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Sliding Adjustment for 3D Video Representation
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This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such
video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the
3D models are automatically computed from the original video sequence. We show that several independent 3D models provide
the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal
we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a
method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for
reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning
modification, or stereoscopic visualization. Results on real video sequences are presented.
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1. INTRODUCTION

More andmore new coding techniques include high-level in-
formation in video sequence representation. This informa-
tion aims to provide high-level functionalities such as inter-
activity, video content description, video manipulation, or
stereo visualization.

For instance, the QuickTime-VR format provides the
functionality of interactive visualization of a real static scene,
by representing it as a panoramic image [1].

MPEG4 standard describes the video scene content as
a set of plane objects called video object plane (VOP) [2],
which can be interactively moved or combined during visu-
alization. A panoramic representation of static backgrounds
is also proposed in MPEG4 with the Sprite format.

Such 2D representations do not give information on the
3D structure of the scene, and are therefore limited for video
manipulation. Panoramic images provide only limited inter-
activity: zoom and view orientation can be changed but the
view-point is fixed. With 2D representations, video manipu-
lation such as hybrid synthetic-real video mixing, involving
occlusions, shadows, lightning modification are not feasible
in a realistic way. These functionalities require 3D informa-
tion on the scene.

3D model-based representations for real video sequences
have been studied for a long time, since they have very at-
tractive properties. Apart from the functionalities that they

provide, they enable very low bit rates and scalable/progres-
sive coding [3].

3Dmodel-based representations can be classified into ex-
plicit and implicit representations. Within the explicit repre-
sentations, we can distinguish representations with known
3D models and unknown 3D models.

In 3D model-based coding with known models, a 3D
model of the object in the scene is available, for instance,
a textured 3D triangular mesh. The video sequence is pro-
cessed to compute the 3D object pose (orientation and scal-
ing) for each frame. Sometimes, local deformations are also
computed. The video sequence is represented as the 3D
model and pose parameters for each frame, with optional
parameters for texture and local shape deformation. This
representation allows to transmit the original video at low
cost and facilitates any 3Dmanipulation functionalities. This
approach is widely used for head and shoulder video se-
quences coding and body animation analysis and represen-
tation [4, 5], for instance, in the MPEG4-SNHC scheme [6].
Its main drawback is that it can only be applied to video
with specific contents, such as manufactured objects, head,
or body.

In the 3D model-based coding with unknown models,
the same principle is applied but the scene contents are un-
known and the 3D model shape must also be estimated from
the video itself. Since shape and nonrigid motion cannot be
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Figure 1: Principle of video sequence representation using several overlapped 3D models.

separated, this approach can only be applied to video con-
taining one object undergoing rigid motion, or alternatively,
a fixed object viewed by a moving camera. Using computer
vision tools [7, 8], the 3D model shape, texture, and rigid
motion are estimated from the video sequence. Once the 3D
model is computed, it can then be used just as a known
3D model. This approach is limited to fixed objects, but it
is very attractive for applications such as realistic modeling
of complex objects or interactive navigation in real environ-
ments. Themost sensitive step is the estimation of camera in-
ternal parameters, or self-calibration. A theoretical solution
has been established for long. Robust solutions for camera
calibration and pose estimation have been proposed in re-
cent work, and are effective for video sequence acquired with
a hand-held camcorder [9]. Another solution to deal with
generic video data requires that a priori high-level informa-
tion is integrated in the process through manual and some-
times expert user interaction (http://www.realviz.com).

Such an approach is thus not yet applicable to design a
coding algorithm which automatically produces a unique 3D
model from a generic and long video sequence of a static
scene without simplifying assumptions on the scene or ac-
quisition.

Alternative approaches based on implicit 3D model-
based coding have been proposed. The lightfield or the lu-
migraph [10, 11] do not aim to reconstruct an explicit 3D
model but provide some of the same functionalities. How-
ever, data acquisition is very constraining, as view-points
must lie on a dense regular grid. Some other approaches in-
troduce depth information in the encoded sequence, which
allows stereo sequence visualization or scene manipulation
[12], but which often requires stereo acquisition.

In this paper, we present an original representation of
video sequences using several unknown 3D models and we
propose a novel algorithm for ensuring high-level 3D func-
tionalities using this representation. This representation can
be applied in the case of a fixed scene viewed by a moving
camera. We present an automatic scheme for extracting the
proposed representation from the video sequence.

Some previous studies try to extract a single 3D model
with a hierarchical and robust estimation of camera positions

[9, 13]. A self-calibration step is also performed, allowing the
reconstruction of a single 3Dmodel. Such methods generally
require a specific type of camera motion (typically a closed
image sequence or an inspecting image sequence), in order to
perform the self-calibration step. In this paper, we deal with
video coding, assuming very long video sequences, we thus
need an on-the-fly process. Moreover, we want to deal with
any type of camera motion. For instance, one typical appli-
cation could be navigation on a walking path where camera
motion is naturally a rough frontal translation. This type of
motion is closed to degenerate cases and scene points appear
in a small part of the sequence. Thus we do not make the
assumption that it is possible to obtain a reliable, accurate
camera self-calibration for any sequences.

