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This paper focuses on the stability-based approach for estimating the number of clusters K in microarray data. The cluster stability
approach amounts to performing clustering successively over random subsets of the available data and evaluating an index which
expresses the similarity of the successive partitions obtained. We present a method for automatically estimating K by starting from
the distribution of the similarity index. We investigate how the selection of the hierarchical clustering (HC) method, respectively,
the similarity index, influences the estimation accuracy. The paper introduces a new similarity index based on a partition distance.
The performance of the new index and that of other well-known indices are experimentally evaluated by comparing the “true”
data partition with the partition obtained at each level of an HC tree. A case study is conducted with a publicly available Leukemia
dataset.
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1. INTRODUCTION

The clustering algorithms are frequently used for analyzing
the microarray data. While various clustering methods help
the practitioner in bioinformatics to ascertain different char-
acteristics in structural organization of microarray datasets,
the task of selecting the most appropriate algorithm for solv-
ing a particular problem is nontrivial. While various cluster-
ing methods are applied in hundreds of microarray research
papers, a question arises frequently, namely, how to compare
two different partitions of the same dataset obtained by two
different algorithms. The comparison becomesmore difficult
when the two partitions do not contain the same number of
clusters. The accurate estimation for the number of clusters
K is essential because most of the existing clustering proce-
dures request K as input.

The robustness of the clustering algorithms is usually
studied by investigating their stability with respect to pertur-
bations changing the original dataset, for example, by draw-
ing random subsets or by artificially adding noise [1]. The
stability methods can be also used in exploratory data anal-

ysis when little prior information is available regarding the
dataset, which is generally the case with microarray data. The
main principle is to randomly split the dataset and cluster
each subset independently, and then to check the stability
(or degree of agreement) of the two obtained partitions. The
clustering is stable if the cluster memberships inferred in the
two subsets are similar to the memberships in the entire sam-
ple [1]. The following two different approaches have been
considered when applying the stability methods for finding
structure in microarray data.

(1) After randomly splitting the dataset into two subsets,
select one subset for learning and another for test. Firstly, a
clustering algorithm CA is applied to the learning set, and
the resulting classes are used to classify the samples which
belong to the test set. Then the test set is clustered with the
same algorithm CA, and a similarity measure (index) is com-
puted between the labels produced by classification, respec-
tively, clustering [2, 3, 4].

(2) Apply the same clustering algorithm CA to both sub-
sets and calculate the similarity index on the samples belong-
ing to the intersection of subsets [5]. A modified variant is
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introduced in [6]: CA is applied to the whole dataset (refer-
ence clustering) and to a randomly chosen subset. The sim-
ilarity index is computed for the samples contained in the
selected subset.

In both approaches, it is assumed that the number of
clusters is k ∈ {2, 3, . . . , kmax}, and for each value allowed
for k, after running the algorithm many times, the empir-
ical distribution of the similarity index is collected. In [3],
the number of clusters K is estimated based on the median
of similarity index values. Evaluating the degree of agree-
ment is rephrased in [4] as a prediction problem: their index
(“prediction strength”) ps(k) measures how well the cluster
centroids from the training set predict “co-memberships” in
the test set. The index ps(k) is averaged over several ran-
dom splittings of the original data (into training set and
test set), and the estimated number of clusters is given by
K̂ = argmax2≤k≤kmax mean[ps(k)] when max(mean[ps(k)])
is larger than a given threshold. The approach in [6] eval-
uates the stability for individual patterns and clusters rely-
ing on a different similarity score called optimal association.
In [5], K̂ is chosen as the value, where there is a transition
from a similarity index distribution that is concentrated near
one to a wider distribution: K̂ is visually estimated by using
the empirical cumulative distribution function or, alterna-
tively, based on the value of the 90th percentile. In consensus
clustering (CC) [7], the central role is played by the consen-
sus matrix that records, for every pair of objects, the pro-
portion of clustering runs in which the two objects are clus-
tered together. Based on the histogram of the consensus ma-
trix entries, an empirical cumulative distribution function is
defined, and the selection of the appropriate number of clus-
ters proceeds by inspection of the shape of this function when
k ∈ {2, 3, . . . , kmax}.

We propose to improve the algorithm described in [5]
such that K̂ can be automatically estimated without resort-
ing to visual inspection or other heuristic methods. To eval-
uate the importance of index selection on the accuracy of the
estimation, we revisit various similarity indices. Then we de-
fine and analyze a new similarity index, which is connected
to the recently introduced partition distance [8]. In [3, 5],
the Fowlkes-Mallows index [9] is recommended for stability-
based methods, but we show experimentally that our newly
introduced index and the Jaccard index [10] perform better.
We also show in this paper that partition distance is useful
in designing a visualization tool which helps consistently the
interpretation of clustering results for microarray data.

Potentially, any clustering algorithm can be used in our
settings, and we investigate the impact of the algorithm selec-
tion on the estimated K̂ . We restrict our investigation to the
agglomerative hierarchical clustering (HC) algorithms [10]
mainly because this class of clustering methods is very pop-
ular in microarray data analysis [11]. These algorithms are
computationally efficient since the same tree can be used
for all values of k ∈ {2, 3, . . . , kmax} by looking at differ-
ent levels of the tree each time. In [7], when evaluating
the performances of CC with various microarray datasets, it
was concluded that CC based on HC produces slightly bet-
ter results than CC based on self-organizing maps (SOM).

We remark that in [5, 6, 7] the HC is done by the group-
average algorithm [10, 12]. In our simulated experiments,
the group-average shows modest results when compared
with complete-linkage and Ward’s methods [10, 12].

