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Christophe Parisot
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Wavelet coding has been shown to achieve better compression than DCT coding and moreover allows scalability. 2D DWT can
be easily extended to 3D and thus applied to video coding. However, 3D subband coding of video suffers from two drawbacks.
The first is the amount of memory required for coding large 3D blocks; the second is the lack of temporal quality due to the
sequence temporal splitting. In fact, 3D block-based video coders produce jerks. They appear at blocks temporal borders during
video playback. In this paper, we propose a new temporal scan-based wavelet transform method for video coding combining
the advantages of wavelet coding (performance, scalability) with acceptable reduced memory requirements, no additional CPU
complexity, and avoiding jerks. We also propose an efficient quality allocation procedure to ensure a constant quality over time.
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1. INTRODUCTION

Although 3D subband coding of video [1, 2, 3, 4, 5] provides
encouraging results compared toMPEG [6, 7, 8, 9], its gener-
alization suffers from significant memory requirements. One
way to reduce memory requirements is to apply the tempo-
ral discrete wavelet transform (DWT) on 3D blocks coming
from a temporal splitting of the sequence. But this block-
based DWT method introduces temporal blocking artifacts
which result in undesirable jerks during video playback. In
this paper, we propose new tools for 3D subband codecs to
guarantee the output frames a constant quality over time.

Scan-based 2D wavelet transforms were first suggested
for on-board satellite compression in [10, 11] and by
Chrysafis and Ortega in [12].

In Section 2, we propose a 3D scan-based DWT method
and a 3D scan-based motion-compensated lifting DWT for
video coding. The method allows the computation of the
temporal wavelet decomposition of a sequence with infinite
length using little memory and no extra CPU. Furthermore,

the proposed wavelet transform provides higher quality con-
trol than 3D block-based video compression schemes (avoid-
ing jerks).

In Section 3, we propose an efficient model-based quality
control procedure. This bit-allocation procedure controls the
output frames quality over time. This new quality-control
procedure takes advantage of themodel-based rate allocation
methods described in [13].

Finally, Section 4 presents experimental results obtained
by our method.

2. 3D VIDEOWAVELET TRANSFORM

2.1. Principle

The method generally used to reduce memory requirements
for large image coding is to split the image and then perform
the transform on tiles such as JPEG with 8 × 8 DCT blocks
or JPEG2000 [14]. Unfortunately, the coefficients are com-
puted from periodic or symmetrical extensions of the signal.
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This results in undesirable blocking artifacts. For video cod-
ing, the same blocking artifacts in the temporal direction (in-
troduced by temporal splitting) result in jerks.

In this section, we propose a 3D wavelet transform
framework for video coding that requires storing aminimum
amount of data without any additional CPU complexity [15].
The frames of the sequence are acquired and processed on the
fly.

Definitions of the temporal coherence and the buffer names

We consider a temporal interval (set of input frames). We de-
fine the set of its temporally coherent wavelet coefficients as the
set of all coefficients, in all subbands, obtained by a filter (or
convolution of filters) centered on any one of the frames of
this temporal interval. In this paper, we assume that encod-
ing is allowed only when we have a temporally coherent set
of wavelet coefficients. Temporal coherence improves the en-
coder performance since it allows optimal bit allocation for
wavelet coefficients of the same temporal interval.

The set of buffers used to perform the temporal wavelet
transform will be called filtering buffers. These buffers pro-
duce low- and high-frequency temporal wavelet coefficients.
In the same way, we call synchronization buffers, the set of
buffers used to store output coefficients before their encod-
ing.

2.2. Temporal scan-based video DWT and delay

Consider the case of a 3D wavelet transform which can be
split into a 2D DWT on each frame and an additional 1D
DWT in the time direction [16]. In this paper, we focus on an
efficient implementation of the temporal wavelet transform
and we propose a method independent of the choice of the
spatial wavelet transform.

Each time a frame is received, we perform its 2D wavelet
transform and send it into our scan-based temporal wavelet
transform system. We consider symmetrical filters with odd
length since they are the most widely used in image com-
pression algorithms [14, 17]. To simplify, we also suppose
that the low-pass filter is longer than the high-pass one. Let
L = 2S + 1 be the length of the low-pass filter with S ≥ 2.
We want to design components that can be easily reused for
any wavelet decomposition tree. Therefore, the memory used
for the filtering buffers is supposed to be internal and cannot
be shared with other filtering buffers nor with the synchro-
nization buffers for wavelet coefficients storage. We propose
a method that minimizes the total memory requirements for
FIR filtering.