Unlike the classical approach of video coding with un-
known models described before, we do not aim at recon-
structing one single realistic 3D model of the scene. Instead,
we compute a succession of 3Dmodels, each 3Dmodel being
adequate to represent a small part of the video sequence. This
approach can be viewed as an intermediate between 2D mo-
tion compensation video-coding and 3D model-based cod-
ing. Just as in the 2D approach, one 3D model can be con-
sidered as a global motion model which best fits 2D motion
in the original video sequence for a group of images (also
called here a GOP). Once this motion model is not valid any-
more, the GOP is ended and a new 3D model is estimated
for representing the next part of the video (see Figure 1).
Thus, successive 3D models may contain the same parts of
the 3D scene, but each model is related to a specific GOP of
the video. Also GOPs size is not fixed but data driven, thus
variable.

In order to obtain the same functionalities with several
3D models as with a single 3D model, we propose a novel al-
gorithm of sliding adjustment which ensures consistency of
successive 3D models. This step enables applications such as
synthetic 3D objects insertion into the video sequence, light-
ning modification or interactive navigation.

Using several 3D models instead of one single model has
several drawbacks:

(i) it is of course less compact, since the models are re-
dundant;

http://www.realviz.com
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(ii) it is not as simple and easy to insert synthetic data in
the video sequence.With several 3Dmodels, an adjust-
ment step is required;

(iii) the set of acceptable virtual views (views reconstructed
from a view-point outside the acquisition set) is
smaller, since the 3Dmodels are constrained to be con-
sistent only with a subset of original views.

In counterparts, such a representation has several advan-
tages:

(i) global consistency of estimated 3D shape and camera
motion along the video sequence is no more expected.
Thus, a valid representation is provided even in the
case of ill-conditioned camera motion or inaccurate
internal camera parameters;

(ii) such a representation is very well suited for large envi-
ronments, where the observed scene part progressively
changes along the sequence;

(iii) the representation is robust to small violations of the
rigidity constraint, for instance presence of small mov-
ing objects or specular surfaces. Such data is temporar-
ily taken into account by the 3Dmodels, as a change in
the model geometry;

(iv) 3D models are constructed sequentially. Streaming of
the representation can be easily achieved for commu-
nication and compression purposes. This point is par-
ticularly important for very long sequences (several
thousands of images) for which the automatic recon-
struction of a single 3D model is very complex and
computationally intensive.

This representation is thus very well suited for represent-
ing large natural scenes such as the ones acquired by out-
doors walk through in cities, parks, with uncontrolled cam-
eramotion. Applications concern virtual tours in realistic en-
vironments, with possibility of scene manipulation and in-
teractive navigation.

The paper is organized as follows. We first present the
principle of video representation using several 3D models,
the coding scheme and visualization procedure. We explain
how this representation can be used to regenerate the initial
video sequence, as well as virtual ones. The motion estima-
tion step is briefly described because it uses classical tech-
niques. We then present in more details the automatic selec-
tion of variable sized GOPs, and the sliding adjustment al-
gorithm. Finally, we validate the method on real applications
such as interactive navigation, virtual lightning, synthetic ob-
ject insertion or stereoscopic visualization. Examples of the
obtained results on real video sequences are presented and
discussed.

2. VIDEO CODING USING SEVERAL UNKNOWN
3DMODELS

Our approach is quite similar to 3D model based coding us-
ing a single unknown 3D model: shape and texture are es-
timated from the video sequence itself, using shape from
motion techniques. Camera motion for each frame is also

estimated from the video sequence. The following assump-
tions are made: we use perspective projection model and
we assume that the observed scene is fixed, contains mostly
Lambertian objects, and is not entirely planar. The same
scheme can be applied to a fixed background if moving ob-
jects have been segmented out from the video, as an alterna-
tive to the MPEG4-Sprite mode, for instance.

In our approach, camera internal parameters are not nec-
essarily known. If not provided they are affected by arbitrary
values. Camera motion is not constrained. We yet assume
that camera motion is not a pure rotation around optical
center.

Instead of computing one single model for the whole se-
quence, several 3D models are computed for the same 3D
scene. Each 3D model is relative to a GOP (see Figure 1).
More precisely, for a given GOP, the 3D model and associ-
ated camera positions are estimated from the images in the
GOP. At the decoder, the estimated model is projected onto
the estimated camera positions to reconstruct these images.
The coding scheme is thus sequential, as in classical motion-
compensation video-coders. The 3D model is expected to
best fit the 2D information in the GOP, by minimizing a
cost function based on MSE. Thus 3D shape may not be re-
alistic as long as it allows reconstruction of the original se-
quence with minimum distortion. Subsequently, 3D models
for successive GOPs may represent the same 3D object but
theymay have different shape, different texture, and even dif-
ferent scale.

Only a subset of images are used for 3D reconstruction of
the 3D models. These images are called keyframes. Two suc-
cessive keyframes are used to compute one 3D model. They
are the first image and last image of the GOP associated with
this 3D model. One keyframe is used as texture image for
defining the 3Dmodel texture. All keyframes are thus part of
the representation, as texture images of the 3D models. Suc-
cessive GOPs overlap by one keyframe. Keyframes can thus
be reconstructed at the decoder either using one 3D model
or the other. This is important for smooth transition between
GOPs during visualization (note that what we call a keyframe
is different from keyframes delimiting shots in video struc-
ture analysis).

3D model reconstruction from two views extracted from
a video is known to be very sensitive to the choice of these
two views: several criteria must be verified in order for the
estimation to be geometrically and numerically stable. This
is the reason why GOP size cannot be fixed. GOP size varies
depending on data driven keyframe choice. We propose a
robust method to select keyframes, which is described in
Section 5.