The remainder of this paper is organized as follows.
Section 2 includes a discussion of some results on the esti-
mation of the number of clusters, previously reported for
the publicly available Leukemia dataset [13]. In Section 3,
we introduce the similarity indices. Relying on the revisited
properties of the partition distance [8], a new similarity in-
dex s(·, ·) is defined, and a lower bound is found under the
hypothesis of generalized hypergeometric distribution for
the contingency table. In Section 4, we evaluate experimen-
tally s(·, ·) by comparing the “true” clustering of a dataset
with the partition obtained at each level of a HC tree. In
Section 5, we introduce the stability-based method for find-
ing the data structure by extending the approach proposed in
[5]. Comparisons with other methods are reported for simu-
lated data, and a case study is conducted on Leukemia dataset
[13].

2. MOTIVATION OF THEWORK

In order to illustrate the challenge of structure estimation
for microarray data, we consider the leukemia dataset de-
scribed in [13], publicly available at http://www-genome.wi.
mit.edu/cgi-bin/cancer/datasets.cgi, which comes from a
study of gene expression in two types of acute leukemias,
acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML). The true number of classes may be consid-
ered three since the biological labeling of the patient samples
is ALL-B, ALL-T, and AML [13]. The dataset consists of 6817
human genes measured for 72 patients: 47 cases of ALL (38
B-cell ALL and 9 T-cell ALL) and 25 cases of AML.

We note that the clustering of Leukemia dataset was al-
ready investigated in several studies. In [13], the SOM are
applied to cluster measurements from 38 patients (out of 72),
relying on 50 “informative” genes selected based on a super-
vised procedure. We emphasize here that the “informative”
genes selection relies on the gene correlation with different
types of Leukemia. In two recent publications [14, 15], var-
ious validation techniques based on computing internal in-
dices are used to estimate the number of clusters in the 38×50
dataset when SOM is the clustering algorithm. The paper
[15] concludes that the estimated number of clusters is K̂ = 2
and mentions, as a second best choice, K̂ = 4.

The whole set of measurements from the 72 patients is
clustered in [16] by k-means, fuzzy c-means networks, SOM,
fuzzy SOM, and growing cell structure (GCS) algorithm.
When varying the number of clusters between 2 and 16, all
the resulting clusterings are evaluated based on the distribu-
tion of Leukemia types within the clusters, the highest de-
gree of intracluster homogeneity being obtained when sam-
ples are divided into 9 clusters by fuzzy SOM. A procedure
for gene selection is applied.

In [3], the 72 tumors from Leukemia dataset are clustered
by partitioning around medoids (PAM) [10] after select-
ing 100 genes which have the largest variance across tumor
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samples: for K̂ = 3, one ALL B-cell sample is clustered with
the ALL T-cell samples, and the rest of the observations are
allocated correctly. Results on estimating the number of clus-
ters are also reported: applying clest, kl [17], hart [18], or sil-
houtte (sil) [10] leads to K̂ = 3; ch [19] estimates K̂ = 2.
The estimated number of clusters is K̂ = 10 when using gap
[20], and K̂ = 5 when employing gapPC [20]. Note that clest
was originally introduced in [3] and extends the stability-
based approach from [2]. Another method relying on stabil-
ity principle, CC, was formalized and tested in [7]. Since their
settings allow to apply various clustering methods, results on
estimated number of clusters for 38 (out of 72) samples of
Leukemia dataset are reported when using HC and SOM.
The method CC in conjunction with HC leads to K̂ = 5, and
to K̂ = 4 when employing CC in combination with SOM.

In light of these results reported for the Leukemia dataset,
we can better understand the importance and difficulty of
validation of the number of clusters. It becomes apparent
that every method for structure estimation must be deeply
analyzed and validated with simulated data for which the
true nature is known before applying it to analyze the mi-
croarray data. Leukemia dataset is also a good example for
illustrating the paradigm of “high dimension and small sam-
ple size” which is common in microarray data analysis. It
was pointed out in [7] that this paradigm prevents the use of
some clustering algorithms, and we show in this paper how
stability methods can circumvent this difficulty.

3. SIMILARITYMEASURES

Given an N-object set T = {O1,O2, . . . ,ON}, suppose that
P = {P1,P2, . . . ,Pr} and P′ = {P′1,P′2, . . . ,P′c} represent two
distinct partitions of T , that is,

⋃r
i=1 Pi =

⋃c
i=1 P

′
i = T , where

Pi
⋂
Pj = ∅ for 1 ≤ i �= j ≤ r and P′i

⋂
P′j = ∅ for 1 ≤

i �= j ≤ c. We name, in the sequel, any nonempty subset of
T cluster. So, any partition of T is a set of mutually exclusive
clusters whose reunion is T .

The partitions P and P′ are identical if and only if ev-
ery cluster in P is a cluster in P′. Let M be an r × c ma-
trix where the quantity mij is the number of objects in com-
mon between the ith cluster of P and the jth cluster of P′.
The contingency table is represented in Table 1, wheremi· �∑c

j=1mij for 1 ≤ i ≤ r andm· j �∑r
i=1mij for 1 ≤ j ≤ c. It is

easy to observe thatm·· �∑r
i=1mi· =

∑c
j=1m· j = N .

3.1. Rand, Jaccard, and Fowlkes-Mallows
similarity indices

We introduce the following function relative to an arbitrary
partition P of T : for any pair of distinct objects (O� ,Om) ∈
T2, 1 ≤ � < m ≤ N ,

1P
(
O� ,Om

)

�



1, ∃i ∈ {1, 2, . . . , |P|} such that

{
O� ,Om

} ⊆ Pi,

0, otherwise,

(1)

Table 1: The contingency table for the partitions P and P′ of the
N-object set T .

Cluster
Partition P′

Sums
P′1 P′2 · · · P′c

P1 m11 m12 · · · m1c m1·

Partition P
P2 m21 m22 · · · m2c m2·
...

...
...

. . .
...

...

Pr mr1 mr2 · · · mrc mr·

Sums m·1 m·2 · · · m·c m·· = N

which indicates if two objects belong to the same cluster in
the partition P.