2.2.1 Single-stage DWT

We first consider a single stage of the temporal wavelet trans-
form.

The length of the low-pass filter is L. Therefore, we need
L frames of 2D wavelet coefficients in memory to compute
one frame of low-frequency temporal wavelet coefficients.
The high-pass filter is shorter. Thus, our filtering buffer must
contain exactly L frames of 2D wavelet coefficients. Conse-
quently, filtering buffers are FIFO with length L. Figure 1

Temporal synchronization buffers

Temporal filtering bufferInput frame

HF

LF

Central point of the low-pass filter

Central point of the high-pass filter

Figure 1: One-level temporal scan-based wavelet decomposition
for the 5/3 filter bank.

shows the scheme for a single stage of a 5/3 temporal wavelet
decomposition. The filtering buffer contains five frames of
2D wavelet coefficients. The synchronization buffers are used
to store output 3D wavelet coefficients until we get a tempo-
rally coherent set of 3D wavelet coefficients.

When the (S+1)st 2D transformed frame is received, the
filtering buffer is symmetrically filled up in order to avoid
side effects. The central frame is the 2D wavelet transform
of the first image of the sequence. We can compute the first
low-frequency temporal coefficients applying the low-pass
filter to the central frame of the filtering buffer (gray frame
in Figure 1). The first high-frequency temporal coefficients
must be computed on the second 2D transformed frame.
This frame (hatched frame in Figure 1) and all its necessary
neighbours are already present in the filtering buffer since the
high-pass filter is shorter than the low-pass one. Therefore,
the high-frequency temporal wavelet coefficients can also be
computed without additional input frame.

Finally, we have to wait for only S + 1 input frames to get
one low-frequency and one high-frequency temporal frames
of wavelet coefficients. Then, for each pair of input frames,
we can compute both low-frequency and high-frequency co-
efficients. Each pair of low- and high-frequency frames is a
set of temporally coherent wavelet coefficients. Therefore, we
need S+1 input frames to get the first set of temporally coher-
ent wavelet coefficients and S+1+2(n−1) = S+2n−1 input
frames to get a set of n low-frequency and n high-frequency
output frames.

When the input sequence is finished, input frames are re-
placed by a symmetrical extension using the frames present
in the filtering buffer in order to flush it.
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Figure 2: Three-level temporal scan-based wavelet decomposition for the 5/3 filter bank.

2.2.2 Multistage DWT

We now consider the general scheme of an N-level temporal
wavelet decomposition. We focus only on the usual dyadic
decomposition without additional high-frequency subband
decomposition. We assume that decomposition levels are in-
dexed from 1 to N , where level j corresponds to the coeffi-
cients produced by the jth wavelet decomposition (level 0 is
the sequence of all 2D wavelet transformed frames).

We compute the encoding delay for a two-level wavelet
decomposition. The first stage has to compute S + 1 low-
frequency temporal frames to get coefficients in both low-
frequency and high-frequency subbands of the second level.
In the same time, the first stage has also computed S+1 high-
frequency temporal frames. But, from Section 2.2.1, we know
that these S+ 1 low-frequency and S+ 1 high-frequency out-
put frames of 3D wavelet coefficients can only be computed
after the delay of S + 2(S + 1) − 1 frames. Thus, we have to
wait for 3S+1 frames to get one frame of 3D coefficients in all
subbands of the second decomposition level and S+1 frames
of 3D coefficients in the first level. Notice that for temporal
coherence, we need only the first two frames among the S+1
of the first level.

To compute the delay for anN-level temporal wavelet de-
composition, we define dj as the number of frames required
at the input of the jth filtering buffer to get temporally coher-
ent coefficients in all subbands. The processing of the first set
of 3D subbands of temporally coherent wavelet coefficients
will be possible after D = d1 frames have been received.
From Section 2.2.1, we know that dj = S + 2dj+1 − 1 for
j ∈ {1, . . . , N−1} and dN = S+1. Solving these equations, we
find that the number of input frames required at level j be-
fore the first wavelet coefficients are available for processing

Table 1: Number of input frames necessary to get the first set of
temporally coherent wavelet coefficients (1).