For simple visualization of the original sequence, 3D
models can be completely independent: they can have dif-
ferent scales and they can be described in different reference
frames. This is still true for visualization along a virtual path,
as long as this path contains all the camera positions associ-
ated with the keyframes. At these specific viewpoints, tran-
sition between 3D models is smooth, because both models,
though different in 3D space, project onto the same 2D im-
age: the common keyframe.
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Figure 2: Block diagram of the 3D encoder.

However, independent 3D models are not suited for
other 3D augmented reality functionalities, like inserting ob-
jects or lights. The 3D object position should be specified in
a reference frame valid along the whole sequence. With in-
dependent 3D models for each GOP, this is not feasible. We
thus propose an accurate method to set a 3D model compat-
ible with the previous and next models. This method is de-
rived from the classical bundle adjustment method, but it is
specifically adapted to sequential processing and minimum
distortion coding purposes. This algorithm is called sliding
adjustment and it will be described in Section 6.

The general coding scheme is shown in Figure 2.

3. BACKGROUND

In this section, we briefly remember the principle of 3D
model reconstruction from 2 views and we set the notations
used in the paper.

Consider two images I and I′ viewed by cameras � and
�′. We denote by (R, t) the relative rigid transformation be-
tween cameras, and by A the matrix containing the internal
parameters of the cameras.

Let � be a set of matched points between images I and I′.
Formi a point of � in I andm′

i a point of � in I′, we have the
following relation in homogeneous coordinates:

m̃i = P · M̃i, m̃′
i = P′ · M̃i, (1)

where P = A · (I3 | 0) and P′ = A(R | t).
If mi and m′

i are matched, then the epipolar constraint is
expressed in homogeneous coordinates as

m̃
′T
i · F · m̃i = 0, (2)

where F denotes the well-known fundamental matrix. The
matrix F is defined as F = A−T · [t]× · R · A−1 and [·]× is
the matrix associated with the cross-product. We denote by
E = [t]× · R the essential matrix associated with F.

We define the epipolar residual associated with F as the
sum

1
2

∑

i

d
(
mi, F ·m′

i

)
+ d
(
m′

i , F
T ·mi

)
(3)

computed on all matched points mi, m′
i in �. Nullity of the

epipolar residual means that the symmetrical epipolar con-
straint defined by F is verified for all points in �. If this resid-
ual is small (i.e., with sub-pixel value), we then say that F is
consistent with �.

In the following, we denote by Kk the keyframe images.
For a given keyframe image Kk, Rk, tk denote the camera mo-
tion parameters and Ok denotes the center of projection for
the corresponding camera, that is, Ok = −R−1k · tk.

Keyframes Kk and Kk+1 delimit a GOP and �k denotes
the 3D model associated to this GOP, and �k denotes a set of
points matched between Kk and Kk+1.

We also denote by �u(m) the unitary tangent vector of
the view-line passing through pixel m in image Kk (i.e., line
(Ok,m)).

4. 2D AND 3DMOTION ESTIMATION

4.1. 2Dmotion estimation

4.1.1 Densemotion estimation

Motion estimation is performed between two current images
I = In and I′ = In+p. Usually I = Kk is the last selected
keyframe and I′ is a subsequent image in the video, which is
evaluated as a potential next keyframe Kk+1.

Motion estimation is provided by previously developed
algorithms. We use a mesh-based motion estimator based on
a multi-resolution scheme over hierarchical meshes. It allows
dense estimation between current images I and I′, by suc-
cessive estimation/relaxation steps between successive images
[14]. This motion estimator provides a dense motion field
between I and I′. For each pixel mi in image I , its 2D dis-
placement is a 2D vector denoted D(mi) and its correspond-
ing position in image I′ is thusm′

i = mi +D(mi).

4.1.2 Sparse pointmatching

We also compute a set of matched points � between current
images I and I′ using the motion field. These points are cho-
sen among the vertices of the mesh used in motion estima-
tion. We select 200 vertices uniformly scattered in the image
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and which get highest scores for Harris and Stephens detec-
tor [15] in image I . More details about motion estimation
can be found in [16, 17].

4.2. Camera parameters estimation

The parameters needed for reconstruction of the 3D model
are internal and external camera parameters for each
keyframe.

4.2.1 Internal parameters

Internal camera parameters need not be accurate more than
by an order of magnitude (this is one of the advantages of the
representation with several models rather than one model).
We thus arbitrarily choose parameters which are equal for
all keyframes: we fix optical center (u0, v0) at image center
and we assume square pixels. An order of magnitude for the
focal length may be provided by previous calibration or con-
structor data. If not, focal length is arbitrarily fixed to 500
(this is what is done for all the presented results). Another
solution would be to estimate internal parameters through
self-calibration techniques directly from the video sequence.
However previous studies have shown that it is a highly un-
stable procedure with general acquisition conditions [18]. It
is thus not adapted to automatic coding schemes.

4.2.2 External parameters

External camera parameters (Rk, tk) are estimated from the
set of matched points �k. The goal is to obtain a set of inter-
nal and external parameters which is consistent with �k, that
is, the epipolar residual associated with fundamental matrix
Fk = A−T · [tk]× · Rk · A−1 must be of sub-pixel value. For
the sake of simplicity, index k is omitted in the remaining of
the section; all parameters implicitly refer to the current GOP
between Kk and Kk+1.

