter but are trying to approximate the
solution of (5) for arbitrary forcing functions.

3. THE EXACT SOLUTION TO THE GLIDING TONE
PROBLEM

The gliding tone problem is the solution to

d2x(t)
dt2

+ 2µ
dx(t)
dt

+ω2
0x(t) = ejβt

2/2. (7)

The problem arises in many situations and was first studied
by Barber and Ursell [8] and Hok [9]. No exact solution exists
in time for this equation, but we have found the exact analytic
solution of the Wigner distribution for the variablex(t) [10],

that is,Wx,x(t,ω). We first rewrite (7) as

[
D2 + 2µD +ω2

0

]
x(t) = f(t) (8)

and factor the differential operator acting on x(t)

[D − p1][D − p2]x(t) = f(t), (9)

where

p1,2 = −µ ±
√
µ2 −ω2

0. (10)

The Wigner distribution equation of motion associated with
the differential equation is [1]

[
A2 + 2µA+ω2

0

][
B2 + 2µB +ω2

0

]
Wx,x(t,ω) = Wf,f (t,ω),

(11)
where

Wf,f = δ(ω− βt) = 1
|β|δ

(
t − ω

β

)
. (12)

The explicit exact solution is

W(t,ω) = 2
|β|

u(τ)
z2 − z1

×
[

1
z̄1 − z1

(
e−2z1τ − e−2z̄2τ

z̄2 − z1
− e

−2z̄1τ − e−2z̄2τ

z̄2 − z̄1

)

− 1
z̄1 − z2

(
e−2z2τ − e−2z̄2τ

z̄2 − z2
− e

−2z̄1τ − e−2z̄2τ

z̄2 − z̄1

)]

(13)

with

τ = t − ω
β
,

z1 = −jω+ µ −
√
µ2 −ω2

0, z̄1 = jω+ µ −
√
µ2 −ω2

0,

z2 = −jω+ µ +
√
µ2 −ω2

0, z̄2 = jω+ µ +
√
µ2 −ω2

0,
(14)

and where u(t) is the step function. Explicit expressions for
the underdamped, overdamped, and critically damped cases
are given in [10].

In Figure 1, we plot the Wigner distribution for the un-
derdamped case. Note the simplicity of the behavior in the
time-frequency plane. The energy peak concentrated about
f = 0.25 is due to the interaction of the driving force with the
internal resonance of the harmonic oscillator. The response
goes to zero as time goes to infinity, and this happens because
the transfer function of the system goes to zero when the
frequency goes to infinity. The oscillatory terms in the fre-
quency region f = 0 − 0.15 are cross terms generated by the
interference of the response for positive frequencies with the
symmetric response for negative frequencies. Moreover, note
that while the input linear chirp is a complicated function
in time, its Wigner representation is a simple delta distri-
bution. This relatively simple behavior of chirp signals in the
time-frequency plane is the foundation of our approximation
method.
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Figure 1: Underdamped case: µ = 1. The Wigner distribution in
(13) is plotted taking ω0 = 18 and β = 2π . Notice the response
of the internal resonance that takes place after n = 70 and about
f = 0.25.

4. APPROXIMATION METHOD

We now proceed to discuss the approximation method. In
this paper, we restrict our attention to driving functions that
are one-component. However, the method can be straight-
forwardly extended to the case of multicomponent signals
[11]. We first highlight three important points regarding our
approach:

• As can be seen from (5) there are no derivatives with
respect to frequency and therefore the frequencies in the solu-
tion ofWx,x(t,ω) are independent of each other. This means
that the solution for a certain frequency ω1 can be eval-
uated independently of the solution for another frequency
ω2 �=ω1.1

• In the Wigner distribution solution of the gliding tone,
if one changes the slope β of the input chirp, then also the
Wigner distribution of the output changes simply as per (13).
Therefore, changing β delays the response at each ω, and
the new Wigner distribution can be thought of as a delayed
version of the original one.