Number of levels (N) 9/7 DWT 5/3 DWT

1 5 3

2 13 7

3 29 15

is dj = (2N+1− j − 1)S+ 1. Therefore, for an N-level temporal
wavelet decomposition, the number of input frames needed
to get the first set of temporally coherent wavelet coefficients
is

D = (2N − 1
)
S + 1. (1)

Thus, the number of frames needed for the synchroniza-
tion of the multistage decomposition increases exponentially
with the number of decomposition levels. Figure 2 shows the
scheme of a three-level wavelet decomposition for S = 2.
Dark frames in the synchronization buffers are the set of co-
efficients which will be processeded together (quantized and
encoded) as soon as we have coefficients in all temporal fre-
quency bands. This set of coefficients is temporally coherent.
At the beginning of the sequence, we have to wait forD input
frames. Then, sets of temporally coherent coefficients will be
available each 2N input frames. Table 1 shows the number
of input frames needed to get the first set of temporally co-
herent wavelet coefficients for two widely used filter banks.
This table shows that a three-level decomposition introduces
an encoding delay of less than one second with the 9/7 filter
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bank and only half a second with the 5/3 filter bank. In 3D
block-based video coders, the delay is equal to the size of the
temporal block. As blocks are larger in order to minimize the
number of jerks, the delay is more important for 3D block-
based wavelet transform video coders.

2.3. Memory requirements

Memory requirements are given by the sum of the number
of frames in theN filtering buffers and the number of frames
in the synchronization buffers.

The memory requirements for the filtering buffers are
equal to (2S + 1)N frames.

The synchronization buffers of the last decomposition
level must contain one frame of 3D wavelet coefficients for
both the low-frequency and high-frequency subbands. For
the jth decomposition level ( j < N), dj+1, low-frequency
outputs need to be computed and, in the same time, dj+1

high-frequency outputs can be computed. As we know that
temporal coherence requires less than dj+1 3D frames of
wavelet coefficients at level j, we can decide to delay the
computation of the last computable high-frequency coeffi-
cients until the new set of temporally coherent 3D wavelet
coefficients has been encoded. Once the set of temporally
coherent coefficients has been encoded, we compute all the
high-frequency coefficients for levels 1 to N − 1 and send
them into the synchronization buffers. Then, the on-the-fly
wavelet transform can resume normally. This trick allows to
spare one frame in the memory requirements of each syn-
chronization buffer for levels 1 to N − 1. Thus, the memory
requirements for the synchronization buffers are limited to
2 +

∑N−1
j=1 (dj+1 − 1).

We need to storeMS = (2N −N−1)S+2 frames of coeffi-
cients for all the synchronization buffers. Therefore, the total
memory requirements of this method are

M = (2N +N − 1
)
S +N + 2 (2)

frames, for an N-level temporal wavelet transform with filter
length L = 2S + 1. When memory can be shared between fil-
tering buffers and synchronization buffers, the total memory
requirements are limited to

M = (2N +N − 1
)
S + 1 (3)

frames. See [18] for complete memory requirements formu-
lae.

Tables 2 and 3 show the total memory requirements for
the 9/7 and 5/3 filter banks, respectively, for independent and
shared buffers.

Memory requirements increase as an exponential func-
tion of the resolution N and as a linear function of the filter
length.

Note that, for the same memory requirements (e.g., 48
frames) and three levels of the 9/7 DWT decomposition with
a frame rate of 30 fps, the encoding delay for temporal block-
based video coders is equal to 1.6 second while it is 0.97 sec-
ond in our case (from Table 1). Furthermore, block-based
video coders have jerks for each group of 48 frames while
our method avoids these annoying artifacts.

Table 2: Memory requirements (2), in terms of frames, of the scan-
based DWT system including both filtering and synchronization
buffers.

Number of levels (N) 9/7 DWT 5/3 DWT

1 11 7

2 24 14

3 45 25

Table 3: Memory requirements (3), in terms of frames, of the scan-
based DWT system including both filtering and synchronization
buffers when memory can be shared between filtering and synchro-
nization buffers.

Number of levels (N) 9/7 DWT 5/3 DWT

1 9 5

2 21 11

3 41 21

The CPU complexity of our temporal scan-based DWT
is exactly the same as to perform the regular 1D DWT in the
temporal direction on the entire sequence.

