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The discrete multitone (DMT) modulation/demodulation scheme is the standard transmission technique in the application of
asymmetric digital subscriber lines (ADSL) and very-high-speed digital subscriber lines (VDSL). Although the DMT can achieve
higher data rate compared with other modulation/demodulation schemes, its computational complexity is too high for cost-
efficient implementations. For example, it requires 512-point IFFT/FFT as the modulation/demodulation kernel in the ADSL
systems and even higher in the VDSL systems. The large block size results in heavy computational load in running programmable
digital signal processors (DSPs). In this paper, we derive computationally efficient fast algorithm for the IFFT/FFT. The proposed
algorithm can avoid complex-domain operations that are inevitable in conventional IFFT/FFT computation. The resulting soft-
ware function requires less computational complexity. We show that it acquires only 17% number of multiplications to compute
the IFFT and FFT compared with the Cooly-Tukey algorithm. Hence, the proposed fast algorithm is very suitable for firmware
development in reducing the MIPS count in programmable DSPs.
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1. INTRODUCTION

Recent progress of Internet access has a strong demand on
high-speed data transmission. To overcome the transmission
bottleneck over the conventional twisted-pair telephone
lines, several sophisticated modulation/demodulation
schemes have been proposed, including carrierless-
amplitude-phase (CAP) modulation [1], discrete multitone
modulation (DMT) [2, 3, 4, 5] and QAM technology [6].
Among these advanced modulation schemes, the DMT can
achieve highest transmission rate since it incorporates lots
of advanced DSP techniques such as dynamic bit allocation,
multidimensional tone encoding, frequency-domain equal-
ization, and so forth. As a consequence, the DMT has been
chosen as the physical layer transmission standard by the
ADSL standardization committee.

One major disadvantage of the DMT scheme is its high

computational complexity. In particular, the large block
size of the IFFT/FFT consumes lots of computing power
in running programmable DSPs [7]. In [8], we have con-
sidered a cost-efficient lattice VLSI architecture to realize
the IFFT/FFT in integrated circuits. In this paper, we pro-
pose computationally efficient fast algorithms to run the
IFFT/FFT function in software implementation such as pro-
grammable DSP processors (DSPs). By making use of the
symmetric/antisymmetric properties of the Fourier trans-
form, we first decompose the IFFT/FFT into a combination
of two new real-domain transform kernels—the Modified
DCT and Modified DST. These two transform functions are
used to replace the complex-domain IFFT/FFT. Then we em-
ploy the divide-and-conquer approach in [9] to derive novel
recursive algorithms and butterfly architectures for the mod-
ified DCT DST.
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Figure 1: The IFFT/FFT block diagram in the DMT system.

The new scheme can avoid redundant complex-domain
of the IFFT/FFT. That is, it involves only real-valued opera-
tions to compute the IFFT/FFT. Hence, we can avoid the spe-
cial data structure in software programming to run complex-
domain addition/multiplication operations in computing
the IFFT/FFT. In addition, our analysis shows that we need
only 17% and multiplications in computing the IFFT and
FFT compared with Cooly-Tukey algorithm [10]. The low
computational complexity as well as real-domain operations
makes it very suitable for firmware coding in DSPs, which
helps to save the MIPS counts. Also, the DSP program can
be written in recursive form which requires less ROM/RAM
program storage space to implement the IFFT/FFT.

The rest of this paper is organized as follows. Section 2
shows the derivation of the IFFT algorithm. In Section 3, the
derivation of the FFT algorithm is discussed. The computa-
tion complexity comparison is shown in Section 4. The finite
precision effect of our algorithm is also discussed. Finally, we
conclude our work in Section 5.

2. REDUCED-COMPLEXITY IFFT ALGORITHM

2.1. The IFFT derivation

The IFFT/FFT block diagram in the DMT system is showed
in Figure 1. At the transmitter side, to ensure the IFFT gen-
erates only real-valued outputs, the inputs of the IFFT in the
DMT standard have the constraint [11],

X(0) = X(N) = 0,

X(k) = X∗(2N − k) for k = 1, 2, . . . , N − 1,
(1)

where X(k)
�= Xr(k) + j · Xi(k) are encoded complex sym-

bols. As defined in [12, Chapter 9], the IFFT of a finite-length
sequence of length 2N is

x(n) = 1
2N

·
[ 2N−1∑

k=0
X(k)W−nk

2N

]
, for n = 0, 1, . . . , 2N − 1,

(2)

where

Wnk
2N

�= exp
(
− j

2πnk
2N

)
= cos

2πnk
2N

− j sin
2πnk
2N

. (3)

