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Today’s content-based video retrieval technologies are still far from human’s requirements. A fundamental reason is the lack of
content representation that is able to bridge the gap between visual features and semantic conception in video. In this paper,
we propose a motion pattern descriptor, motion texture that characterizes motion in a generic way. With this representation, we
design a semantic classification scheme to effectively map video clips to semantic categories. Support vector machines (SVMs) are
used as the classifiers. In addition, this scheme also improves significantly the performance of motion-based shot retrieval due
to the comprehensiveness and effectiveness of motion pattern descriptor and the semantic classification capability as shown by
experimental evaluations.
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1. INTRODUCTION

The management and access of a mass volume of multime-
dia data, video in particular, is an entry barrier for better
user’s experiences. Content-based video retrieval has been
proposed as a solution to address this problem. However,
the success is very limited. One of the important barriers
is the lack of comprehensive, compact, and flexible repre-
sentation of video content. Current content-based technolo-
gies dependmostly on low-level features, which are extracted
fully automatically, but bear little or no semantic content of
video. It is understood that semantic representation and clas-
sification are the foundations for building an effective and ef-
ficient index of video data. However, when the textual infor-
mation is not available or impossible to be extracted, we have
to resort to low-level features. Then, the challenge is how to
bridge the gap between low-level feature and semantic con-
ception. In other words, we need to develop a comprehen-
sive and effective video content representation that is able to
bridge the gap between visual features and semantic concep-
tion in video.

In this paper, we present our work on the extraction
and application of motion feature which is the most dis-
tinctive character of video. We propose a motion pattern
descriptor, motion texture, to efficiently characterize the
motion features of video in a generic way. With this motion

representation, a semantic classification scheme is designed
to map motion texture to the semantic conceptions by ker-
nel support vector machines (SVMs) method. In addition,
we present a method to take advantage of the proposed se-
mantic classification to enhance the performance of tradi-
tional content-based video retrieval.

The rest of the paper is organized as follows. Related
works are reviewed in Section 2. Section 3 introduces the
proposed motion pattern descriptor, motion texture, in de-
tail. Then, a motion pattern-based semantic classification
scheme is presented in Section 4. Also, the kernel support
machines are reviewed briefly in this section. In Section 5,
we present the application scheme and experimental results
of motion texture and semantic classification scheme in shot
retrieval to enhance the performance of motion-based re-
trieval. Section 6 concludes the paper.

2. RELATEDWORKS

As an important cue in understanding video content, mo-
tion has been a study topic ever since computer vision and
image processing research started. Motion estimation is a
conventional method to extract motion information from
two consecutive frames [1]. Parametric global motion esti-
mation generates the parametric model of camera motion or
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dominant motion such as affine model. Nonparametric mo-
tion estimation generates a field of displacement pairs such
as optical flow. Both of the two results can be looked upon as
motion representation. Recently, many approaches have been
proposed to apply motion analysis to content-based video
retrieval. For example, optical flow is used for video index-
ing in [2]. However, with such motion representations, mo-
tion feature cannot be utilized efficiently and sufficiently be-
cause parametric global motion descriptors are too coarse,
and nonparametric motion descriptors are often over fine. A
reasonable representation of motion is trajectories of moving
objects since humans usually only concernedwith objectmo-
tion, and do not perceive the existence of camera motion. In
order to extract motion trajectories, object segmentation and
tracking [3], or motion layer extraction [4], is often adopted.
However, the exact object trajectories usually are unavail-
able due to the unreliability of automatic objects extraction.
Therefore, as a simplified alternative, trajectories of moving
regions are extracted to facilitate video retrieval in [5]. An-
other motion extraction method is based on the temporal
slices of image volume [6, 7, 8]. In [8], Ngo characterized
motion using multiple slices and tensor measurement. Such
temporal slices encode rich motion clues which are very use-
ful for specific motion characterization, but they also have
many confusable visual patterns that cannot be suppressed
easily.