2.4. Scan-basedmotion compensated lifting

The main drawback of the 3D scan-based DWT is that it
does not take motion compensation into account. 3D mo-
tion compensated lifting is an efficient tool to take account
of motion in video [4, 6, 9, 19, 20, 21].

Thus, we propose a new 3D scan-based motion compen-
sated lifting scheme [18, 22]. This method combines the ben-
efits of scan-based filtering, block-based coding, and quality
control [22].

When filtering and synchronization buffers are indepen-
dent, the total memory requirements become

M = (2N −N − 1
)
S + βN + 2, (4)

where β is a parameter depending on the filter, β = 6 for the
9/7 Daubechies DWT [23], and β = 4 for the 5/3 DWT.When
memory can be shared between filtering and synchronization
buffers, the total memory requirements are limited to

M = (2N −N − 1
)
S + (β − 1)N + 1. (5)

Complete memory requirements computation can be
found in [18]. The scan-based motion compensated lift-
ing scheme saves memory compared to the regular filter
banks implementation. Furthermore, our method does not
increase the CPU complexity compared to the usual lifting
implementation.

Tables 4 and 5 show the memory requirements for scan-
based motion compensated lifting video coders, respectively,
for independant and shared buffers.

Thus, the scan-basedmotion compensated lifting scheme
saves 12 to 33% memory (Tables 2 and 4 or Tables 3 and 5)
and takes account motion compensation.
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Table 4: Memory requirements (4), in terms of frames, of the scan-
based motion compensated lifting DWT system including both fil-
tering and synchronization buffers.

Number of levels (N) 9/7 DWT 5/3 DWT

1 8 6

2 18 12

3 36 22

Table 5: Memory requirements (5), in terms of frames, of the scan-
based motion compensated lifting DWT system including both fil-
tering and synchronization buffers when memory can be shared be-
tween filtering and synchronization buffers.

Number of levels (N) 9/7 DWT 5/3 DWT

1 6 4

2 15 9

3 32 18

A 32-frames memory (which is a reasonable GOP mem-
ory) allows to implement a 3D scan-based motion compen-
sated lifting with efficient filters (9/7) and three-level decom-
position.

The scan-basedmotion compensated lifting also removes
jerks with quality control.

3. MODEL-BASED TEMPORAL QUALITY CONTROL

The bit allocation for the successive sets of temporally co-
herent coefficients can be performed with respect to either
rate or quality constraints. In both cases, the goal is to find
a set of quantizers to apply in each subband, which perfor-
mances lie on the convex hull of the global rate-distorsion
curve [24, 25, 26, 27].

Three different methods can be used to model the rate
and distortion.

(i) The first one—used in JPEG2000 [14]—consists in
prequantizing the wavelet coefficients with a small predeter-
mined quantization step and encodes their bitplanes until
the rate or distortion constraint (depending on the applica-
tion) is verified. In this method, the quantization step of each
wavelet coefficient can only be a product of the chosen quan-
tization step multiplied by an integer power of two. The dis-
tortion and bitrate functions are exact but they are computed
during the encoding process.

(ii) The second method uses asymptotic models for both
the distortion and the bitrate. As the asymptotic rate and
distortion functions are simple, the minimum of the rate
or distortion allocation criterion can be computed analyti-
cally. This method is therefore the simplest one to get the
quantization steps to apply in each subband. However, the
asymptotic assumption is only true for high bitrate sub-
bands.

(iii) We have proposed to use nonasymptotic theoretical
models for both rate and distortion [13]. The rate and the
distortion depend on the quantization step but also on the
probability density function of the wavelet coefficients. As-
suming that the probability density model is accurate, this
method provides optimal rate-distortion performances.

In this section, we propose a new nonasymptotic tempo-
ral quality control procedure to ensure constant quality over
time. The quality measure is based on the mean square er-
ror (MSE) between the compressed signal and the original
one.