We first estimate fundamental matrix F by minimizing
the epipolar residual for all points in �, using a classical me-
dian least squares algorithm [19]. The obtained fundamental
matrix is denoted by Fm. The essential matrix Em is obtained
from Fm as Em = AT · Fm · A. A first set of camera parame-
ters, denoted Rc and tc, are then computed from Em using a
state-of-the-art decomposition method [20]. The parameter
Rc and tc minimize

∥∥Em − Ec
∥∥
f , (4)

where ‖·‖ f denotes the Frobenius distance and Ec=Rc·[tc]×.
This estimation thus minimizes a matrix distance between
estimated essential matrix Ec and essential matrix related to
matched points Em. However, it does not ensure that the
camera parameters are compatible with the set of matched
points �. Indeed the corresponding matrix Fc = A−T · [tc]× ·
Rc ·A−1 is not similar to Fm and the epipolar residual (3) as-
sociated with Fc is large. In other words, Rc, tc, and Fc are not
consistent with �.

As explained before, the epipolar residual associated with
Fc also assesses the projection error for points in �, when 3D
reconstruction is performed using A, Rc, and tc.
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Figure 3: Epipolar residuals along the stairway video sequence after
the calibration step (Fc) and after the localization step (Fd).

This is a very important criterion to take into account as
we are looking for a 3D model and camera position which
enable to re-create the original images between 2 keyframes.
Moreover, the next step of sliding adjustment is sensitive
to initialization, so a refinement step is performed on the
(Rc, tc) parameters as follows.

We first compute the 3D position of each point in � and
we then estimate the pose of this 3D points set with DeMen-
thon algorithm [21]. This technique computes the camera
position (Rd, td) whichminimizes projection error for a given
set of 3D points and their corresponding image points. We
obtain a new pair (Rd, td) which is compatible both with A
and �. This is verified by computing the epipolar residual for
Fd = A−T · [td]× · Rd · A−1.

Figure 3 shows a comparative plot of the epipolar residu-
als associated with Fc and Fd, as a function of frame num-
ber, for the stairway sequence. We can see that the pro-
posed refinement greatly improves consistency of camera pa-
rameters with image data. Moreover it shows to be a more
robust technique, as it often provides reasonable solution
(epipolar residual smaller than 1 pixel) when the decomposi-
tion method provides an invalid solution (epipolar residual
greater than 4 pixels).

At this point the estimated parameters Rd, td are compat-
ible with �.

Once camera parameters are estimated, results are used
to decide whether frame I′ should be used as keyframe im-
age Kk+1. This is done by an automatic keyframe selection al-
gorithm described in Section 5. If I′ is detected as an invalid
Kk+1, a further frame is chosen as a candidate and motion es-
timation steps are started again for the same GOP. If I′ is a
valid keyframe Kk+1, 3D model �k associated with the cur-
rent GOP is computed from dense motion field Dk and cam-
era parameters Rk and tk. To achieve global consistency of
the 3Dmodels, a sliding adjustment procedure is performed.
It provides the 3D model scale and camera parameters Rk,
tk which are consistent with the previous GOP. Sliding ad-
justment will be described in details in Section 6. The whole
procedure is then started again for next GOP, with I = Kk+1

as first image in the GOP.
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5. KEYFRAME SELECTION

We propose a simple method to select keyframes on the fly in
order to ensure a valid 3Dmodel reconstruction. The first se-
lected keyframe K0 is the first image of the video sequence I0.
The other keyframes are selected while processing and coding
the sequence. Suppose keyframe Kk has been selected and we
are looking for the next keyframe Kk+1. The selection is made
by the verification of 3 criteria estimated from the dense mo-
tion estimation and matched points.

5.1. Selection criteria

The following criteria are computed for each image I′ follow-
ing I = Kk in order to decide if I′ will be the next keyframe:

(C1) D̄ > Sm, where D̄ is the average apparent motion and
Sm a static threshold fixed to 10 pixels,

(C2) the percentage of outgoing points is less than a thresh-
old So, that is, nomore than So percent of points from I
in � are not present in I′, with So of typical value 30%,

(C3)
∑

i d
2(mi, Fd ·m′

i ) + d2(m′
i , F

T
d ·mi) < S f , where Fd is

the fundamental matrix computed from the estimated
camera motion, (mi,m

′
i ) ∈ � is the set of matched

points between I and I′, and S f is a static threshold
typically fixed to 0.5 pixel.

The first criterion tends to favor a good precision for the
depth field: the best precision on depth is clearly achieved
with perpendicular lines of views. (C1) is a necessary crite-
rion for a significant change in camera viewpoints, but is not
sufficient, since (C1) can be defeated with a large rotation
component.

The second criterion (C2) ensures that the two keyframes
share a large part of the scene. This is necessary because the
3D model contains only points viewed in both images.

The third criterion (C3) ensures a valid 3D model re-
construction, by testing the epipolar residual. This criterion
has two means. First it allows to detect ill-conditioned con-
figurations. In such cases, due to numerical errors, the es-
timated 3D model, camera motion, and fundamental ma-
trix are not consistent with the image data and motion field.
The epipolar residual is then very large. The second means
of (C3) is to ensure that the 3D model projects onto im-
age I′ with sub-pixel error. The epipolar residual is the av-
erage 2D projection error for points in �. Thus it evaluates
the ability of the 3D model to accurately represent image
I′.