While motion patterns often convey some semantic in-
formation, especially in sports video, they have been used of-
ten only as a low-level attribute in most of the existing video
analysis systems. By extracting texture and motion features,
the scene contents of video are classified into 9 categories in
[9]. The categories are defined according to 3 levels of texture
complexity and 3 levels of motion intensity each, namely,
low, medium, and high. In [10], motion histogram, domi-
nant motion, and model parameters of global motion esti-
mation are extracted from each frame. By integrating with
color and audio features, the shots of TV programs are clas-
sified into 5 categories: news reports, weather forecasts, com-
mercials, basketball games, and football games. The work
[11] focuses on basketball events classification in which mo-
tion, color, and edge features are used to classify basketball
events. Motion features include the orientation of dominant
motion and average magnitude of motion vectors during a
video clip. All of these statistical motion descriptors repre-
sent most of global motion information, but they cannot
represent the temporal variation pattern in video clip suffi-
ciently. In addition, the categories defined in these literatures
are only based on non-semantic measurements or a limited
scope of semantic conceptions. Lacking of a generic classifi-
cation scheme is a main constraint of these methods.

Another key issue in classification is classifier selection.
Some systems took advantage of HMM-based methods, such
as [10]. An entropy-based inductive tree-learning algorithm
was used in [11]. Neural networks are also good choices
for classifiers. Radial basis function network, feed forward
network, recurrent network, and so on were all often adopted
for this purpose [12]. In recent years, machine learning was
successfully applied tomultimedia classification such as SVM

[13]. Kernel SVMs is a good optimal classifier due to its high
generalization performance without the need to add a priori
knowledge, even when the dimension of the input space is
very high.

It is difficult to use motion information effectively in
video retrieval since the motion information is always hid-
den behind temporal variances of other visual features such
as color, shape, and texture. It is necessary to extract motion
information from original image sequence and put it into an
explicit format of motion representation. Besides the motion
representations proposed in [5, 6, 7, 8], motion vector field
(MVF) in MPEG stream is also used for fast video indexing
or retrieval such as in [14, 15]. However, these motion rep-
resentations were only used as low-level features in retrieval
applications. So the retrieval results were far from human’s
requirements at the semantic level.

In summary, inspite of many research efforts, content-
based video analysis and retrieval are far from being an effec-
tive solution due to twomain constraints: the lack of efficient
content representation and the lack of an effective method
for bridging the gap between low-level features and semantic
conceptions. Removing these two constraints are the objec-
tives of the work presented in this paper.

3. MOTION PATTERN DESCRIPTOR

As reviewed in Section 2, parametric global motion estima-
tion generates the parametric model of camera motion or
dominant motion such as affine model; nonparametric mo-
tion estimation generates a field of displacement pairs such as
optical flow. The result of nonparametric motion estimation
is also often referred to as MVF. In this paper, we propose a
method that takes advantage of the results of nonparametric
motion estimation to generate a motion pattern descriptor.

MVF can be a field of optical flow obtained by pixel-
wised motion estimation. It also can be a sparser field gener-
ated by block-based motion estimation such as in MPEG en-
coding process. Though real motion cannot be obtained by
block-based motion-estimation algorithm (BMA), the lost is
light for video-content analysis. In this paper, we adopt the
MVF in MPEG stream as approximate block-based motion
estimation to create a motion pattern descriptor, namedmo-
tion texture.

The motion texture is extracted from MVFs by three
steps. First, we transform MVF to an energy unit circle
(EUC) by circular mapping. Then, the consecutive EUCs are
transformed to a texture image by slicing called directional
slices. Finally, the directional slices aremeasured bymoments
to form a multidimensional vector. Such a multidimensional
vector describes the motion pattern in a compact way and is
used as motion pattern descriptor, themotion texture.

3.1. Circularmapping

In a given MVF, let (i, j) be the position of macro blocks
in the raster-scan order, and Vi, j(∆xi, j ,∆yi, j) be the motion
vector of macro block MBi, j , then we define the energy in
macro block MBi, j as follows:



Motion Pattern-Based Video Classification and Retrieval 201

 

(b)

x

1

y
Circular mapping

y

+h

+w

ai, j

Vi, j

βi, j

ri, j−1ai, j

+1(x, y)

−h

−w

(a)

ρ

θ

Figure 1: Circular mapping.
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Figure 2: Examples of EUC patterns. (a) Camera panning right. There is a light line on the left. (b) Camera tracking. There are two light
strips. The one extending to the brim of the EUC results from the camera motion and the other with shorter length results from the object
motion. (c) Camera zooming. It presents a special pattern. (d) Irregular object motion with camera being static or moving slightly. (e) Object
motion with specific pattern, moving along the orientation of π/4. (f) A special case, a cube turning around. Its pattern is very distinctive.