3.1. Principle of themodel-basedMSE allocation

The purpose of MSE allocation is to determine the optimal
quantizers in each subband which minimize the total bitrate
for a given output MSE. Since the 9/7 biorthogonal filter
bank is nearly orthogonal, the MSE between the original im-
age and the decoded one can be computed by a weighted sum
of themean squared quantization errors of each subband.We
have

MSEoutput =
#SB∑
i=1

∆iπiσ
2
Qi
, (6)

with #SB the number of 3D subbands, σ2Qi
the mean squared

quantization error for subband i, and {πi} the weights used
to take account of the nonorthogonality of the filter bank
[28]. The weights ∆i are optional and can be used for fre-
quency selection or distortion measures. The output bitrate
can be expressed as the following weighted sum:

Routput =
#SB∑
i=1

aiRi, (7)

with Ri the output bitrate for subband i and ai the weight
of subband i in the total bitrate (ai is the ratio of the size of
subband i divided by the size of the sequence).

The subband quantizers are uniform scalar quantizers.
They are defined by their quantization bins qi. The solution
of our constrained problem is obtained thanks to Lagrangian
operators by minimizing the following criterion:

J
({
qi
}
, λ
) = #SB∑

i=1
aiRi

(
qi
)
+ λ

( #SB∑
i=1

∆iπiσ
2
Qi

(
qi
)−DT

)
, (8)

where DT denotes the target output MSE and both Ri and
σ2Qi

depend on the quantization steps qi. The models used for
the bitrate and distortion functions are described in the next
subsection.

3.2. Rate and distortionmodels

In each 3D subband, the probability density function of the
wavelet coefficients is unimodal with zero mean and can be
approximated with generalized Gaussian [23, 29]. Therefore,
we have

pα,σ(x) = ae−|bx|
α
, (9)
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with b = (1/σ)
√
Γ(3/α)/Γ(1/α) and a = bα/2Γ(1/α). We also

assume that wavelet coefficients are independent and identi-
cally distributed (i.i.d.) [13] in each subband.

Let Pr(m) be the probability of the quantization level m
so that

Pr(m) =
∫ (|m|+1/2)q

(|m|−1/2)q
pα,σ(x)dx, (10)

form �= 0 and

Pr(0) =
∫ +q/2

−q/2
pα,σ(x)dx. (11)

From (10) and (11), we can approximate the bitrate R by
the entropy of the output quantization levels

R = −
+∞∑

m=−∞
Pr(m) log2 Pr(m). (12)

The best coding value for the quantization levelm [30] is
the centroid of its quantization bin

x̂m = sign(m)×
∫ (|m|+1/2)q
(|m|−1/2)q xpα,σ(x)dx

Pr(m)
, (13)

form �= 0 and x̂0 = 0.
The mean squared quantization error is given by

σ2Q =
∫ +q/2

−q/2
x2pα,σ(x)dx + 2

+∞∑
m=1

∫ (m+1/2)q

(m−1/2)q

(
x − x̂m

)2
pα,σ(x)dx.

(14)

Inserting the value of x̂m into (14), we get

σ2Q = σ2 − 2
+∞∑
m=1

( ∫ (m+1/2)q
(m−1/2)q xpα,σ(x)dx

)2
∫ (m+1/2)q
(m−1/2)q pα,σ(x)dx

. (15)

Proposition 1. When pα,σ is a generalized Gaussian distribu-
tion with standard deviation σ and shape parameter α, there is
a family of functions fn,m which verifies∫ +q/2

−q/2
xnpα,σ(x)dx = σn fn,0

(
α,

q

σ

)
,

∫ (m+1/2)q

(m−1/2)q
xnpα,σ(x)dx = σn fn,m

(
α,

q

σ

)
∀m > 0

(16)

with

fn,0

(
α,

q

σ

)
=
∫ +(1/2)(q/σ)

−(1/2)(q/σ)
xnpα,1(x)dx,

fn,m

(
α,

q

σ

)
=
∫ (m+1/2)(q/σ)

(m−1/2)(q/σ)
xnpα,1(x)dx.

(17)

Proof of Proposition 1 is given in [18].