These three criteria are used as follows: for a fixed image
I = In, successive images In+1, In+2, . . . , are examined until
(C1) and (C2) are verified. Following images are considered
as candidates for Kk+1. For each candidate image I′, camera
motion and fundamental matrix are estimated in order to
evaluate (C3). We then select as Kk+1 the last candidate I′ be-
fore (C2) is false or before (C3) is not verified formore than 2
successive frames. One or two successive frames I′ with true
(C1) and (C2) and false (C3) is considered due to unstable
numeric estimation of F. This is the reason why the GOP is
not ended before 3 or more successive images do not verify
(C3).

5.2. Validation

This approach has been validated on several video sequences
with various camera motions; we show the results on two
typical cases. Figure 4 presents the evolution of the 3 crite-
ria on the two test sequences: (C1) on top, (C2) in the mid-
dle, (C3) at the bottom. Horizontal lines show the thresh-
old values for each criterion, and vertical dotted lines indi-
cate keyframes. Left column refers to the street sequence, and
right column refers to the stairway sequence (see Section 7.3
for images from the original video sequences).

Thresholds So and S f are manually fixed close to typi-
cal values in order to obtain large GOPs. The following pa-
rameters were used to encode the street sequence: Sm = 10,
So = 40%, and S f = 0.35. Epipolar residuals are computed
only when average motion is greater than 10 pixels. We can
notice that the 3 criteria allow to select keyframes mostly
on outgoing points percentage, because this sequence have
a quite stable motion.

The following parameters were used to encode the stair-
way sequence: Sm = 10, So = 30%, and S f = 0.4. This se-
quence is more unstable than the previous one, due to unsta-
bilized camera motion during acquisition. However, we can
notice that the three criteria allow to select keyframes despite
the instability of epipolar geometry.

The GOP size varies according to video contents. For the
street sequence, where camera motion is homogeneous, GOP
size is quite stable, with a value around 40 frames in a GOP.
For the stairway sequence, GOP size values between 5 to 30
frames with a typical value of 25 frames. GOPs are adapted to
scene content and camera motion so that a single 3D model
can accurately represent the frames in the GOP.

6. SLIDING ADJUSTMENT

At this point, we have a set of camera parameters which are
independent, that is, a computed 3D model �k whose ge-
ometry is optimal for the GOP k between Kk and Kk+1. Since
we want local consistency between each successive 3D mod-
els, we use a sliding window to compute the camera posi-
tions in order to increase the consistency of a pair (camera,
3D model) with its neighbors.

6.1. Initialization

As the proposed sliding adjustment is solved using a non-
linear optimization procedure, initial values for the esti-
mated parameters must be provided. These values should be
close enough to the solution to allow the sliding adjustment
to converge toward an acceptable solution. The camera posi-
tion is first initialized with the previously computed (Rd, td)
parameters. Each 3D model has its own scale factor because
camera translation and 3D model are defined up to a scale
factor α, as shown by the following equation:

∀M = (x, y, z) ∈ �k,

m̃ = A · (R | t) · (x, y, z, 1)
⇐⇒ m̃ = A · (R | α · t) · (α · x, α · y, α · z, 1).

(5)
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Figure 4: The evolution of the 3 criteria on the street video sequence (left) and stairway video sequence (right).

Consistent scales for successive models are also estimated
by the sliding adjustment procedure. Initial values thus have
to be provided as well. We describe here how the initial scale
of each 3Dmodel is set to be similar to its previous 3Dmodel.

Scale of first 3D model �0 is not modified and is taken
as a reference for the whole sequence. We compute its gravity
center G0 from the set of matched points �0 (points lying at
infinity are not taken into account). Assuming that gravity
center Gk and scale factor αk have been computed for model
�k, the following steps are then iteratively performed:

(i) track points in �k from keyframe Kk+1 to keyframe
Kk+2,

(ii) compute G′k+1, the gravity center of the 3D points re-
constructed using these points,

(iii) compute scale factor for �k+1: αk+1 = |Gk · Rk + tk −
Ok+1|/|G′k+1 −Ok+1|,

(iv) rescale 3D model �k+1 and associated matrices Pk+1,
Pk+2 using αk+1,

(v) compute new gravity centerGk+1 from the set of points
�k+1.

At the end of this process, we obtain a set of 3D models �k

which are defined in the same basis and which have a con-
sistent scale from one 3D model to the next 3D model in the
stream.

6.2. Algorithm

Our algorithm is based on bundle adjustment [22] but it is
adapted to our application, namely
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(i) each set �k generates a 3D model �k whereas in bun-
dle adjustment all 3D points are merged into one sin-
gle model,

(ii) local consistency is performed on a sliding temporal
window: for a given keyframe Kk, only neighboring
images and camera positions are taken into account,

(iii) some 3D points are constrained to stay on their view-
line for coding purpose.

We now define some useful notation.
(1) Pk = A · (Rk | tk) is the projection matrix which

perfectly projects the 3Dmodel �k on image Kk. This matrix
is also the projection matrix for the last image of previous
GOP: Pk projects the 3D model �k−1 on Kk with an error
due to the imperfections of 3D model �k−1.

(2) {Mk
i } is a set of 3D points computed with projection

matrices Pk and Pk+1, from the set of robust points �k ex-
tracted in image Kk and matched in image Kk+1. {Mk

i } can
be seen as a subset of 3D model �k.

(3)mk
i is a point in �k extracted in keyframe Kk.

(4) mk,l
i is a point extracted in keyframe Kk and tracked

till keyframe Kl by summation of estimated motion fields.
(5) m̂k,l

i = Pl ·Mk
i is a point of {Mk

i } projected in image
Kl with projection matrix Pl.