Following a classic procedure, we firstly define four sets:

�1 �
{(
O� ,Om

) ∈ T2 | 1P
(
O� ,Om

) = 1, 1P′
(
O� ,Om

) = 1
}
,

�2 �
{(
O� ,Om

) ∈ T2 | 1P
(
O� ,Om

) = 1, 1P′
(
O� ,Om

) = 0
}
,

�3 �
{(
O� ,Om

) ∈ T2 | 1P
(
O� ,Om

) = 0, 1P′
(
O� ,Om

) = 1
}
,

�4 �
{(
O� ,Om

)∈T2 | 1P
(
O� ,Om

)=0, 1P′
(
O� ,Om

)=0
}
,
(2)

and denote the cardinalities of these sets, wi � |�i| for
i ∈ {1, 2, 3, 4}. Then we recall the definitions for three well-
known similarity indices:

(1) Rand [21]: (w1 +w4)/
∑4

i=1wi,

(2) Jaccard [22]: w1/
∑3

i=1wi,
(3) Fowlkes-Mallows [9]: w1/

√
(w1 +w2)(w1 +w3).

Since wi (1 ≤ i ≤ 4) are nonnegative numbers, all three
indices take values in the interval [0, 1]. The partitions P and
P′ are identical if and only if w2 = w3 = 0; when they are
identical and w1 �= 0, then all indices are equal to their max-
imum value 1. Observe for the denominator of Rand index
that

∑4
i=1wi =

(
N
2

)
. The Jaccard index is not defined for the

trivial case when each cluster in P and P′ contains at most
1 object, which is equivalent to w1 = w2 = w3 = 0. The
Fowlkes-Mallows index is not defined when w1 = w2 = 0
(each cluster in P contains at most 1 object) or w1 = w3 = 0
(each cluster in P′ contains at most 1 object). Formulae for
fast computing wi (1 ≤ i ≤ 4) are available [23].

To each similarity measure sm(P,P′), bounded by zero
and unity, we can associate a dissimilarity d(P,P′) � 1 −
sm(P,P′); in some cases, d(P,P′) could be a metric on the
set of all partitions of a given set of objects T [12]. In the
next section, we start from the definition given in [8] for the
partition distance (which is a metric) and define a new simi-
larity index.

3.2. A similarity index defined as complement
of a partition distance

In [8], the following definition is introduced for the parti-
tion distance D(P,P′) between P and P′: “D(P,P′) is the
minimum number of elements that must be deleted from
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T , so that the two induced partitions (P and P′ restricted to
the remaining elements) are identical.” It was pointed out in
[24] that the partition distance is also equal to the minimum
number of elements that must be moved between clusters in
P, so that the resulting partition equals P′ (with the conven-
tion that any set which becomes empty is no longer a cluster).

Proposition 1. The partition distance D(P,P′) is a metric on
the set of all partitions of a given set of objects T .

Proof. See Appendix A.

An assignment is a selection of entries of the contingency
matrix M such that no row or column contains more than
one selected entry and is called optimal when the sum of the
selected cell values is the largest over all possible assignments
[24]. Let A(P,P′) denote the value of the optimal assignment
for the contingency matrixM.

Theorem 1 [24]. Two properties of partition distance:
(a) The relationship between the partition distance and the

optimal assignment is given by D(P,P′) = N − A(P,P′).
(b) The elements to be removed from T to induce identical

partitions on P and P′, are all those objects not associated with
any selected cells of the optimal assignment.

The proof of the theorem is given in [24] where the theo-
rem is further used to show how the partition distance can
be computed in �((r + c)3) time after creating the matrix
M in �(N) time. Note that the initial algorithm proposed
in [8] to compute D(P,P′) for any pair of partitions (P,P′)
is an exponential-time algorithm, and the algorithm in [24]
reduces dramatically the computational complexity.

Proposition 2. The maximum of the partition distance is
max(P,P′)D(P,P′) = N − 1 and is achieved if and only if one
partition consists of a single cluster and the other one consists
only of clusters containing single-objects.

Proof. See Appendix A.

The above results suggest the definition of the following
index of similarity between any two partitions P and P′:

s(P,P′) � 1− D(P,P′)
N − 1

= A(P,P′)− 1
N − 1

. (3)

The new index is a measure of similarity ranging from
s(P,P′) = 0 when the two partitions have no similarities (i.e.,
when one consists of a single cluster and the other only of
clusters containing single-objects) to s(P,P′) = 1 when the
partitions are identical.

Any injective mapping σ : {1, 2, . . . , |P′|} → {1, 2, . . . ,
|P|} (|P′| ≤ |P|) is called association [6] and is useful for
comparing two partitions P and P′ defined over an N object
set T . The measure of similarity between P and P′ is com-
puted as s∗(P,P′) � maxσ(·)(1/N)

∑|P′|
j=1mσ( j), j where m·,·

denotes the entries of the contingency matrix. Observe that
s∗(P,P′) = A(P,P′)/N and is close to the similarity index de-
fined in (3); A(P,P′) ≤ N implies that s(P,P′) ≤ s∗(P,P′). It

Table 2: The contingency table for the Leukemia dataset: the true
partition given by a priori knowledge on the type of disease for
each patient is compared with the partition produced by complete-
linkage algorithm when K̂ = 3. All the 3571 genes are used for clus-
tering. The entries associated to the optimal assignment are repre-
sented in bold.

Cluster ALL B-cell ALL T-cell AML
C1 26 8 8
C2 7 0 2
C3 5 1 15

is noticed in [6] that the computation of s∗(P,P′) by brute-
force enumeration is exponential in the number of clusters,
and therefore an approximative greedy heuristic was used
there for finding a suboptimal association σ(·). Since then,
the fast algorithm was introduced in [24], and hence we
are going to use the fast, nonapproximative evaluation of
s(P,P′).

We observe that the definition of both s(P,P′) and
s∗(P,P′) relies on the optimal assignment A(P,P′), and the
main difference between these similarity indices is given by
the normalization procedure. Since in [6] s∗(P,P′) was suc-
cessfully applied for detecting stable clusters in microarray
data, we are encouraged to employ s(P,P′) in stability-based
methods for analyzing data produced by microarray tech-
nology. The superiority of our approach consists in using
nonapproximative algorithms for computing the similarity
index.