Therefore, the bitrate R and the quantization distortion
σ2Q depend only on the shape parameter α and the ratio q/σ ,

R = R
(
α,

q

σ

)
, σ2Q = σ2D

(
α,

q

σ

)
(18)

with

R
(
α,

q

σ

)
= − f0,0

(
α,

q

σ

)
log2 f0,0

(
α,

q

σ

)

− 2
+∞∑
m=1

f0,m

(
α,

q

σ

)
log2 f0,m

(
α,

q

σ

)
,

(19)

D
(
α,

q

σ

)
= 1− 2

+∞∑
m=1

f1,m(α, q/σ)2

f0,m(α, q/σ)
. (20)

3.3. Optimalmodel-based quantization
forMSE control

Therefore, the goal is to find the quantization steps {qi} and
λ which minimize

J
({
qi
}
, λ
)=#SB∑

i=1
aiR
(
αi,

qi
σi

)
+ λ

( #SB∑
i=1

∆iπiσ
2
i D
(
αi,

qi
σi

)
−DT

)
.

(21)

We differentiate the criterion with respect to qi and λ.
This provides the following equations:

ai
∂R

∂q̃i

(
αi, q̃i

)
+ λ∆iπiσ

2
i
∂D

∂q̃i

(
αi, q̃i

) = 0, ∀i,
#SB∑
i=1

∆iπiσ
2
i D
(
αi, q̃i

)−DT = 0,

(22)

where q̃i = qi/σi.
Thus, the quantizers parameters {qi}must verify the fol-

lowing system of #SB + 1 equations and #SB + 1 unknowns:

(∂D/∂q̃i)
(
αi, q̃i

)
(∂R/∂q̃i)

(
αi, q̃i

) = − ai
λ∆iπiσ

2
i

, ∀i,

#SB∑
i=1

∆iπiσ
2
i D
(
αi, q̃i

) = DT.

(23)

In order to simplify the notation, write

hαi
(
q̃i
) = (∂D/∂q̃i)

(
αi, q̃i

)
(∂R/∂q̃i)

(
αi, q̃i

) , (24)

where

hα
(
q̃
) = A

B
ln 2, (25)

where A = ∑+∞
m=1(2(∂ f1,m/∂q̃)(α, q̃) f1,m(α, q̃) f0,m(α, q̃) −

f1,m(α, q̃)2(∂ f0,m/∂q̃)(α, q̃))/ f0,m(α, q̃)2, B = (pα,1(q̃/2)/2)
× [ln f0,0(α, q̃) + 1] +

∑+∞
m=1(∂ f0,m/∂q̃)(α, q̃)[ln f0,m(α, q̃) + 1]
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Figure 3: Tables of ln(−h(q/σ)) for different shape parameters α of
the generalized Gaussian distribution.

with

∂ fn,m
∂q̃

(
α, q̃

) = [(m +
1
2

)n+1
pα,1

(
mq̃ +

q̃

2

)

−
(
m− 1

2

)n+1
pα,1

(
mq̃ − q̃

2

)]
q̃ n.

(26)

Equations (23) become

hαi
(
q̃i
) = − ai

λ∆iπiσ
2
i
, ∀i,

#SB∑
i=1

∆iπiσ
2
i D
(
αi, q̃i

) = DT.
(27)

The solution of the MSE allocation problem can be ob-
tained with the following equations:

#SB∑
i=1

∆iπiσ
2
i D
(
αi, h

−1
αi

(
− ai

λ∆iπiσ
2
i

))
= DT, (28)

q̃i = h−1αi

(
− ai

λπiσ
2
i

)
, ∀i, (29)

where h−1 is the inverse function of h. The parameter λ can be
found from (28), and then (29) provides the optimal quan-
tization steps qi. Unfortunately, as there is no analytical for-
mula for h−1, the MSE allocation problem will be solved us-
ing a parametric approach described below.

3.4. Parametric approach

Equation (29) gives the values of the quantization steps us-
ing tables of the function h for different shape parameters α.
Figure 3 shows the tables of ln(−hα(q̃)) for α = 1, 1/2, 1/3,
and 1/4 and the asymptotic curve of equation

ln(−h) = 2 ln
q

σ
+ ln

ln 2
6

. (30)
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Figure 4: Tables of ln(−h) = ln(ai/λπiσ2
i ) versus lnD for different

shape parameters α of the generalized Gaussian distribution.

To solve (28), we need tables linking D and λ. Using (20)
and (25), we plot the parametric curve (with parameter q̃)

[
lnD

(
α, q̃

)
; ln
(− hα

(
q̃
))]

, (31)

for a given α. Using (29), this parametric curve is equivalent
in each subband to the following parametric curve:

[
lnD; ln

(
ai

λπiσ
2
i

)]
. (32)

Figure 4 shows these tables for α = 1, 1/2, 1/3, and 1/4 and
the asymptotic curve of equation

ln(−h) = lnD + ln(2 ln 2). (33)

Thus, we have a relation between D and λ in each sub-
band. The optimal λ is found using the constraint (28). Then,
we have a relation between λ and the quantization step qi in
each subband.