Eni, j =
√
∆x2i, j + ∆y2i, j . (1)

Since the patterns in original MVF are not sufficiently
salient, we map the energy in MVF to a unit circle at first.
As shown in Figure 1, we construct rectangular coordinates
at the center of the MVF and polar coordinates at the center
of the unit circle. The width and height of the MVF are 2w
and 2h, respectively. Let xi, j and yi, j denote the position of
macro block MBi, j in rectangular coordinates, then the pro-
cess of mapping the energy in a MVF to a unit circle can be
described as

g(ρ, θ) =
+w∑

xi, j=−w

+h∑
yi, j=−h

Eni, j if ρ = r̄i, j , θ = αi, j , (2)

where g(ρ, θ) is the energy distribution function of the unit

circle, r̄i, j =
√
x2i, j + y2i, j /

√
w2 + h2 is the normalized distance

from macro block MBi, j to the center of MVF, and αi, j ∈
[0, 2π] is the orientation of motion vector Vi, j . We call this
mapping process circular mapping and call the mapped unit
circle energy unit circle (EUC). In EUC, both object motion
and camera motion present distinctive patterns, respectively.
Figure 2 gives some examples of EUC patterns of different
motions.

3.2. Directional slicing

In order to capture the temporal pattern of motion during
a period of time, we extract slices from consecutive EUCs
along the temporal axis. As shown in Figure 3, we first di-
vide EUC into n (n = 4 in this paper) equiangular opposite
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Figure 3: Directional slicing.

sectors with the central lines at 0, π/4, π/2, and 3π/4. Then,
the energy in each sector is accumulated to the central lines
along homocentric circumference. Finally, we extract direc-
tional slices from EUC volume at those central lines. This
process is called directional slicing.

Figure 4 shows some samples of directional slices, in
which the horizontal coordinate is temporal axis and the ver-
tical coordinate indicates the distance from macro block to
the center of the MVF. The positive and negative values of
vertical coordinate denote the two opposite directions, re-
spectively. Thus, 4-directional slices are able to describe the
patterns in 8 directions. In this way, motion intensity, domi-
nant direction, and motion pattern all can be presented with
a few gray-level images as the spatial and temporal distribu-
tion of energy.

3.3. Momentsmeasuring

The operations described above unveil the motion patterns
from the MVF. However, we still need to find an effective
method to measure these slice images to generate a compact
and quantitative representation. According to Hu’s unique-
ness theorem [16], if a function f (x, y) is piecewise contin-
uous and has nonzero values only in the finite region of the
(x, y) plane, then the moments of all orders exist. It can be
shown that the moment set {mpq} is uniquely determined
by f (x, y) and conversely, f (x, y) is uniquely determined by
{mpq}. Therefore, if we describe the directional slices with
energy density functions fn(x, y), the moments can be em-
ployed to represent these slices. Since the directional slice im-
ages fn(x, y) have finite area and, in the worst case, are piece-
wise continuous, moments of all orders exist and a moment
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Figure 4: Directional slices samples from a segment of a basketball
game video. Sn denotes the shots in video sequence. S1: a bout of of-
fence with a shoot occurred (right court); S2, S5, S7: the camera is
tracking a player. The energy distributes evenly among the 4-slices
due to the irregular object motion; S3: a bout of offence with a shoot
occurred (left court); S4: a specific wipe; S6: a bout of offence with-
out shoot.

set will uniquely describe the information contained in them.
In this paper, we select a subset of moments from the zeroth
to the fourth order to characterize slices. Assuming that the
slice images have the size of M × N , the moments are calcu-
lated as

mpq =
N−1∑
y=0

M−1∑
x=0

xp yq f (x, y), (3)

where (p, q) = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (3, 0), (0, 3),
(4, 0), (0, 4)}. Based on these moments, we compute 9 values
with specific physical meaning (4), (5), (6), (7), (8), (9), and
(10). These values can be normalized values by the size of
slices if it is necessary.