The use of s(·, ·) in validation of microarray data clus-
tering is appealing since the optimal assignment lends it-
self to be employed as a visualization tool. Assume that we
depict the contingency matrix defined by two partitions P
and P′, where P corresponds to the classes in a microarray
dataset already known from medical evidence while P′ con-
tains classes found for the same dataset after running a clus-
tering algorithm. Representing in bold the entries associated
to the optimal assignment will allow the investigator to as-
sess very easily the memberships. The procedure does not re-
quire the number of clusters to be the same in the compared
partitions. Moreover, the number of clusters can be visually
assessed by checking that all entries in the optimal assign-
ment are larger than zero. Examples of such representations
are given in Section 5.2, Tables 2 and 8. When the true state
of the nature is not known, the same graphical representa-
tion can be used for comparing the results of two different
clustering algorithms.

3.3. Similarity indices “corrected for chance”

A similarity index is “corrected for chance” when the expec-
tation of the index takes some constant value (e.g., zero) un-
der an appropriate null model for the contingency table. The
property is discussed in [25], and the following general for-
mula is proposed to correct an index:

Index− Expected Index
Maximum Index− Expected Index

. (4)
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The most popular null model assumes that the r× c con-
tingency table (r ≥ c) is constructed from the generalized
hypergeometric distribution. The main hypothesis is that the
two partitions are mutually independent and subject to the
condition that the cluster sizes are fixed at (α1,α2, . . . ,αr) and
(β1,β2, . . . ,βc), respectively. The αi and βj are the marginal
totals of mij , namely, mi· and m· j , respectively. Then the ex-
pectation of mij is E[mij] = αiβj/N [9, 25]. For example,
correcting the Rand index under this hypothesis leads to the
expression

Adjusted Rand = w1 +w4 −Nc∑4
i=1wi −Nc

, (5)

where two different formulae were proposed for Nc in [25,
26]. We use in the sequel the notations RandHA and RandMA

for the adjusted index defined in [25], respectively, [26].
We investigate in Appendix B the existence of a lower

bound for the expectation of the similarity index defined by
(3) when the hypothesis of generalized hypergeometric dis-
tribution is verified.

It was already pointed out in [3] that the assumption on
the statistical independence of the two compared clusterings
does not hold for stability methods since the same data are
used to produce both partitions. To gain more insights on
the possibility of using s(·, ·) in practical applications, we
study in Appendix C the asymptotic and finite characteris-
tics of s(·, ·) and compare them with the characteristics of
other similarity indices.

4. USING THE SIMILARITY INDEX s(·, ·) IN
HIERARCHICAL CLUSTER ANALYSIS

The aim of this section is to evaluate experimentally s(·, ·)
when we assume that the “true” structure of the data (the
number of clusters and the membership) is known and com-
pare this partition with the partition obtained at each level of
a HC tree.

It is a well-known fact that the HC does not yield a dis-
crete number of clusters, but rather a hierarchical arrange-
ment between objects. For better understanding of the be-
havior of similarity indices, assume that the “true” struc-
ture of the data is known and compare this partition with
the partition obtained at each level of the HC solution.
This approach was originally used in [27] to compare Rand,
RandHA, RandMA, Fowlkes-Mallows, and Jaccard indices.

We reconsider the experiments described in [27] to eval-
uate the newly introduced index s(·, ·), and for comparison,
we compute also Rand, RandHA, and Jaccard indices. For the
first set of experiments, each generated dataset consists of 50
points uniformly distributed in a hypercube in 4-, 6-, or 8-
dimensional Euclidean space. There is no significant cluster
structure in the data, but a “criterion” solution is assumed:
a hypothetical number of clusters (set at either 2, 3, 4, or
5) and a particular distribution pattern of the points to the
clusters. Three density patterns are used: equal density (ob-
jects are uniformly assigned across the clusters), 10% density

condition (one cluster contains 10% of the total number of
objects, while 90% of objects are uniformly assigned across
the other clusters), and 60% density condition (one cluster
contains 60% of the total number of objects, while 40% of
objects are uniformly assigned across the other clusters). For
example, when the number of clusters is 5 for 10% density,
the points are assigned to the clusters as follows: 5, 11, 11, 11,
12. For each selected number of clusters and for each pattern
distribution, 15 datasets are generated. The HC is performed
by using the single link, the complete link, the group average,
and the Ward method [12]. The computed similarity index
is averaged over the datasets and over the HC methods, and
the mean statistics (with limits at two standard deviation) are
plotted in Figures 1a, 1b, and 1c versus the hierarchy level for
each of the three density conditions. The two-standard devi-
ation limit is omitted for those levels where the values would
be negative or larger than 1.0. The only index for which the
mean plot is flat and close to zero is RandHA. For s(·, ·) and
Jaccard, the computed mean is decreasing when the number
of clusters in HC is increasing. Rand takes values larger than
the other indices, and the mean is increasing slowly when
the number of clusters in HC is increasing. For s(·, ·) and
Jaccard, the variance is larger when the partition contains a
small cluster; in the same situation, we observe a serious in-
crease in the variance of Rand.

In the second set of experiments, the test data are gener-
ated according to the algorithm described in [28]; the clus-
ters contained in the data are separated in the variable space
and are internally cohesive. It was observed that the mean of
similarity indices is close to 1.0 when the number of clus-
ters in HC solution is equal to the true number of clusters
for all considered structures. We plot in Figure 1d the mean
statistics for the similarity indices in the case of 60% density
condition for four clusters.

All plots in Figure 1 for Rand, RandHA, and Jaccard are
very close to similar plots in [27]. The new index s(·, ·) has
almost the same performance pattern as Jaccard; generally,
the variance of s(·, ·) is smaller than the variance of Jaccard
index, while the mean is larger. Extending the conclusions
from [27], we can observe that a value larger than 0.9 for the
Rand, 0.7 for the Jaccard, and 0.8 for s(·, ·) is likely to reflect
the recovery of some part of the true structure.