By decomposing n into the first half and the second half, (2)
becomes

x(n) = 1
2N

·
[ N−1∑

k=0
X(k)W−nk

2N +
2N−1∑
k=N

X(k)W−nk
2N

]
. (4)

Next, by substituting (3) into (4), and using (1), we can sim-
plify (4) as (see Appendix A)

x(n) = 1
N
·
[ N−1∑

k=0
Xr(k) cos

2πnk
2N

−
N−1∑
k=0

Xi(k) sin
2πnk
2N

]

= 1
N
· [MDCT(n)−MDST(n)

]
,

for n = 0, 1, . . . , 2N − 1.
(5)
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Figure 2: N-point MDCT(n) butterfly structure, where 1-point MDCT is the minimum-sized processing block.

From (5), we can see that the computation of the IFFT
is decomposed into two real-valued operations. One is a
discrete cosine transform DCT-like operation with Xr(k),
k = 0, 1, 2, . . . , N − 1, as the inputs. The other is a dis-
crete sine transform DST-like operation with Xi(k), k =
0, 1, 2, . . . , N − 1, as the inputs. We will name the first
term Modified DCT (MDCT), and the second term Modi-
fied DST (MDST). Note that the MDCT and MDST involve
only real-valued operators. Furthermore, it can be shown
that

MDCT(n) =MDCT(2N − n), for n = 0, 1, . . . , N − 1,
(6)

MDST(n) = −MDST(2N − n), for n = 0, 1, . . . , N − 1.
(7)

Hence, we can focus on computingMDCT(n) andMDST(n)
for n = 0, 1, . . . , N − 1. Then, expand the results for n = N +
1, N +2, . . . , 2N−1. For the special cases of n = 0 and n = N ,
the MDCT and MDST can be simplified as

MDCT(0) =
N−1∑
k=0

Xr(k) cos
2π0k
2N

=
N−1∑
k=0

Xr(k),

MDST(0) =
N−1∑
k=0

Xi(k) sin
2π0k
2N

= 0,

MDCT(N) =
N−1∑
k=0

Xr(k) cos
2πNk

2N
=

N−1∑
k=0

Xr(k)(−1)k,

MDST(N) =
N−1∑
k=0

Xi(k) sin
2πNk

2N
= 0,

(8)

respectively. These simple relationships can help us to save
additional computation complexity.

2.2. MDCT/MDST operations of the IFFT

From the preceding discussion, we can see that the imple-
mentation issue of the IFFT is to realize MDCT and MDST
in a cost-efficient way. Then, we can just combine the re-
sults of the MDCT and MDST to obtain the IFFT results
based on (5). Here, we first consider the implementation
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of the MDCT. We follow the derivation in [9] and define

Cnk
2N

�= cos(2πnk/2N). Then, the MDCT can be written as

MDCT(n) =
N−1∑
k=0

Xr(k)Cnk
2N , for n = 0, 1, . . . , N − 1. (9)

Decompose the MDCT into even and odd indices of k, then
(9) can be rewritten as

MDCT(n) = g(n) + h′(n), for n = 0, 1, . . . ,
N

2
− 1, (10)

where

g(n)
�=

N/2−1∑
k=0

Xr(2k)C
n(2k)
2N =

N/2−1∑
k=0

Xr(2k)Cnk
N ,

h′(n) �=
N/2−1∑
k=0

Xr(2k + 1)Cn(2k+1)
2N .

(11)

Define h(n)
�= 2Cn

2Nh
′(n). Following the derivation in Lee’s

algorithm [9], we can find

MDCT(n) = g(n) + h′(n) = g(n) +
1

2Cn
2N

h(n). (12)

That is,

N−1∑
k=0

Xr(k)Cnk
2N︸ ︷︷ ︸

N-point MDCT

=
N/2−1∑
k=0

Xr(2k)Cnk
N︸ ︷︷ ︸

N/2-point MDCT, g(n)

+
1

2Cn
2N


N/2−1∑

k=0

[
Xr(2k + 1) + Xr(2k − 1)

]
Cnk
N︸ ︷︷ ︸

N/2-point MDCT, h′′(n)

+ Xr(N − 1)(−1)n︸ ︷︷ ︸
injected item


,

for n = 0, 1, . . . ,
N

2
− 1.