The center of mass is computed by (4) and normalized
by (5)

COMx = m10

m00
, COMy = m01

m00
, (4)

COMx = COMx

M
, COMy =

COMy

N
(5)

and the radii of gyration is computed by (6), normalized by
(7)

ROGx =
√

m20

m00
, ROGy =

√
m02

m00
, (6)

ROGx = ROGx

M
, ROGy =

ROGy

N
. (7)
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In order to compute the skewness and the kurtosis, the
central moment µpq is required as follows:

µpq =
N−1∑
y=0

M−1∑
x=0

(
x − COMx

)p(
y − COMy

)q
f (x, y), (8)

where (p, q) = {(2, 0), (0, 2), (3, 0), (0, 3), (4, 0), (0, 4)}. Then,
the skewness and the kurtosis can be obtained, respectively,
as

Skx = µ30
µ3/220

, Sky = µ03
µ3/202

, (9)

Kx = µ40
µ220

− 3, Ky = µ04
µ202

− 3. (10)

With the above measures, we define a 9-dimensional feature
vector for each directional slice: Fn = {m00,COMx,COMy,
ROGx,ROGy, Skx, Sky, Kx, Ky}, where n ∈ [0, 3]. So the total
dimension of the feature vector is 36.

3.4. Signed energy

In order to characterize the motion’s convergence or diver-
gence relative to the focus of expansion (FOE), a signed en-
ergy is defined for each macro block MBi, j as a supplement
to the definition in Section 3.3,

SEni, j =
1,

(∣∣αi, j − βi, j
∣∣ < π

2

)
,

−1, otherwise,
(11)

where αi, j still denotes the orientation of motion vector Vi, j

and βi, j is the direction angle of the macro block MBi, j in
MVF, see Figure 1a. The signed energy is also transformed
to the directional slices by circular mapping and directional
slicing. Then we compute the average signed energy in each
directional slice by (12) as follows:

SEn = 1
M ×N

N−1∑
y=0

M−1∑
x=0

SEns . (12)

3.5. Motion texture

With nine energy-distribution measures and one additional
signed-energy measure of each directional slice, a 10 ×
D dimensions vector: T = {T0, T1, Tn, . . . , TD−1} is ob-
tained, where Tn = {m00

n,COMx
n
,COMy

n
,ROGx

n
,ROGy

n
,

Skx
n, Sky

n, Kx
n, Ky

n, SEn
n}, n ∈ [0, D−1], andD is the num-

ber of slices cut from EUCs. We name this vectormotion tex-
ture, by which all of the motion characteristics in a video clip
are extracted effectively and represented compactly. Since
D = 4 in this paper, we obtain a 40-dimensional vector as
our motion description.

4. SEMANTIC VIDEO CLASSIFICATION
BASEDONMOTION

Since motion is an important cue to perceive video content
and the motion patterns often convey some semantic infor-

mation, video can be classified into semantic categories based
on motion patterns. On the other hand, motion texture is a
motion pattern descriptor based on a MVF, which is also a
low-level feature of the video. Therefore, we need to find an
effective way tomapmotion texture to semantic conceptions.
Considering the complexity of the motion in video and the
high dimension of motion texture, we employ kernel SVMs
to devise a set of multicategory classifiers to meet this re-
quirement because it has high generalization performance in
high-dimensional feature space.

4.1. Kernel SVMs

It is known that SVMs can give an optimal separating hyper-
plane with a maximal margin if the data is linearly separable.
In linearly nonseparable but nonlinearly separable case, the
data will be mapped into a high-dimensional space where the
two classes of data are more readily separable. Such mapping
is formed by a kernel representation of data.

Consider the problem of separating a set of training ex-
amples belonging to two classes: (xi; yi)1≤i≤N , where each ex-
ample xi ∈ Rd, d being the dimension of the input space,
belongs to a class labeled by yi ∈ {−1,+1}. Once a kernel
K(xi, x j) satisfying Mercer’s condition [17] has been chosen,
an optimal separating hyperplane will be constructed in the
mapping space. The optimization problem can be achieved
by the maximization of the objective function (13) with La-
grange multipliers

L(α) =
N∑
i=1

αi − 1
2

N∑
i, j=1

αiαj yi y jK
(
xi, x j

)
, (13)

where αi is Lagrange multipliers. Then, the decision function
will be

f (x) = sgn

( N∑
i=1

αi yiK
(
xi, x

)
+ b

)
. (14)