For all structured datasets, the clusters contained in the
data have been crafted to be disjointed, separated in the vari-
able space, and internally cohesive. Relying on these prop-
erties to obtain grouping in k clusters (2 ≤ k ≤ kmax), we
choose the clusters at kth depth in the dendrogram. In mi-
croarray cluster analysis, the datasets contain outliers which
do not belong to any group. Consequently, the dendrogram
resulting after running a certain HC algorithm could have at
kth depth a singleton (a cluster containing only an outlier).
In that case, we move down the HC tree until k distinct clus-
ters are identified, each of them containing at least two ob-
jects. It was shown in [29] that the similarity with the true
partition is larger when considering the k distinct clusters
(and ignoring the outliers) than simply taking all clusters at
kth depth in the dendrogram. Since we aim to identify struc-
tures in data, we prefer an algorithm which can accurately
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Figure 1: Mean of the similarity indices versus the number of clusters (solid line) with limits at two-standard deviation (dotted line). (a)
The equal density condition when no structure exists in the data. (b) The 10% density condition when no structure exists in the data. (c)
The 60% density condition when no structure exists in the data. (d) The 60% density condition when data contains four distinct clusters
The x-axes denote the number of clusters while the y-axes denote the similarity index value.

estimate K̂ relying on a subset of the original dataset instead
of one that clusters all objects with an increased risk of mis-
classification.

5. STABILITY-BASEDMETHOD FOR ESTIMATING
THE NUMBER OF CLUSTERS

First, we briefly revisit the algorithm introduced in [5] when
the dataset contains N points embedded in p-dimensional
space. Assume that the maximum number of clusters is kmax,
and for each allowable value of k, except the trivial case (k =
1), select from the data two subsets such that each of them
contains f = 80% of the original samples. Use the average-
link HC algorithm [12] to cluster every subset in k nonsin-

gleton groups, and then compute the Fowlkes-Mallows sim-
ilarity index [9] on the intersection of subsets. The number
of pairs of solutions compared for each k is Nt = 100. It was
pointed out in [5] that the histogram of similarity indices is
concentrated near one only for values of k smaller than or
equal to the “true” number of clusters. Relying on this obser-
vation, the number of clusters has been visually evaluated by
inspecting the plot of the empirical cumulative distribution
function of similarity index. We extend the algorithm from
[5] for any similarity index and any HC algorithm.

In the rest of the section, we introduce and analyze the
method for automatic selection of the number of clusters.
Let smk,t be the value of the similarity index for the tth pair of
solutions compared under the hypothesis of k nonsingleton
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clusters. For a given k, we are interested in the histogram ob-
tained from the values smk,1, smk,2, . . . , smk,Nt . A good indica-
tor for the location of the histogram is themean of the values,
but since the median is more robust to the presence of out-
liers, we compute

mk � median
(
smk,1, smk,2, . . . , smk,Nt

)
. (6)

We decide that there is no significant structure in the ana-
lyzed data (K̂ = 1) if

max
2≤k≤kmax

mk < Th, (7)

where Th depends on the similarity index and the HC al-
gorithm. The threshold Th is determined under a suitable
null hypothesis: the uniformity hypothesis states that the data
are sampled from a uniform distribution in p-dimensional
space, while under the unimodality hypothesis, the data are
thought to be random sample from a multivariate normal
distribution [3]. We use in the sequel the uniformity hypoth-
esis for the null case.

When max2≤k≤kmax mk ≥ Th, let ν : {2, 3, . . . , kmax} →
{2, 3, . . . , kmax} be a permutation such that mν(2),mν(3), . . . ,
mν(kmax) are the elements of the set {m2,m3, . . . ,mkmax}, de-
creasingly ordered. Calculate

i∗ � argmax
i

(
mν(i) −mν(i+1)

)
, (8)

which is a “border” between values of k yielding stable,
respectively, unstable clustering. The estimated number of
clusters is given by the maximum value of k for which
the resulting clustering is still stable, or equivalently K̂ =
max(ν(2), ν(3), . . . , ν(i∗)).

The improvement proposed for the algorithm described
in [5] leads to an automatic procedure for estimating K̂ with-
out resorting to any heuristic method. The accuracy of the
new algorithm is tested next using artificial and microarray
data.

5.1. Performance evaluationwith simulated data

We investigate the performances of the algorithm by using
artificially generated data for which the true state of the na-
ture is known. The experiments are intended for studying the
influence of the HC algorithm and the similarity index on the
accuracy of estimation. In [3, 5], the use of Fowlkes-Mallows
similarity index is recommended. Due to this reason, we re-
port estimation results when applying it in conjunction with
group-average, complete-linkage, Ward’s method, centroid,
and single-linkage clustering, while for other considered in-
dices, the comparisons are restricted to three clustering algo-
rithms. A complete description of the clustering algorithms
could be found in [10, 12]. In all cases, the distance be-
tween two clustered objects is taken to be the Euclidean dis-
tance.

The artificial data are generated according to Models 1–8
introduced in [3]: Model 1 obeys the uniformity hypothesis

and Models 2–8 assume the presence of various number of
clusters. For each model,Nd = 50 datasets are simulated, and
the results are reported in Tables 3, 4, and 5, where kmax = 7
is assumed. In Tables 3, 4, and 5, the maximum of the distri-
bution for K̂ over Nd = 50 estimations is represented in bold
for each method. For every dataset, the number of pairs of
solutions compared for each k (2 ≤ k ≤ kmax) is Nt = 100.
We note that for Models 1–8, the number of samples in every
dataset varies between 100 and 200 [3] and during the sub-
sampling process we select from the data two subsets such
that each of them contains f = 80% of original samples.