For each keyframe Kk, a cost function f = f1 + f2 + f3 is
minimized. The considered costs are 2D residual errors when
projecting the 3D models onto keyframes inside the sliding
window. When processing current keyframe Kk, the follow-
ing parameters have been estimated at previous iteration on
Kk−1: point sets {Mk−1

i }, {Mk
i }, projection matrices Pk−1, Pk,

and Pk+1. Among them {Mk−1
i }, Pk−1, and Pk are final values,

whereas the values of {Mk
i } and Pk+1 are estimated again in

the current Kk process.
We now describe each term in the cost function and we

give its geometrical interpretation.
(1) The first term f1 ensures that model �k projects cor-

rectly onto keyframe Kk+1, by finding the best projection ma-
trix Pk+1. Pk is expected to perfectly project �k onto Kk, thus
pointMk

i must not be modified on image Kk. A 3D pointMk
i

thus has only one degree of freedom: moving along its view-
line. This constraint writes

Mk
i = Ok + λki · �u

(
mk

i

)
. (6)

Under this constraint, the cost function f1 is defined as

f1
(
Pk+1,

{
Mk

i

})
=
∑

i

∥∥∥mk,k+1
i − m̂k,k+1

i

∥∥∥
2

=
∑

i

∥∥∥mk,k+1
i − Pk+1 ·Mk

i

∥∥∥
2
,

(7)

f1 is a function of both the matrix Pk+1 and the point set
{Mk

i }. The unknown parameters in f1 are {λki } which define
{Mk

i } and (Rk+1, tk+1) which define Pk+1.
(2) f2 ensures consistency of keyframe Kk+1 with 3D

model �k−1. The set of points {Mk−1
i } has been computed

on a previous step as well as projection matrices Pk−1 and Pk,

and they are thus fixed parameters. We search the best pro-
jection matrix Pk+1 for both �k−1 and �k, that is, we add a
new cost function

f2
(
Pk+1

) =
∑

i

∥∥∥mk−1,k+1
i − m̂k−1,k+1

i

∥∥∥
2

=
∑

i

∥∥∥mk−1,k+1
i − Pk+1 ·Mk−1

i

∥∥∥
2
.

(8)

Minimizing the cost function f1 + f2 ensures that 3D model
�k is consistent with the previous model �k−1.

(3) Finally we want consistency of 3D model �k with
next 3D model �k+1. This is done by estimating Pk+2 which
best projects points {Mk

i } and {Mk+1
i } on image Kk+2, under

the constraint that {Mk+1
i } project perfectly on Kk+1. This is

ensured by minimizing the cost function f3

f3
(
Pk+2,

{
Mk

i

}
,
{
Mk+1

i

})

=
∑

i

∥∥∥mk,k+2
i − m̂k,k+2

i

∥∥∥
2
+
∑

i

∥∥∥mk+1,k+2
i − m̂k+1,k+2

i

∥∥∥
2

=
∑

i

∥∥∥mk,k+2
i − Pk+2 ·Mk

i

∥∥∥
2
+
∑

i

∥∥∥mk+1,k+2
i − Pk+2 ·Mk+1

i

∥∥∥
2

(9)

under the constraint

Mk+1
i = Ok+1 + λk+1i · �u

(
mk+1

i

)
. (10)

The final cost function becomes

f
(
Pk+1,

{
Mk

i

}
, Pk+2,

{
Mk+1

i

})

= f1
(
Pk+1,

{
Mk

i

})
+ f2

(
Pk+1

)

+ f3
(
Pk+2,

{
Mk

i

}
,
{
Mk+1

i

})
.

(11)

Equation (11) is a large nonlinear systemwith the follow-
ing characteristics:

(i) 6 unknown parameters for the projection matrix Pk+1:
3 for translation tk+1, and 3 for rotation Rk+1,

(ii) 6 unknown parameters for projection matrix Pk+2,
(iii) Card({Mk

i }) unknown parameters for the set of points
{Mk

i },
(iv) Card({Mk+1

i }) unknown parameters for the set of
points {Mk+1

i },
(v) 2 · Card({Mk

i }) equations for the constraint f1 (one
equation on the x-axis and another on the y-axis),

(vi) 2 · Card({Mk−1
i }) equations for the constraint f2,

(vii) 2 · Card({Mk
i }) + 2 · Card({Mk+1

i }) equations for the
constraint f3.

One must notice that this large system is a very sparse
system: a given 3D pointMi interferes in 4 or less equations.
This system is then solved using a classical nonlinear esti-
mation algorithm which deals with large sparse systems. We
have used the MinPack [23] package implementation. At the
end of the minimization step k, the final 3D model �k is
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Figure 5: PSNR value for reconstruction of stairway video se-
quence. Each GOP k is reconstructed with the previous correspond-
ing 3D model �k−1. Method with sliding bundle adjustment have
a better quality, showing a better consistency of previous 3D model
with the current GOP.

computed using the 2 projection matrices Pk and Pk+1, and
projection matrix Pk+2 is taken as an initial value for the next
step k + 1.

Figure 5 presents PSNR value obtained with the stairway
video sequence reconstructed using previous 3Dmodel�k−1
instead of �k for each GOP k. Figure 6 shows the PSNR ob-
tained when using next 3D model. They show that the slid-
ing adjustment increases the ability of next and previous 3D
models to represent the current GOP. The expected consis-
tency of each 3D model with previous and next 3D models is
thus achieved.