Possible choices of kernel functions include polynomial,
Gaussian radial-basis function (RBF) and multilayer-
perception function. In this paper, we use Gaussian RBF ker-
nel, which is defined in (15), since it was empirically observed
to perform better than the other two

KGaussian(x, y) = exp
(− ρ‖x− y‖2). (15)

In this case, the number of centers or the number of sup-
port vectors, the centers themselves or the support vectors,
the weights (αi), and the threshold (b) are all produced auto-
matically by the SVMs training and give excellent results.

4.2. Multiclass classification

SVMs are designed for binary classification. When we want
to discriminate several classes simultaneously, there are three
solutions to construct amulticlass classifier: (1) tomodify the
design of the SVMs; (2) to combine binary classifiers by one-
against-one applying pairwise comparisons between classes;
(3) to combine binary classifiers by one-against-others
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Figure 5: Classification scheme.

comparing a given class with all the others put together. It
was proved that the accuracies of these methods are almost
the same in [13]. Therefore, we choose the third method be-
cause it has the lowest complexity.

In a one-against-others solution, n-hyperplanes are con-
structed, where n is the number of classes. Each hyperplane
separates one class from the other classes. Namely, we get n
decision functions ( fk)1≤k≤n. The class of a new point x is
given by

C(x) = argmaxk
{
fk(x)

}
, (16)

that is, the class with the largest decision function.

4.3. Motion pattern-based classification scheme

Since video clips do not always have salient motion patterns
and the semantic conceptions are not always conveyed by
motion patterns, not all of the video clips can be mapped to
semantic conception based on motion patterns. Therefore,
we define a classification scheme, as shown in Figure 5, to fa-
cilitate semantic video classification.

At fist, video clips are classified into two basic classes: pat-
terned and nonpatterned. Then, the patterned class is fur-
ther classified into two classes: object patterns and camera
patterns. In most of the cases, object motion cannot be dis-
criminated from camera motion clearly in video. So we use
the following rules to define the two categories. If object mo-
tion is much more dominant than camera motion in a video
clip, this clip will be considered as the case of object patterns
although sometimes there are also some slight camera mo-
tions. On the other hand, we only classify the standard cam-
era operations into camera patterns in which the cameramo-
tion is so dominant that object motion can be ignored, such
as panning, tracking, zooming, and so on.

In the case of object patterns, semantic conceptions are
conveyed by object motions and camera motions together.
For example, a photographer usually lets the camera track a
ball’s trail after focusing on the players’ motions when a shot

occurs in a basketball game. Since the semantic conceptions
are not countable in real world, the number of subclasses is
also extendable in our scheme. They can be defined by users
according to semantic conceptions or events.

If the camera focuses on the objects moving irregularly
and both camera and objects do not have dominant motion,
then there will be no salient motion patterns. We categorize
such clips as nonpatterned. In this case, we only rank the in-
tensity of motion by 5 levels like motion descriptors defined
in MPEG-7 [18]. The 5-level subcategories are labeled from
Focus0 to Focus4 in our scheme. The video clips in class Fo-
cus0 are static with the motion energy near zero, while the
ones in class Focus4 have the highest motion intensity.

Within such classification scheme, we can classify all
types of video clips into subcategories by a multiclass clas-
sifier. In order to improve the speed and accuracy of classifi-
cation, the classification of video clips can be in 3 steps: (1) to
discriminate patterned from nonpatterned by a binary clas-
sifier; (2) to discriminate object patterns from camera pat-
terns by another binary classifier; and (3) to classify all of the
video clips into subcategories within each basic category by
a multiclass classifier, respectively. In this way, we need three
multiclass classifiers.

4.4. Experiments

We have build up a video shot database of 10 hours with
real-world video programs including science and educational
films, sightseeing videos, stage performances, and sports
videos. These videos were firstly segmented into shots. Then,
motion texture was extracted from each shot as the motion
pattern descriptor. In our experiments, SVMTorch [19] is
used to train the models and construct classifiers, in which
the RBF kernel is selected.