(13)

On the other hand, by replacing index nwith (N−n) in (12),
it can be shown that

MDCT(N − n) = g(n)− h′(n) = g(n)− 1
2Cn

2N
h(n). (14)

The special case MDCT(N/2) needs to be computed sepa-
rately, which can be simplified as

MDCT
(
N

2

)
=

N−1∑
k=0

Xr(k)C
k(N/2)
2N =

N−1∑
k=0

Xr(k) cos
kπ

2
. (15)

The mapping of (13), (14), and (15) is shown in Figure 2. As
we can see, theN-point MDCT is decomposed into twoN/2-

pointMDCT (g(n) and h′′(n)) plus some pre-processing and
post-processing modules. Then we can apply the technique
of divide-and-conquer to recursively expand the N/2-point
MDCT until 1-point MDCT is formed. That is, we repeat
the decomposition in (10) and (11) until N = 1.

Next, we consider the recursive implementation of the

MDST. We define Snk2N
�= sin (2πnk/2N). As with the deriva-

tion in (10), (11), (12), (13), and (14), we can find

MDST(n) =
N/2−1∑
k=0

Xi(2k)SnkN

+
1

2Cn
2N

N/2−1∑
k=0

[
Xi(2k + 1) + Xi(2k − 1)

]
SnkN ,

MDST(N − n) = −
N/2−1∑
k=0

Xi(2k)SnkN

+
1

2Cn
2N

N/2−1∑
k=0

[
Xi(2k + 1) + Xi(2k − 1)

]
SnkN ,

for n = 0, 1, . . . ,
N

2
− 1.

(16)

It is worth noting that the injected item is zero in the MDST.
Besides, the MDST also has a special case for index N/2 as

MDST
(
N

2

)
=

N−1∑
k=0

Xi(k)S
k(N/2)
2N =

N−1∑
k=0

Xi(k) sin
kπ

2
. (17)

The mapping of the MDST structure in Figure 3 is similar to
the MDCT structure, except that minimum processing block
is 2-point MDST (see Figure 3) and the injected items do not
exist in theMDST implementation. That is, we repeat the de-
composition in (16) untilN = 2. Note that the 1-pointMDST
is always equal to zero.

2.3. Overall IFFT computation procedures

The overall IFFT computation flow is shown in Figure 4.
It consists of the MDCT/MDST operations and a post-
processing operation. The operations in Figure 4 are as fol-
lows:

(1) set the butterfly operation to MDCT mode;
(2) Xr(k), k = 0, 1, . . . , N − 1, are first fed into the but-

terfly architecture to obtain the MDCT(n), for n =
0, 1, . . . , N − 1;

(3) the post-processing operation expands the N-point
MDCT outputs to 2N-point MDCT using the sym-
metric property in (6);

(4) set the butterfly operation to MDST mode;
(5) repeat the computation in Steps 2 and 3 using Xi(k),

k = 0, 1, . . . , N−1 as inputs, and obtain the MDST(n),
for n = 0, 1, . . . , N − 1;

(6) the post-processing operation expands the N-point
MDST outputs to 2N-point MDST by using the an-
tisymmetric property in (7);
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(7) based on (5), we combine the MDCT and MDST re-
sults together with the scaling operation (which is
achieved by shifting right by log2(N) bits) to obtain
the IFFT results. This is done in the post-processing
operation.

2.4. Matrix notation of theMDCT/MDST

In this section, we present the matrix notation of the pro-
posed fast IFFT algorithm. The matrix form can help to see
the divide-and-conquer nature of our approach. By follow-
ing the notation in [13], we rewrite Xr(k) and MDCT(n) as

[
Xr(k)N

]�=[Xr(0) Xr(1) · · · Xr(N − 1)
]T

, (18)[
MDCT(n)N

]
�=
[
MDCT(0) MDCT(1) · · · MDCT(N − 1)

]T
,

(19)

respectively. Then (9) can be represented as

[
MDCT(n)N

] = [TN,MDCT
][
Xr(k)N

]
, (20)

where [TN,MDCT] denotes the transform kernel matrix of the
MDCT operation. Next, the injected items of (13) can be

represented as

Injected = [ON/2
]
Xr(N − 1), (21)

where

[
ON/2

] = [1 −1 1 −1 1 · · · −1
]T

. (22)