• The concentration in the time-frequency plane of a lin-
ear chirp is a delta function distribution along the instan-
taneous frequency. While the Wigner distribution of a sig-
nal of the form s(t) = ejϕ(t) is not a delta function along
the instantaneous frequency, the delta function is nonthe-
less a very good approximation to it. In time-frequency anal-
ysis this signal is said to be one-component [12], because
its time-frequency spectrum shows an energy concentration
(the component) located along the instantaneous frequency
ωi(t) = ϕ′(t). The case of a multicomponent driving force
can be handled by writing it as a sum of delta functions each

1The same thing happens when one transforms an equation in the class
defined by (1) with the Fourier transform. In this case, in fact, the output at
frequency ω1 can be evaluated by multiplying the frequency component of
the input atω1 by the transfer function of the system at the same frequency,
thus been independent to what happens atω2.

one centered about the instantaneous frequency of that com-
ponent. The details will be presented in a future publication.

The key idea of the method is to replace the Wigner dis-
tribution of the forcing function with a linear chirp centered
at its instantaneous frequency. The independence of the dif-
ferent frequencies and the delay property discussed above
assures that we are approximating the Wigner Wx,x(t,ω)
of the solution of the differential equation. We now for-
mulate the method for obtaining the approximated Wigner
distribution of the output of a linear system defined by
an ordinary differential equation as in (1) when a one
component signal is set as input. We start with a driving
function

f(t) = ejϕ(t) (15)

with instantaneous frequency ϕ′(t). The steps are:
• First compute the exact WignerW(t,ω) of the solution

when a linear quadratic phase signal is the input. As can be
seen from (13) the solution can be written as W(t,ω) =
W(τ), where τ = t −ω/β.

• Then, substitute τ = t−Φ(ω)where Φ(ω) is evaluated
by inversion of ϕ′(t). This is simply obtained by settingω =
ϕ′(t) and then solving for t, getting t = Φ(ω). If the analytic
inversion of ϕ′(t) is not possible, a polynomial function can
be used to approximate Φ(ω).

This method gives the approximated Wigner distribution
of x(t) up to a constant. The method will be valid as long
as the instantaneous frequency ϕ′(t) of the input driving
force is slowly varying. When this condition is satisfied the
delta function can be considered a good approximation to the
Wigner distribution of the driving force f(t). The examples
shown in Section 5 will confirm this statement.

5. EXAMPLES

As an example we take

f(t) = Aejβt2/2+jγt3/3 (16)

with the instantaneous frequency being quadratic in time and
given by

ωf(t) = βt + γt2. (17)

According to the method we approximate the Wigner distri-
bution of f(t) by a delta function distribution centered at the
instantaneous frequencyωf(t), that we write with respect to
time according to the second step of the method presented in
Section 4

Wf,f (t,ω) = Aδ
(
t − Φ(ω)), (18)

where inversion yields

Φ(ω) = −β
γ
+

√√√√(β
γ

)2

+ ω
γ

(19)
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Figure 2: Approximation of the Wigner Wx,x(t,ω) solution to the
harmonic oscillator when the forcing function f(t) is (16). The
parameters are β = 3× 2π,γ = 1.5.

and we have

Wf,f (t,ω) = Aδ


t + β

γ
−

√√√√(β
γ

)2

+ ω
γ


 , (20)

where A is the normalizing constant and where momentarily
we only consider nonnegative values of time. We rewrite the
approximated Wigner distribution of the driving force as

Wf,f (t,ω) = Aδ(τ), (21)

where τ = t +β/γ −
√
(β/γ)2 +ω/γ. (This notation is cho-

sen on purpose to be the same as in (13).) Applying the con-
siderations outlined above the approximated output for the
harmonic oscillator when the input is a quadratic compo-
nent can be written, up to a constant and for t ≥ 0, as the
Wigner distribution of the gliding tone problem, (13), by sub-

stituting τ = t + β/γ −
√
(β/γ)2 +ω/γ. For negative times

the method can be repeated in the same way by substituting

τ = t + β/γ +
√
(β/γ)2 +ω/γ.