During the experiments, the shots in the database are
manually classified into different subcategories according to
our classification scheme first. From them, two nonpatterned
classes, two camera patterns classes, and eight object pat-
terns classes are chosen as the test set which have sufficient
samples. Then, we train the models for each subcategory
with about half the samples and test them with the other
half of the samples. In addition, two binary classifiers, pat-
terned/nonpatterned and object pattern/camera pattern are
also trained and tested. The experimental results are listed in
Table 1.

From Table 1, we can see that (1) the proposed method is
very effective for the clips belonging to patterned classes; (2)
the performance of nonpatterned classes is slightly poorer
because of the lack of salient patterns; (3) both multiclass
classifiers and two binary classifiers can achieve high classi-
fication accuracy. The average accuracy of our classification
results approaches 94%.

In addition, we have designed a comparison experiment
with 4 solutions as following: (A) SVMs + motion texture
proposed in this paper; (B) SVMs + conventional motion
features; (C) KNN + motion texture; and (D) KNN + con-
ventional motion features. The conventional motion features
include the orientation of dominant motion and the average
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Table 1: Classification results.

Modela Class NoTTS NoSVs Acc.

OP-1 Diving or not 266/260 83 96.19%

OP-2 High jump or not 261/255 65 95.81%

OP-3 Race or not 258/260 90 91.95%

OP-4 Tee off (Golf) or not 200/210 57 96.70%

OP-5 Shoot (Soccer) or not 255/275 91 90.98%

OP-6 Team offense/defense (Basketball) or not 246/250 87 93.47%

OP-7 Penalty shot (Basketball) or not 218/220 49 95.29%

OP-8 Wipe or not 180/150 38 98.14%

CP-1 Tracking left or not 260/268 36 97.08%

CP-2 Zoom-out or not 198/180 42 96.77%

NP-1 Fcous0 or not 280/292 97 88.32%

NP-2 Focus4 or not 260/275 99 84.87%

BC-1 With pattern or not 300/300 75 91.78%

BC-2 Camera pattern or not 300/300 79 92.64%

Avg. — — — 93.57%

aOP: object pattern; CP: camera pattern; NP: nonpattern; BC: binary classifier; NoTT: number of training/test samples;
NoSVs: number of support vectors.
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Figure 6: Accuracy curves.

magnitude of motion vectors. We test all of multiclass classi-
fiers with the same test set. The accuracy curves are drawn in
Figure 6.

Observing the accuracy curves in Figure 6, we can draw
the following conclusions: (1) solution A always outperforms
other solutions in the case of patterned classes; (2) the curves
of solutions B and C are almost the same, both are slightly
better than that of solution D; (3) the curve of solution A is
smoother than others, indicating that the proposed method
is the most stable; (4) for those clips belonging to nonpat-
terned classes, the accuracy values of four solutions are very
close. It is because if there is not any salient motion pattern,
motion texture only captures the motion direction and inten-
sity like the conventional statistical methods.

5. MOTION-BASED SHOT RETRIEVAL
IMPROVEMENT

Motion texture, as a compact motion pattern descriptor, can
be used directly in motion-based shot retrieval. Moreover,
as a motion feature, motion texture can also be combined
with other visual features for more complex retrieval. In this
section, we first apply motion texture in motion-based video
retrieval. Experimental results indicate that it outperforms
other existing motion feature representations. In addition,
we take advantage of the classification results, described in
Section 4, to further improve traditional retrieval approach.
The performance is improved significantly.

5.1. Motion-based shot retrieval

To apply a content descriptor in video retrieval, we first need
to define the similarity based, upon which video shots are
ranked against a query. In this section, we define a similarity
measure for motion texture. Since the dynamic range of each
component of motion texture is quite different, the normal-
ization is indispensable when we compare two motion tex-
ture vectors. Assuming that we have a video-shot database,
the motion texture is extracted from each shot. Then we nor-
malize each component of vectors by the inverse of the stan-
dard variance. The standard variance of kth component is

σk =
√√√√∑L

l=1
(
v(l)k − ν̄k

)2
L

, (17)

where v(l)k denotes the kth component of the lth feature vec-
tor, L is the number of samples in the database, and ν̄k is the
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mean of v(l)k which is computed as

ν̄k =
∑L

l=1 ν(l)i
L

. (18)

Using the normalization coefficients as weights, we adopt
weighted Euclidean distance to measure the similarity of mo-
tion texture.When comparing twomotion texture vectors Ta

and Tb in a video-clip database, the similarity is defined as

Sim
(
Ta, Tb

) =
√√√√√n×S∑

k=1

1
σ2k

(
νak − νbk

)2
. (19)

In this way, themodality-dependent amplitude difference
is reduced effectively. The effectiveness of this similarity mea-
surement has been verified by our experiments.