We define the odd-summation matrix as

[
LN/2

] =




1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1




(23)

and the scaling matrix as

[
ΦN/2

] = diag
{

1
2Cn

2N

}
, for n = 0, 1, . . . ,

N

2
− 1. (24)

The special case of the MDCT in (15) can be represented as

MDCT
(
N

2

)
= [SN][Xr(k)N

]
, (25)
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where

[
SN
] = [1 0 −1 0 1 · · · 0

]
. (26)

Based on (12), (13), (14), (21), (22), (23), (24), (25), and
(26), the [TN,MDCT] can be expressed in the matrix form as

[
TN,MDCT

] =



[
TN/2

] [
ψN,MDCT

]
[
TN/2

][
JN/2

] [
ψN,MDCT

][
JN/2

]

 , (27)

where [ψN,MDCT] = [ΦN/2]([LN/2][TN/2] + [ON/2])‖[SN ] and
[JN/2] denotes the opposite-diagonal identity matrix. We can
also represent (20) and (27) in the recursive form as shown
in Figure 5. Following the above derivations, the matrix no-
tation of transform kernel of the MDST can be derived as

[
TN,MDST

] =
[ [

TN/2
] [

ψN,MDST
]

−[TN/2
][
JN/2

] [
ψN,MDST

][
JN/2

]
]
, (28)

where [ψN,MDST] = [ΦN/2][LN/2][TN/2][SN ]. Note that the
MDST is similar to the MDCT except that there is no in-
jected items. Also, the special case matrix can be modified
as

[
SN
] = [0 1 0 −1 0 · · · −1

]
. (29)

The block diagram of the MDST in the matrix form is
shown in Figure 6.

3. REDUCED-COMPLEXITY FFT ALGORITHM

3.1. The FFT derivation

At the receiver side (see Figure 1), the 512-point FFT is used
to demodulate the received signals, which is given by

X̃(k) =
2N−1∑
n=0

x̃(n)Wnk
2N , for k = 0, 1, . . . , 2N − 1, (30)

where

Wnk
2N

�= exp
(
− j

2πnk
2N

)
= cos

2πnk
2N

− j · sin 2πnk
2N

. (31)

Note that x̃(n), n = 0, 1, . . . , 2N−1, are real-valued numbers.
Hence, (30) can be rewritten as

X̃(k)=
2N−1∑
n=0

x̃(n) cos
2πnk
2N

− j
2N−1∑
n=0

x̃(n) sin
2πnk
2N

=MDCT(k)− j ·MDST(k), for k = 0, 1, . . . , 2N − 1.
(32)

Equation (32) shows that the computation of the FFT is
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decomposed into a combination of two real-domain
kernels—MDCT(k) and MDST(k). Both MDCT and MDST
use x̃(n), n = 0, 1, . . . , 2N − 1, as the inputs. Hence, we
only employ two real-valued kernels (MDCT and MDST),
thus no complex-valued operations are required in com-
puting the FFT. In addition, in the DMT system, the lower
N-point FFT outputs are conjugate-symmetric to the up-
per N-point outputs. We are only interested in N-point data
for k = 0, 1, . . . , N − 1. Hence, we can neglect the outputs
X̃(k), for k = N,N + 1, . . . , 2N − 1.

3.2. MDCT/MDST operations of the FFT

In (32), the transform kernels are 2N-point MDCT(k) and
MDST(k). Here, we propose a novel approach to further re-
duce the computational complexity. Hence, we only need to
perform N-point MDCT/MDST.

We first decompose input sequence into a symmet-
ric sequence, x̃c(n), plus an antisymmetric sequence, x̃s(n),
where

x̃c(n)
�= 1

2

[
x̃(n) + x̃(2N − n)

]
,

x̃s(n)
�= 1

2

[
x̃(n)− x̃(2N − n)

]
, for n = 1, 2, . . . , N − 1.

(33)

Hence, we have

x̃(n) = x̃c(n) + x̃s(n), (34)

x̃(2N − n) = x̃c(n)− x̃s(n), for n = 1, 2, . . . , N − 1. (35)

By substituting (34) and (35) into (30), we can simplify (30)
as (see Appendix B)

X̃(k) =
{
x̃(0) + x̃(N)(−1)k

+ 2

[ N−1∑
n=0

x̃c(n) cos
2πnk
2N

− j
N−1∑
n=0

x̃s(n) sin
2πnk
2N

]}

= {x̃(0) + x̃(N)(−1)k + 2
[
MDCT(k)− jMDST(k)

]}
,

for k = 0, 1, . . . , N − 1,
(36)

where x̃c(0) = 0 and x̃s(0) = 0. Since the block size is reduced
from 2N-point (see (32)) to N-point (see (36)).