Comparison with exact solution

We now compare the above approximate solution with the
exact solution. By exact solution we mean that we first solved
the differential equation numerically for x(t) and then nu-
merically calculated the Wigner distribution of the solution.
This is an involved procedure but we have done it for nu-
merical comparison and indeed it is this procedure that our
method avoids. We have done this for a number of different
values of β and γ.

Case 1. β = 3×2π ,γ = 1.5. In Figure 2, we plot the approxi-
mation obtained with the proposed method, and, in Figure 3,
we plot the Wigner distribution of the solution computed by
numerical integration as just described. The approximation is
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Figure 3: Numerical evaluation of the Wigner Wx,x(t,ω) when
β = 3× 2π , γ = 1.5.
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Figure 4: Approximation of the Wigner Wx,x(t,ω) solution to the
harmonic oscillator when the forcing function f(t) is (16). The
parameters are β = 0.6× 2π , γ = 1.5.

very good, and this behavior can be observed experimentally
to be true in general for increasing values of β.

Case 2. β = 0.6 × 2π , γ = 1.5. In Figure 4, we plot the ap-
proximation, and, in Figure 5, we represent the Wigner dis-
tribution of the solution computed by numerical integration.
The approximation becomes better as t and ω goes to infin-
ity. Also we notice that there are some low energy frequency
components before the instantaneous frequency of the input
chirp, especially in the frequency interval f = 0.05− 0.15.

Case 3. β = 0.01 × 2π , γ = 0.4. In Figure 6, we represent
the approximation obtained by the proposed method, and,
in Figure 7, we represent the Wigner distribution of the so-
lution computed by numerical integration. Again we notice
as in the previous experiment, that the quality of the approx-
imation increases as t,ω → +∞. At low values of time and
frequency, we notice that anti-causal terms in the Wigner dis-



Approximation of the Wigner Distribution for Dynamical Systems Governed by Differential Equations 71

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 40 60 80 100 120 140 160 180 200 220
n

f

Figure 5: Numerical evaluation of the Wigner Wx,x(t,ω) when
β = 0.6× 2π , γ = 1.5.
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Figure 6: Approximation of the Wigner Wx,x(t,ω) solution to the
harmonic oscillator when the forcing function f(t) is (16). The
parameters are β = 0.01× 2π , γ = 0.4.

tribution of the solution cannot be neglected. By anti-causal
terms we mean the energy located in the time-frequency re-
gion n = 20−100, f = 0.05−0.15. We call these oscillatory
terms anti-causal because they arise well before the main in-
teraction between the input driving force and the system,
located on the instantaneous frequency of f(t). They repre-
sent the well-known cross terms, artifacts generated by the
Wigner distribution due to its quadratic formulation (the
signal is multiplied by itself).

Based on the numerical experiments presented, we con-
clude that generally the method works very well for large β,
and becomes better as t,ω → ∞. The fact that for small β
and for low values of time and frequency the approximation
is poor can be explained considering that the Wigner distri-
bution of the quadratic chirp is the Airy function centered
at the instantaneous frequency of the chirp [12]. When the
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Figure 7: Numerical evaluation of the Wigner Wx,x(t,ω) when
β = 0.01× 2π , γ = 0.4.

slope of the quadratic chirp is low (small β), the cross terms
in the Wigner distribution become larger and, hence, they
cannot be neglected in the approximation.

6. CONCLUSION

The approximation method presented takes advantage of the
fact that, while solutions to differential equations may be in-
volved and complicated the Wigner distribution of the solu-
tion may be relatively simple. In addition, the method takes
advantage that in the time-frequency plane monocomponent
forcing terms can be effectively approximated. Extension to
multicomponent forcing terms are now being investigated.
Also, we point out that of particular importance are partial
differential equations such as wave equations with driving
forces. We have recently presented a method for directly writ-
ing the equation for the Wigner distribution corresponding to
the solution of a linear partial differential equation [13]. Our
aim is to also develop approximation methods for partial dif-
ferential equations along the same lines as we have developed
here for ordinary differential equations.
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