For each model, the best solution corresponds to the
method having the highest percentage of simulations for
which the number of clusters is correctly recovered and is
marked with an arrow (⇐) in Tables 3, 4, and 5. The only
clustering algorithms that lead to good results are complete-
linkage and Ward’s method; the former gives 4 and the
latter 8 “best solutions.” The group-average clustering is
recommended in [5, 6], but we remark the modest perfor-
mances of the algorithm for the actual tests. Only one sim-
ilarity index “corrected for chance” is considered in these
experiments, namely, RandHA. Unsurprisingly, RandHA dis-
tinguishes very well between structured and unstructured
datasets; when applied in conjunction with complete-linkage
or Ward’s method, it identifies the lack of structure for all
files generated according to Model 1 (K = 1) and for the files
associated to Models 2–8, the estimated K̂ is always larger
than 1. When the HC is based on group-average and the sim-
ilarity index is RandHA, five false positive results are reported
(K̂ > 1 five times for Model 1), respectively, five false nega-
tive results (K̂ = 1 five times for Model 7). The values of the
threshold Th used in (7) to decide for the Models 1–8 if there
is no significant structure in the analyzed dataset (K̂ = 1) are
given in Table 6.

For structured Models 2–8, the best solution is associ-
ated only once to the algorithm which measures the simi-
larity with RandHA, and this occurs for Model 5 (Table 4).
Comparing the performances of various similarity indices
over all models, we observe that s(·, ·) leads to the best so-
lution five times (Models 1, 2, 3, 6, 8), Jaccard three times
(Models 1, 4, 7), RandHA three times (Models 1, 5), while
Fowlkes-Mallows only once (Model 1). We remark that the
newly introduced index s(·, ·) is best ranked. When cluster-
ing is done by group-average, measuring the similarity with
Fowlkes-Mallows index leads to poor results.

We dub sw, the stability-basedmethod, for estimating the
number of clusters when Ward’s algorithm is used in con-
junction with s(·, ·) and compare it, for theModels 1–8, with
seven methods analyzed in [3]: prediction-based resampling
clest, gap and gapPC [20], sil [10], ch [19], kl [17], and hart
[18]. A description for all sevenmethods can be found in [3].
The bar plots in Figure 2 represent the percentage of simu-
lations for which the number of clusters was correctly esti-
mated by each considered method according to Tables 3, 4,
and 5, respectively [3, Table 3]. By their design, sil, ch, and
kl cannot detect the lack of structure, so for these methods,
K̂ ≥ 2. The plots in Figure 2 show that excepting sw and clest,
all methods fail to estimate the number of clusters for at least
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Table 3: Estimated number of clusters in simulated data. Results for the Models 1, 2, 3.

Similarity index Hierarchical clustering method Number of clusters

Model 1 (1 cluster in 10 dimensions)

1∗ 2 3 4 5 6 7

s(·, ·)
Group-average 21 12 16 1 0 0 0

Complete-linkage 44 6 0 0 0 0 0

Ward’s method 50 0 0 0 0 0 0 ⇐

Jaccard
Group-average 16 23 10 1 0 0 0

Complete-linkage 45 5 0 0 0 0 0

Ward’s method 50 0 0 0 0 0 0 ⇐

Fowlkes-Mallows

Group-average 15 17 16 2 0 0 0

Complete-linkage 44 6 0 0 0 0 0

Ward’s method 50 0 0 0 0 0 0 ⇐
Centroid method 0 14 7 7 11 11 0

Single-linkage 19 7 2 9 5 8 0

RandHA

Group-average 45 4 1 0 0 0 0

Complete-linkage 50 0 0 0 0 0 0 ⇐
Ward’s method 50 0 0 0 0 0 0 ⇐

Model 2 (3 clusters in 2 dimensions)

1 2 3∗ 4 5 6 7

s(·, ·)
Group-average 0 1 13 21 14 0 1

Complete-linkage 0 0 38 10 2 0 0 ⇐
Ward’s method 0 0 25 19 5 1 0

Jaccard
Group-average 0 1 13 20 13 2 1

Complete-linkage 0 0 35 9 6 0 0

Ward’s method 0 2 35 11 1 1 0

Fowlkes-Mallows

Group-average 0 1 11 20 15 2 1

Complete-linkage 0 0 31 10 7 1 1

Ward’s method 0 1 34 13 1 1 0

Centroid method 0 0 12 14 15 9 0

Single-linkage 3 4 14 9 7 5 8

RandHA

Group-average 0 0 15 20 13 1 1

Complete-linkage 0 0 34 9 5 0 2

Ward’s method 0 1 35 12 1 1 0

Model 3 (4 clusters in 10 dimensions, 7 noise variables)

1 2 3 4∗ 5 6 7

s(·, ·)
Group-average 0 2 7 17 10 14 0

Complete-linkage 0 1 10 21 12 6 0

Ward’s method 0 1 4 39 5 1 0 ⇐

Jaccard
Group-average 0 4 13 15 9 9 0

Complete-linkage 0 1 14 15 10 10 0

Ward’s method 0 2 9 35 4 0 0

Fowlkes-Mallows

Group-average 0 4 13 12 10 11 0

Complete-linkage 0 1 12 13 12 12 0

Ward’s method 0 2 7 33 6 2 0

Centroid method 0 3 10 11 14 10 2

Single-linkage 0 4 4 10 14 8 10

RandHA

Group-average 0 4 13 16 9 8 0

Complete-linkage 0 1 12 14 11 12 0

Ward’s method 0 2 9 30 5 2 2



72 EURASIP Journal on Applied Signal Processing

Table 4: Estimated number of clusters in simulated data. Results for the Models 4, 5, 6.