Next, following the derivations of the IFFT in Section 2,
we can have
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MDCT(k) = g(k) +
1

2Ck
2N

h(k)

=
N/2−1∑
n=0

x̃c(2n)Cnk
N︸ ︷︷ ︸

N/2-point MDCT, g(k)

+
1

2Ck
2N

[ N/2−1∑
n=0

[
x̃c(2n + 1) + x̃c(2n− 1)

]
Cnk
N︸ ︷︷ ︸

N/2-point MDCT, h′′(k)

+ x̃c(N − 1)(−1)k︸ ︷︷ ︸
injected item

]
,

(37)

MDCT(N − k) = g(k)− 1

2Ck
2N

h(k)

=
N/2−1∑
n=0

x̃c(2n)Cnk
N

− 1

2Ck
2N

[ N/2−1∑
n=0

[
x̃c(2n + 1)

+ x̃c(2n− 1)
]
Cnk
N

+ x̃c(N − 1)(−1)k
]
,

for k = 0, 1, . . . ,
N

2
− 1.

(38)

Similarly, for the MDST(k), we have

MDST(k) = g(k) +
1

2Ck
2N

h(k)

=
N/2−1∑
n=0

x̃s(2n)SnkN

+
1

2Ck
2N

N/2−1∑
n=0

[
x̃s(2n + 1) + x̃s(2n− 1)

]
SnkN ,

(39)

MDST(N − k) = −g(k) + 1

2Ck
2N

h(k)

= −
N/2−1∑
n=0

x̃s(2n)SnkN

+
1

2Ck
2N

N/2−1∑
n=0

[
x̃s(2n + 1) + x̃s(2n− 1)

]
SnkN ,

for k = 0, 1, . . . ,
N

2
− 1.

(40)

The two special cases for index N/2 are

MDCT
(
N

2

)
=

N−1∑
n=0

x̃c(n) cos
nπ

2
,

MDST
(
N2
)
=

N−1∑
n=0

x̃s(n) sin
nπ

2
.

(41)

The block diagram of theMDCT(k) is shown in Figure 7.
The mapping of the MDST structure is similar to the MDCT
structure in Figure 7 except that minimum processing block
is 2-point MDST and the injected items do not exist in the
MDST(k) implementation (see Figure 8). Then we can just
combine the MDCT(k) and MDST(k) outputs, followed by
adding x̃(0) and x̃(N)(−1)k, to obtain the FFT results based
on (36).

3.3. Overall FFT computation procedures

The overall computation flow of the FFT is shown in
Figure 9. The operations are as follows.

(1) The received signals x̃(n), n = 0, 1, . . . , 2N − 1, are
decomposed to x̃c(n) and x̃s(n), n = 0, 1, . . . , N − 1, through
the pre-processing operation.

(2) In the first phase, the generated x̃c(n) are fed into re-
cursive butterfly operation to obtain the MDCT(k) outputs.

(3) In the second phase, we repeat the computation by
using the x̃s(n) as inputs into recursive butterfly operation to
obtain the MDST(k) outputs.

(4) We combine the MDCT(k) and MDST(k) results
then add x̃(0) and x̃(N)(−1)k together to obtain the FFT re-
sults based on (36). This is done in the post-processing oper-
ation.

3.4. Matrix notation of theMDCT/MDST
Based on (19), (20), (21), (22) (23), (24), (25), and (26), we
can represent (37), (38), and (39) as

[
TN,MDCT

] =
[ [

TN/2
] [

ψN,MDCT
][

TN/2
][
JN/2

] −[ψN,MDCT
][
JN/2

]
]
, (42)

where [ψN,MDCT] = [ΦN/2]([LN/2][TN/2] + [ON/2])‖[SN ],

[
TN,MDST

] =
[ [

TN/2
] [

ψN,MDST
]

−[TN/2
][
JN/2

] [
ψN,MDST

][
JN/2

]
]
, (43)

where [ψN,MDST] = [ΦN/2][LN/2][TN/2][SN ], of the
MDCT(k)/MDST(k), respectively. The block diagrams
of the MDCT(k) and MDST(k) are very similar to the
MDCT(n) and MDST(n) in Section 2. The difference is that
it requires a pre-processing to compute the x̃c(n) and x̃s(n).
The block diagrams of the MDCT and MDST are shown in
Figures 10 and 11, respectively.