6.3. Extended sliding adjustment

The presented method can be extended to take into account
more than 3 successive models. This is done by adding cost
functions similar to f3. Consider that we want to increase
consistency with the p next keyframes (in the previous sec-
tion p = 1). We generalize function f3 into gn, which gives
the contribution of keyframe Kk+n into the total cost func-
tion

gn
(
Pk+n+1,

{
Mk

i

}
, . . . ,

{
Mk+n

i

})

=
n∑

q=0

∑

i

∥∥∥mk+q,k+n+1
i − Pk+n+1 ·Mk+q

i

∥∥∥
2 (12)

under the constraints

M
k+q
i = Ok+q + λ

k+q
i · �u

(
m

k+q
i

)
, q = 0, n. (13)

For n = 1, g1 is the contribution of Kk+2 and is equal to f3.
The final cost function which takes into account p keyframes
and 3D models is

g
(
Pk+1,

{
Mk

i

}
, Pk+2,

{
Mk+1

i

}
, . . . , Pk+p+1,

{
M

k+p
i

})

= f1
(
Pk+1,

{
Mk

i

})
+ f2

(
Pk+1

)

+
p∑

n=1
gn
(
Pk+n+1,

{
Mk

i

}
, . . . ,

{
Mk+n

i

})
.

(14)
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Figure 6: PSNR value for reconstruction of stairway video se-
quence. Each GOP k is reconstructed with the next corresponding
3Dmodel �k+1. Method with sliding bundle adjustment have a bet-
ter quality, showing a better consistency of next 3D model with the
current GOP.

The extension to p 3D models ensures consistency of the
3D models for a longer time in the video. However, without
a precise set of camera parameters, a larger window may de-
grade the estimation results.

7. RESULTS

7.1. Textured 3Dmodel generation

We just present the final step for 3D models generation. The
visualization step is also adapted to our representation with
local 3D models.

For each pair of successive keyframe images Kk and Kk+1

a 3D model �k is computed. Since we have a dense motion
field Dk, camera internal parameters A and camera motion
parameters Rk, tk and projection matrices Pk, Pk+1 from slid-
ing adjustment, this is fairly simple. For any pixelm in Kk, its
corresponding position is given bym′ = m+Dk(m), and the
3D point is recovered by solving projection equations (1). A
dense depth map is then constructed. In order to have a 3D
model which can be easily visualized, only vertices of a regu-
lar 2D triangular mesh are reconstructed. The reconstructed
points define a continuous 3D triangular mesh. This mesh is
textured using image Kk. This 3D model is simply described
in a format Rec3D quite similar to VRML format. A Rec3D
file is then generated, which can be interactively visualized
in real time with classical 3D rendering libraries like openGL
[24].

7.2. Adapted visualization through 3Dmodel fading

The proposed representation with the set of 3Dmodels {�k}
can reconstruct the input video sequence. However, some ar-
tifacts appear in the reconstructed video sequence, in par-
ticular when we switch from one 3D model to another. They
are mostly due to illumination changes between 2 keyframes,
occluded areas and to the accuracy of the 3Dmodel to recon-
struct the GOP. In order to take into account such problems,
we propose an original 3D model fading technique. This
technique is an approximation of real 3Dmodel morphing. It
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Figure 7: Original street sequence. From top-left to bottom-right, image 0, 40, 80, 120, 160, 200.

is a simple way to take into account not only texture changes
but also the geometric changes from one 3D model to the
next in the stream. A two-passes rendering is performed, a
first pass using the current 3D model, and a second using
the next 3D model. The resulting reconstructed sequences
are then blended with respect to the α factor defined by

α(C) = ∣∣Ok − C
∣∣/
∣∣Ok −Ok+1

∣∣, (15)

whereOk andOk+1 are camera centers for first and last image
of the GOP and C is the current camera position. Thus the
α factor balances the reconstructed sequences contribution
from first to last image of the GOP, in proportion with the
distance of the current camera position from the keyframes
camera positions.

7.3. Results on real video sequences

The proposed algorithm has been implemented and tested
on several real video sequences. Reconstruction of the orig-
inal video sequence with the 3D models stream is easily
done, but is not discussed here since it is similar to classical
image interpolation. So, we test the accuracy of the 3D
models with classical applications of 3D model manipula-
tion: free navigation, illumination changes, augmented real-
ity, stereo visualization. We perform visual quality estima-
tion. The corresponding video sequences can be found at
http://www.irisa.fr/temics/Demos/3D4 showing some appli-
cations of the representation (compression aspects are also
shown but not discussed here).

The first is a street video sequence which is a walk in a
city with a global translation along the z-axis (Figure 7). Se-
quence has been acquired with a mechanical stabilizer, inter-
nal parameters are unknown and fixed (see Section 4.2), the
focal distance is approximated to 500. The densemotion field
between image 0 (keyframe 0) and image 40 (keyframe 1) is
shown on Figure 8a. The vector scale is 0.25 and the average

(a) (b)

Figure 8: (a) Dense motion field between image 0 and 40 in street
sequence. (b) Depth field extract from dense motion field.

motion is 41 pixels. The corresponding depth map on image
0 is shown on Figure 8b (the furthest areas from the camera
are in dark). We see that the depth map is quite regularized
and reconstructed the global shape of the street with details
on the relief (pot plant, street lamp, etc.). The corridor shape
of the street is more visible on Figure 9, where we clearly see
the planarity of the floor and the right angle with the 2 walls
on the sides with the floor.