3.5. Algorithm of themodel-basedMSE allocation

The proposed MSE allocation procedure is the following.

(1) Set the initial value of λ to its asymptotic optimum
value λ = 1/2DT ln 2.

(2) For each 3D subband i, compute ln(ai/λ∆iπiσ
2
i ) =

ln(−h) and read the corresponding normalized MSE
Di using the tables shown in Figure 4.

(3) Compute |∑#SB
i=1 ∆iπiσ

2
i Di − DT |. If it is lower than a

given threshold, the constraint (28) is verified and the
current λ is optimal. Otherwise, compute1 a new value
of λ and go back to step (1).

1Several methods (such as dichotomy, bisection, secant method, golden
section search) can be used.
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Figure 5: PSNR variations for the 3D scan-based temporal DWT
(continuous) and the 3D temporal tiling approach (dashed) on
the 89 first luminance frames of the sequence Akiyo at 80 kbps
(25 fps). 9/7 DWT with two levels of decomposition; bitrate control
for groups of 16 frames.

(4) For each 3D subband i, compute ln(ai/λ∆iπiσ
2
i ) =

ln(−h) with the optimal λ and read qi/σi using the ta-
bles shown in Figure 3. This qi is the optimal quanti-
zation step for subband i.

The tables shown in Figures 3 and 4 are stored for several
shape parameters α. They are valid for any video sequence.

4. EXPERIMENTAL RESULTS

To show the efficiency of our 3D scan-based wavelet trans-
form method in removing the temporal blocking artifacts
(jerks), we first extended EBWIC [13] to 3D data. The
quantized wavelet coefficients have been encoded using
JPEG2000’s bit-plane context-based arithmetic coder [14].
We first encoded a sequence with the proposed 3D scan-
based temporal wavelet transform and a bitrate regulation
for the temporally coherent coefficients of each group of 16
frames. Then, we encoded the same sequence with the block-
based approach, where the temporal wavelet coefficients and
their encoding were performed on independent temporal
blocks of 16 frames. Figure 5 shows a global PSNR improve-
ment of mean 0.11 dB with our approach. Furthermore, we
have reduced the PSNR variance from 0.13 to 0.06. The peaks
of the block-based approach fit with the artifacts produced at
temporal tiles borders (jerks). Regarding the visual quality,
the proposed method is also better since the annoying jerks
are cancelled out.

Then, we replaced the bitrate regulation by our new
MSE allocation procedure. Figure 6 shows that the quality of
successive groups of 8 frames is well controlled. The PSNR
variations are less than 1 dB with ourmethod while they were
up to 9 dB with a bitrate control procedure. The global se-
quence PSNR is 32.7 dB in both cases. Therefore, ourmethod
provides the same global rate-distortion performance but en-
sures constant quality output frames. This results in a better
visual quality.
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Figure 6: PSNR of each group of height frames (GOF) for the pro-
posed quality control procedure (continuous) and a bitrate control
procedure (dashed). The sequence is Foreman at 890 kbps (30 fps)
in both cases.

5. CONCLUSION

In this paper, we have proposed methods for efficient quality
control in video-coding applications.

In Section 2, we have proposed a 3D scan-based DWT
method which allows the computation of the temporal
wavelet decomposition of a sequence with infinite length us-
ing few memory and no extra CPU. Compared to tempo-
ral tiling approaches often used to reduce memory require-
ments, our method avoids temporal tiles artefacts. We have
also shown in Section 2.3 that, for the samememory require-
ments, our method reduces the encoding delay. We have pro-
posed the scan-based motion compensated lifting which re-
sults in both saving memory and temporal quality control.

In Section 3, we have proposed a new efficient model-
based quality control procedure. This bit allocation proce-
dure controls the output frames quality over time. The ex-
tension to scalar quantizers with a deadzone [31, 32, 33] is
straightforward.

These methods combine the advantages of wavelet cod-
ing (performance, scalability) with minimum memory re-
quirements and low CPU complexity.
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