4. COMPLEXITY COMPARISON AND
FINITE-PRECISION EFFECT

4.1. Comparison of hardware complexity
In this section, we compare the computation complexity of
the proposed algorithm with the traditional Cooly-Tukey
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Figure 11: Block diagram of the MDST in matrix form for the FFT operation.

algorithm. The corresponding butterfly architecture requires
log2(2N) stages in the 2N-point IFFT/FFT. Each stage
consists of N multiplications and 2N additions. Because

input sequences are complex data, the IFFT/FFT kernels
are complex in nature. Hence, it requires 4 real-valued
multiplications and 2 real-valued additions for 1 complex
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Table 1: Comparison of computational complexity for 2N-point IFFT/FFT.

IFFT FFT

Cooly-Tukey [10] Chan et al. Cooly-Tukey [10] Chan et al.

(O1) (O2) CR (O1) (O2) CR

N 4N log2 2N N log2N − 2N + 2 4N log2 2N N log2N − 2N + 2

256 9216 1538 0.169 9216 1538 0.169

512 20480 3586 0.175 20480 3586 0.175

1024 45056 8194 0.182 45056 8194 0.182

2048 98304 18434 0.188 98304 18434 0.186

4096 212992 40962 0.192 212992 40962 0.192

8192 458752 90114 0.196 458752 90114 0.196

(a) Number of multiplication operations.

IFFT FFT

Cooly-Tukey [10] Chan et al. Cooly-Tukey [10] Chan et al.

(O1) (O2) CR (O1) (O2) CR

N 6N log2 2N (9/2)N log2N +N + 1 6N log2 2N (9/2)N log2N +N

256 13824 9473 0.685 13824 9472 0.685

512 30720 21249 0.692 30720 21248 0.692

1024 67584 47105 0.697 67584 47104 0.697

2048 147456 103425 0.701 147456 103424 0.701

4096 319488 225281 0.705 319488 225281 0.705

8192 688128 487425 0.708 688128 487424 0.708

(b) Number of addition operations.

multiplication. Also, it takes 2 real additions to realize a com-
plex addition. As a result, the direct approach requires a to-
tal of 4N log2(2N) real multiplications and 6N log2(2N) real
additions. The large computation complexity are not suitable
for cost-effective realization of the IFFT/FFT modules in the
DMT system.

The complexity comparison for 2N-point IFFT/FFT are
listed in Table 1. The complexity ratio (CR) is defined as

CR
�= O2

O1
, (44)

where O1 and O2 are the number of multiplications (or ad-
ditions) in other fast algorithms and our approach, respec-
tively. We can see that the complexity ratio of the multi-
plication is only 17% for N = 256 compared with conven-
tional IFFT/FFT. Table 1 also shows that our approach can
gain more computation savings as N gets larger in the VDSL
systems [14].

4.2. Experiment results

There are lots of DSP processors on the market. Due to
the variety or hardware structure, coding styles, compli-
ers, and so forth, we are not trying to do the detail op-
timization for specific processors. On the other hand, we
would like to compare the proposed algorithm with Cooly-
Tukey’s algorithm, which is a baseline of the FFT realiza-
tion. The implementation platform is TI TMS320C54 eval-
uation board, http://www.ti.com. Both algorithms are writ-
ten in C language without any assembly-level program-
ming tricks. During compilation, the TI C54X C com-
plier is used without adding special compilation options,
neither.

Table 2 shows the comparison of the proposed algorithm
and the conventional FFT in terms of clock cycles. As we can
see, the proposed algorithm requires only about 30% clock
cycles of the Cooly-Tukey’s. The result is very consistent with
our observation in Table 1.

http://www.ti.com
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Table 2: Comparison of clock cycle for Cooley-Tukey FFT and pro-
posed recursive algorithm.

128-point 256-point 512-point

Cooley-Tukey FFT 16,485 37,118 82,347

Proposed 11,869 25,726 55,435

Clock cycle Ratio 28% 31% 33%
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Figure 12: Averaged SNR versus wordlength for the 512-point (2N
value) (a) IFFT. (b) FFT.