The second test sequence is the stairway sequence
which is a walk with a global translation along the x-axis
(Figure 10). The video sequence has been acquired with a
simple hand-held camcorder, internal parameters are un-
known and fixed, the focal distance is again approximated
to 500. This video sequence is quite harder than the previous
one due to uniform textures and water in the fountain which
confuses the motion estimation. Figures 11a and 11b show
motion field and depth map for stairway video sequence be-
tween image 71 and image 83: vector scale is 0.25 and the
average motion is 40.2 pixels. We see that we obtain a valid
scene geometry: we find the trees and the shape of the stair-
way. Figure 12 shows in details the geometry of the scene as
depth maps.

http://www.irisa.fr/temics/Demos/3D4
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Figure 9: Rotation around a 3D model automatically extracted from street sequence. The images are the depth map of each views.

Figure 10: Original stairway sequence. From top-left to bottom-right, image 50, 75, 100, 125, 150, 175.

7.3.1 Free navigation

Free navigation in the representation is performed by just
specifying new camera positions. Figure 13 shows a texture
image (used for the texture mapping) and a virtual view gen-
erated with this image and the corresponding 3D model: we
simulate a virtual walker which performs few steps on the
left and turn the head to the right. We see that the window
and the gate in the background are occulted by the left wall,
according to the scene geometry. Figure 14 shows 2 other vir-
tual views taken far away from original viewpoints: (a) shows
the image produces with a large rotation to the left and (b) a
view in details of the scooter. Texture stretching is visible on
surfaces which are not visible with a frontal view or which
are in occulted areas.

7.3.2 Lightningmodification

Lightning modification is performed with classical illumi-
nation algorithm (see [24] for details). Contrary to global

(a) (b)

Figure 11: (a) Dense motion field between image 71 and 83 in street
sequence. (b) Depth field extract from dense motion field.

illumination changes of a video sequence, the illumination
takes into account 3D information such as distance from
the light to the surfaces, giving a better realism. Lightning
modification on the street video sequence are presented on
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Figure 12: Rotation around a 3D model automatically extracted from stairway sequence. The images are the depth map of each views.

(a) (b)

Figure 13: (a) Texture image used with 3D model 4 extracted from
the street video sequence. (b) A virtual view generated with this tex-
ture image: the virtual walker performs few steps on the left and
turn the head to the right.

(a) (b)

Figure 14: Two virtual views of street video sequence generated far
away from original viewpoints.

Figure 15: a headlight have been added to change illumina-
tion in the scene. The figure shows 2 images of the recon-
structed video sequence. We notice the illumination is con-
sistent with the geometry, that is, decreasing with the dis-
tance from the light to the surface. We also notice that illu-
mination is invariant from one 3D model (a) to another (b)
and some artifacts on the top street lamp due to 3D mesh
continuity.

(a) (b)

Figure 15: Image 0 and 40 from the street sequence: a headlight is
added to reconstruct the original video sequence.

(a) (b)

Figure 16: A virtual sphere is added: (a) view with extracted 3D
model 1, (b) view with extracted 3D model 2. The occlusions are
taken into account, and the sphere position is quite stable from one
3D model to the next one.

7.3.3 Object insertion

Insertion of virtual objects in the video sequence taking into
account depth and occlusions is easy with the representa-
tion, contrary to classical 2D object insertion. Figures 16 and
17 show a virtual sphere added in the sequence street and
stairway. The sphere is placed to intersect the scene, showing
the occlusions accuracy. We can also notice the good stabil-
ity of the sphere’s position along the video sequence. Moving



1100 EURASIP Journal on Applied Signal Processing

(a) (b)

Figure 17: A virtual sphere is added in the scene. (a) View with
extracted 3D model 10. (b) View with extracted 3D model 15. The
occlusions are taken into account, and the sphere position is stable
from one 3D model to the next one.

(a) (b)

Figure 18: Left (a) and right (b) views of an image extracted from
the reconstructed stereoscopic video sequence.

objects can also be inserted, taking into account depth infor-
mation given by the representation.

7.3.4 Stereo sequence generation

The generation of stereoscopic video sequences just requires
to reconstructed the scene twice (for the left and the right
eyes) with a small shift. Figure 18 shows such a pair of im-
ages extracted from the stairway video sequence. The video
sequence is visualized on specific device or with eyes’ defo-
cus technique for still images. Stereo visualization has been
successfully tested on stereo display.

8. CONCLUSION

We have proposed an automatic scheme to extract a stream
of 3D models from a video sequence of a fixed scene. The
presented scheme offers a good compromise for 3D recon-
struction from any video sequence of static scenes when the
reconstruction of a unique 3Dmodel is not possible or desir-
able: this is the case for very long video sequences (computa-
tion complexity) which require on-the-fly analysis, or when
camera motion is not appropriate for a unique 3D recon-
struction (forward translation).

We have proposed a simple technique for automatic
video sequence clustering which allows to reconstruct several
3Dmodels. These 3Dmodels are then computed using a slid-
ing adjustment which allows to keep most of the functional-

ities of a unique 3D model. We have validated our approach
on several video sequences.

Such approaches could be extended to any video se-
quences (not only static scene) where objects segmentation
are known. Moreover, as in MPEG4 Sprite coding, very low
bitrate coding might be achieved with such a representation.
We thus plan to study the coding performance of our ap-
proach compared to standard video coders.
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