5.2. Classification-based shot retrieval

The traditional content-based retrieval methods usually only
depend on a low-level feature. So the description capability
of a low-level feature is a key fact in retrieval performance.
For a specific problem, one or a set of low-level features per-
haps are effective. However, the retrieval power of any low-
level feature, when applied to video databases of general con-
tent, is very limited. In this section, we take advantage of the
semantic classification results to further improve content-
based retrieval method.

Generally, if the category of query sample has been
known, we can rank the samples within the same category of
a query sample higher than the other samples in the database.
Thus, the accuracy of retrieval will be improved in this way.
But it is required that all samples in the database as well
as the query sample are labeled correctly. In fact, there al-
ways exist some samples misclassified with any automatic
method. If the samples in the database are misclassified, the
performance is not affected severely; whereas if a query sam-
ple is misclassified, the retrieval results can be totally wrong.
Therefore, we should reduce the misclassification risk of a
query sample and this is done by merging the retrieval re-
sults from different categories in our retrieval scheme.

It is a feasible method to weight the retrieval results based
on categories. If the probabilities of a query belonging to
each category are obtained, these probability values can be
used as weights of similarity between the query and the sam-
ples from different categories. Since the standard SVMs only
provide one or a set of decision functions, we cannot obtain
a calibrated posterior probability from the result of classifi-
cation directly. J. Platt proposed a method to extract prob-
abilities from SVMs outputs [20]. We adopt this approach
to weight the similarity from different categories. Then, the

classification-based similarity measure CSim(EFnq, EFn(l)c )
is defined as

CSim
(
EFnq, EFn(l)

) = Sim
(
EFnq, EFn(l)c

)× p(c | q), (20)

where Sim(EFnq, EFn(l)c ) is computed as in (19). The only

difference is that EFn(l)c has been labeled as class c, p(c | q)

denotes the probability of query q belonging to the class c.
This probability is obtained by the method proposed in [20].
The experimental results indicating this method is effective
for the rank merging.

5.3. Experiments

We have evaluated the proposed representation and similar-
ity measure on a motion-based shot retrieval system with
the same video database as Section 3. There are about 10000
shots in this video database, which are segmented from about
10 hours’ real-world videos. For comparison purpose, we im-
plemented three approaches on the same test data. The first
one is a conventional method based on motion intensity and
dominant directions. The second one adopts motion texture
as motion descriptor. The last one is classification-based shot
retrieval, in which the semantic classification scheme pro-
posed in Section 4 is employed with the similarity modifi-
cations presented above. From each shot, the motion fea-
tures used in the three methods are extracted. According to
the similarity of motion patterns, we manually classify the
shots in the video database into 54 classes. Then, 14 classes
are selected from such 54 classes as a test set. The test set
includes 4 classes without salient motion, 8 classes with an
object motion pattern, and 2 classes with a camera motion
pattern. They are marked with NP, OP, and CP, respectively,
in Table 2. In each class, eachmember is picked out as a query
sample in turn and the rest members are used as ground
truth. The performance is evaluated by average normalized
modified retrieval rank (ANMRR) (which is the smaller, the
better) and average retrieval recall (ARR) (which is the larger,
the better), as proposed in MPEG-7 [21]. Their definitions
can be found in the appendix. The experimental results are
listed in Table 2.

Table 2 shows that the motion texture-based method al-
ways outperforms the conventional method, especially for
the shots with salient object motion patterns. Since the cam-
era motions are very distinctive, they can be easily identi-
fied by both methods. In the case of shots without salient
patterns, the improvement by the proposed method is lim-
ited because only motion intensity and dominant direction
are contributing. The best performance is obtained by a
classification-based method. Its ANMRR approaches 0.15,
and ARR is above 0.9. This observation concludes that the
proposed motion descriptor is effective for motion-based
video classification and retrieval, and the proposed classifi-
cation probability-based video retrieval scheme is effective.