4.3. Finite-precision effect

In fixed-point implementation of the IFFT/FFT kernels, it is
important to consider the effects of finite register length in
the IFFT/FFT calculations (see [12, Chapter 9] and [15]). To
compare the butterfly approach and our approach in fixed-
point implementation, we conduct extensive computer sim-
ulation by using MATLAB for finite-wordlength IFFT/FFT
architecture. Figure 12 shows the SNR performance with as-
signed wordlength B = 8, 16, 32 bits. We observe that the
SNR performance with B =16 bits is good enough in prac-
tical fixed-point implementations. From the simulation re-
sults, we can see that the SNR performance of our approach
is comparable to the traditional butterfly approach under the
same wordlength.

5. CONCLUSIONS

In this paper, we develop a computationally efficient fast al-
gorithm for the software implementation of the IFFT/FFT
kernel in the DMT system. We reformulate the IFFT/FFT
functions so as to avoid complex-domain operations. The
complexity ratio of themultiplications is only 17% compared
with the direct butterfly implementation approach. The pro-
posed algorithm provides a good solution in reducing MIPS
count in programmable DSP implementation for the appli-
cations of the DMT transceiver systems.

APPENDICES

A. DERIVATION OF (4)

Decomposing (4) into the first half and second half with the
fact that X(0) = X(N) = 0, (4) can be represented as

x(n) = 1
2N

·
[ N−1∑

k=1
X(k)W−nk

2N +
2N−1∑
k=N+1

X(k)W−nk
2N

]
. (A.1)

Use k′ = 2N − k to replace the variable in the second term.
Then, we have

x(n)= 1
2N
·
[ N−1∑

k=1
X(k)W−nk

2N +
1∑

k′=N−1
X(2N−k′)W−(2N−k′)n

2N

]
.

(A.2)

Because k′ is a dummy variable, we can rewrite (A.2) as

x(n) = 1
2N

·
[ N−1∑

k=1
X(k)W−nk

2N +
N−1∑
k=1

X(2N − k)W−(2N−k)n
2N

]

= 1
2N

·
[ N−1∑

k=1
X(k)W−nk

2N +
N−1∑
k=1

X(2N − k)W−2Nn
2N Wnk

2N

]
.

(A.3)

By using the facts that

W2Nn
2N = 1,

Wnk
2N = exp

(
− j

2πnk
2N

)
= cos

2πnk
2N

− j sin
2πnk
2N

,

W−nk
2N = exp

(
j
2πnk
2N

)
= cos

2πnk
2N

+ j sin
2πnk
2N

,

X(0) = X(N) = 0,

(A.4)

we can rearrange (A.3) to

x(n) = 1
N
·
[ N−1∑

k=0

(
Xr(k) cos

2πnk
2N

− Xi(k) sin
2πnk
2N

)]
.

(A.5)
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B. DERIVATION OF (30)

Equation (30) can be represented as

X̃(k) = x̃(0)+x̃(N)(−1)k+
[ N−1∑

n=1
x̃(n)Wnk

2N+
2N−1∑
n=N+1

x̃(n)Wnk
2N

]
.

(B.1)

Use n′ = 2N − n to replace the variable in the second term.
Then, we have

X̃(k) = x̃(0) + x̃(N)(−1)k

+

[ N−1∑
n=1

x̃(n)Wnk
2N +

1∑
n′=N−1

x̃(2N − n′)Wk(2N−n′)
2N

]
.

(B.2)

Because n′ is a dummy variable, we can rewrite (B.2) as

X̃(k) = x̃(0) + x̃(N)(−1)k

+

[ N−1∑
n=1

x̃(n)Wnk
2N +

N−1∑
n=1

x̃(2N − n)Wk(2N−n)
2N

]

= x̃(0) + x̃(N)(−1)k

+

[ N−1∑
n=1

x̃(n)Wnk
2N +

N−1∑
n=1

x̃(2N − n)W2kN
2N W−nk

2N

]
.

(B.3)

By using the fact thatW2kN
2N = 1 and applying the assumption

of the input data in (35), we can rearrange (B.3) as

X̃(k) = x̃(0) + x̃(N)(−1)k

+ 2

[ N−1∑
n=1

x̃c(n) cos
2πnk
2N

− j
N−1∑
n=1

x̃s(n) sin
2πnk
2N

]
.

(B.4)
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