Similarity index Hierarchical clustering method Number of clusters

Model 4 (4 clusters in 10 dimensions)

1 2 3 4∗ 5 6 7

s(·, ·)
Group-average 0 0 1 23 12 12 2

Complete-linkage 0 0 0 34 12 4 0

Ward’s method 0 0 0 36 14 0 0

Jaccard
Group-average 0 2 4 20 8 12 4

Complete-linkage 0 0 3 24 15 7 1

Ward’s method 0 0 0 41 8 1 0 ⇐

Fowlkes-Mallows

Group-average 0 2 4 18 8 14 4

Complete-linkage 0 0 3 10 20 14 3

Ward’s method 0 0 0 31 16 2 1

Centroid method 0 2 2 19 14 7 6

Single-linkage 2 0 3 14 11 6 14

RandHA

Group-average 0 2 4 17 10 13 4

Complete-linkage 0 0 3 14 16 10 7

Ward’s method 0 1 0 33 12 2 2

Model 5 (2 elongated clusters in 3 dimensions)

1 2∗ 3 4 5 6 7

s(·, ·)
Group-average 0 17 5 6 2 7 13

Complete-linkage 0 26 10 11 0 1 2

Ward’s method 0 17 4 7 5 7 10

Jaccard
Group-average 0 24 15 3 2 4 2

Complete-linkage 0 27 21 2 0 0 0

Ward’s method 0 26 14 4 3 1 2

Fowlkes-Mallows

Group-average 0 21 12 6 2 6 3

Complete-linkage 0 22 26 2 0 0 0

Ward’s method 0 21 16 5 4 2 2

Centroid method 0 20 13 6 3 5 3

Single-linkage 0 10 15 10 7 7 1

RandHA

Group-average 0 20 13 2 2 3 10

Complete-linkage 0 33 15 2 0 0 0 ⇐
Ward’s method 0 25 14 3 2 1 5

Model 6 (2 elongated clusters in 10 dimensions, 7 noise variables)

1 2∗ 3 4 5 6 7

s(·, ·)
Group-average 1 12 10 7 5 4 11

Complete-linkage 3 47 0 0 0 0 0 ⇐
Ward’s method 0 42 6 2 0 0 0

Jaccard
Group-average 0 14 7 9 5 3 12

Complete-linkage 4 46 0 0 0 0 0

Ward’s method 0 42 6 1 1 0 0

Fowlkes-Mallows

Group-average 0 12 7 9 6 4 12

Complete-linkage 4 45 1 0 0 0 0

Ward’s method 0 39 9 1 1 0 0

Centroid method 0 14 9 6 10 11 0

Single-linkage 3 12 7 1 5 15 7

RandHA

Group-average 0 1 0 0 1 1 47

Complete-linkage 0 0 0 0 0 0 50

Ward’s method 0 35 7 1 0 0 7
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Table 5: Estimated number of clusters in simulated data. Results for the Models 7 and 8.

Similarity index Hierarchical clustering method Number of clusters

Model 7 (2 overlapping clusters in 10 dimensions, 9 noise variables)

1 2∗ 3 4 5 6 7

s(·, ·)
Group-average 15 13 15 7 0 0 0

Complete-linkage 2 43 5 0 0 0 0

Ward’s method 0 47 3 0 0 0 0

Jaccard
Group-average 14 13 18 5 0 0 0

Complete-linkage 2 46 2 0 0 0 0

Ward’s method 0 48 2 0 0 0 0 ⇐

Fowlkes-Mallows

Group-average 13 12 17 7 1 0 0

Complete-linkage 2 46 2 0 0 0 0

Ward’s method 0 47 3 0 0 0 0

Centroid method 6 16 8 6 5 4 5

Single-linkage 19 13 0 1 1 5 11

RandHA

Group-average 5 5 3 1 0 0 36

Complete-linkage 0 5 3 0 1 0 41

Ward’s method 0 32 3 0 0 0 15

Model 8 (3 overlapping clusters in 13 dimensions, 10 noise variables)

1 2 3∗ 4 5 6 7

s(·, ·)
Group-average 10 6 7 3 2 0 22

Complete-linkage 0 39 10 1 0 0 0

Ward’s method 0 0 38 11 1 0 0 ⇐

Jaccard
Group-average 21 10 7 3 1 0 8

Complete-linkage 0 37 6 1 5 1 0

Ward’s method 0 10 31 8 1 0 0

Fowlkes-Mallows

Group-average 19 10 8 3 1 0 9

Complete-linkage 0 35 6 2 6 1 0

Ward’s method 0 7 27 13 3 0 0

Centroid method 38 4 1 1 2 2 2

Single-linkage 4 7 3 1 1 0 34

RandHA

Group-average 0 7 7 2 1 0 33

Complete-linkage 0 16 6 9 4 6 9

Ward’s method 0 6 25 10 3 0 6

Table 6: The threshold Th used in (7) to decide for the Models 1–8 if there is no significant structure in the analyzed dataset (K̂ = 1).
Remark that the value of Th depends on the HC algorithm and the similarity index.

s(·, ·) Jaccard Fowlkes-Mallows RandHA

Group-average 0.9350 0.8600 0.9220 0.3750

Complete-linkage 0.6260 0.4285 0.6040 0.1938

Ward’s method 0.7234 0.4532 0.6255 0.3156

Centroid — — 0.9620 —

Single-linkage — — 0.9750 —

one model: gap for Models 5 and 6, gapPC for Model 6, sil
for Model 8, ch for Models 5 and 8, while hart for Models 1,
2, 5, and 6. Since hart fails in four models out of eight, it is
concluded in [3] that it performs the worst; kl does not really

fail in any model, but the results are poor for Models 6–8. In
all these cases the percentage of correct estimation is lower
than 40%. The methods sw and clest prove to be robust; the
worst result of sw occurs in Model 5, while the worst result of
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Figure 2: Models 1–8: bar plots representing the percentage of simulations for which the number of clusters is correctly estimated by each
method.

clest occurs in Model 7. We emphasize the excellent results of
sw in finding the two overlapping clusters of Model 7; clest,
gap, and gapPC are not able to distinguish between one and
two clusters and kl overestimates the number of clusters. The
behavior of sw inModel 2 is surprisingly bad; it is peculiar for
Model 2 that the true number of clusters, three, exceeds the
dimension of variable space, two. Our interest is on cluster-
ing samples from microarray data when N samples (objects)
are observed, and each object is associated with a vector of
p attributes. Generally, p exceeds by far N , so the number of
clusters K is much smaller than the variable space dimension
p.