6. CONCLUDING REMARKS

In this paper, we have presented a generic motion repre-
sentation, named motion texture. Most of the major motion
characters are preserved within this representation. Based on
such a representation, we not only are able to effectively im-
prove the performance of motion-based video retrieval, but
also have devised a semantic classification scheme by which
the motion patterns can be mapped to semantic concep-
tions. Experimental results indicate that motion texture is a
compact, generic, and effective representation of a motion
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Table 2: Performance evaluation.

Query Shot Conventional method Motion texture-based method Classification-based method

ANMRR ARR ANMRR ARR ANMRR ARR

NP-1 0.6765 0.4998 0.5333 0.6065 0.3998 0.7806

NP-2 0.6603 0.4982 0.5011 0.6754 0.3871 0.7962

NP-3 0.6499 0.4371 0.5027 0.6508 0.4002 0.7533

NP-4 0.6598 0.4009 0.5249 0.6192 0.3906 0.7455

OP-1 0.4867 0.5865 0.2325 0.8154 0.1056 0.8961

OP-2 0.3944 0.7011 0.1305 0.8745 0.0812 0.9652

OP-3 0.3293 0.6581 0.0992 0.9046 0.0687 0.9711

OP-4 0.3943 0.6402 0.1375 0.8959 0.0803 0.9667

OP-5 0.4149 0.6749 0.2043 0.8076 0.0753 0.8992

OP-6 0.5061 0.6574 0.1214 0.8832 0.0599 0.9581

OP-7 0.2012 0.7625 0.0000 1.0000 0.0100 1.0000

OP-8 0.2835 0.8081 0.0000 1.0000 0.0100 1.0000

CP-1 0.1628 0.7963 0.0825 1.0000 0.0250 1.0000

CP-2 0.2037 0.8755 0.0933 1.0000 0.0311 0.9900

Avg. 0.4302 0.6426 0.2259 0.8380 0.1518 0.9087

pattern. When we apply the semantic classification results in
a video retrieval process, the retrieval performance is further
improved significantly. The proposed motion descriptor and
the classification scheme provide a solution to remove the
two barriers in content-based video retrieval: the lack of ef-
ficient content representation and effective method of bridg-
ing the gap between low-level features and semantic concep-
tions.

The proposed methods can be further improved by the
more efficient measure of directional slices, the more effec-
tive merging method for classification-based retrieval, and
the more accurate motion estimation. Besides the content-
based classification and retrieval, the motion texture can
also be used to solve other motion-related problems, such
as event detection in surveillance. To extend the proposed
framework in these directions is our future work.

APPENDIX

In the retrieval experiments, we adopt the ANMRR and the
ARR, recommended by MPEG-7 core experiments docu-
ment [21], as the evaluation criteria. Given a query set and
the corresponding ground truth data, the ANMRR and ARR
values all range between [0,1]. A low ANMRR value denotes
a high retrieval rate with relevant items ranked at the top.
Compared with ANMRR, a high ARR value indicates a high
retrieval rate.

Let the number of ground truth shots for query q be
NG(q) and k = min(4 × NG(q), 2 × GTM), where GTM
is max(NG(q)) for all queries. For each ground truth shot
k retrieved in the top K retrievals, compute the rank of the
shot, Rank(k). Counting the rank of the first retrieved item
as 1 and the rank of (K +1) is assigned to those ground truth

shots not in the top K retrievals. The modified retrieval rank
(MRR(q)) is computed by (A.1)

MRR(q) =
NG(q)∑
k=1

Rank(k)
NG(q)

− 1 + NG(q)
2

. (A.1)

With (A.1), the normalized modified retrieval rank (NMRR)
is defined as (A.2)

NMRR(q) = MRR(q)
K −NG(q)/2 + 0.5

, (A.2)

where the value of NMRR is in the range of [0, 1]. Finally,
the average NMRR of all values is computed over all queries
to yield the ANMRR.

With the same assumption, the retrieval recall (RR) is de-
fined as

RR(q) =
NG(q)∑
k=1

rank(k)
NG(q)

, (A.3)

and the ARR is computed over all queries the same as AN-
MRR.
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