To have a complete picture on the performances of sw al-
gorithm, we list in a decreasing order the percentage of sim-
ulations for which the number of clusters is correctly esti-
mated by sw for every considered model: 100% (Model 1),
94% (Model 7), 84% (Model 6), 78% (Model 3), 76% (Model
8), 72% (Model 4), 50% (Model 2), and 34% (Model 5).
The algorithm identifies successfully the lack of structure for
Model 1, and for other five structuredmodels, the percentage
of correct estimation is larger than 70% which recommends
the use of sw for a wide family of input data distributions,
even if some variables are noisy.

5.2. Clustering the Leukemia dataset

The Leukemia dataset consists of 6817 human genes mea-
sured for 72 patients: 47 cases of ALL (38 B-cell ALL and
9 T-cell ALL) and 25 cases of AML. After applying the pre-
processing steps described in [3], the measurements for some
genes are discarded, and the data are summarized by N = 72
vectors in p-dimensional space where p = 3571. The re-
sults reported in the sequel are obtained without applying
any normalization procedure to the data.

We compare the three clusters found by complete-linkage
and use all the 3571 genes with the true clusters by display-
ing in Table 2 the contingency table. We gain more insights
by computing the optimal assignment, A = 26 + 0 + 15 =
41, according to the definition introduced in Section 3.1.
Theorem 1 claims that for inducing identical partitions, we
have to remove 31 objects from the dataset, namely, all those
objects not associated with any selected entries of the opti-
mal assignment. Since the entry associated to the optimal
assignment in the second row has the value zero, the iden-
tical induced partitions contain two clusters. This shows that
complete-linkage HC amalgamates in C1 almost all ALL T-
cell samples with many ALL B-cell samples, and some AML
samples, while in C2 ALL B-cell samples are grouped with
AML samples.

This inability to correctly group the data leads to the
conclusion that clustering based on measurements from
all genes produces modest results. Therefore we resort to
a simple unsupervised feature selection method which was
also used in [3]: only 100 genes (out of 3571) having the
largest variance across tumor samples are employed for clus-
tering. We restrict our investigations to three HC algo-
rithms (group-average, complete-linkage, Ward’s method),
respectively, three similarity indices (s(·, ·), Jaccard, Fowlkes-
Mallows), and apply the proposed algorithm when the newly
defined space dimension is p = 100.

From the dataset consisting ofN = 72 vectors with length
p = 100, we select randomly two subsets such that each of
them contains 80% of the samples. Then we run the cho-
sen HC algorithm for both subsets and measure the cluster-
ing agreement for the samples belonging to the intersection
of the subsets. For every hypothesized number of clusters
k ∈ {2, 3, . . . , kmax}, the clustering agreement is measured by
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Table 7: The estimated number of clusters for Leukemia dataset when measurements from p = 100 genes having the largest variance across
tumor samples are used. The hypothesized number of clusters varies between 1 and 10. We represent in bold the maximum value over a row.

Hierarchical clustering method Similarity index
Number of clusters

1 2 3∗ 4 5 6 7 8 9 10

Group-average
s(·, ·) 0 3 56 40 0 0 0 184 17 0

Jaccard 0 0 0 0 0 0 0 290 10 0

Fowlkes-Mallows 0 0 0 0 0 0 0 282 18 0

Complete-linkage
s(·, ·) 0 75 212 12 1 0 0 0 0 0

Jaccard 0 36 56 188 20 0 0 0 0 0

Fowlkes-Mallows 0 17 31 207 37 8 0 0 0 0

Ward’s method

s(·, ·) 0 0 176 118 6 0 0 0 0 0

Jaccard 0 0 95 202 3 0 0 0 0 0

Fowlkes-Mallows 0 0 59 233 8 0 0 0 0 0

calculating the value of the selected similarity index sm. Re-
peating the procedure Nt = 30000 times, we obtain for every
similarity index sm and for every allowed value of k, a large
set �k � {smk,1, smk,2, . . . , smk,Nt}.

The histogram drawn for each k from the correspond-
ing set �k plays the key role in the automatic estimation
method introduced at the beginning of Section 5. To im-
prove the accuracy, we base the estimation on several his-
tograms for every k. This is performed by splitting each
set �k into Nb = 300 non-overlapping blocks and draw-
ing a different histogram for every block. Observe that
the length of a block is N� = 100. More precisely, we
can write �k = �k,1

⋃
�k,2

⋃ · · ·⋃�k,Nb , where �k,i =
{smk,(i−1)×N�+1, . . . , smk,i×N�} for 1 ≤ i ≤ Nb. Applying the
newly introduced method, we estimate the number of clus-
ters, which is assumed to lie between 1 and kmax, using only
the blocks �2,1,�3,1, . . . ,�kmax,1. This is done by computing
mk = median(�k,1) for 2 ≤ k ≤ kmax and then applying (7)
and (8). Similarly, we obtain another estimation from the
blocks �2,2,�3,2, . . . ,�kmax,2. Continuing the procedure, Nb

estimations of the number of clusters are resulting for ev-
ery pair (clustering method, similarity index). For the case
kmax = 10, we show in Table 7 the distributions of estimated
number of clusters when various similarity indices and HC
algorithms are applied. For each distribution, we decide that
K̂ is the value corresponding to the maximum number of oc-
currences (represented in bold).

According to the existing biological knowledge, the num-
ber of clusters for Leukemia dataset is three. Following the
procedure described above, we obtain from Table 7 that K̂ =
3 only when complete-linkage, respectively, Ward’s method
are used in conjunction with the new similarity index s(·, ·).
Recall that for the simulated data, only complete-linkage and
Ward’s method have produced good results. For Leukemia
dataset, when these two HC algorithms are applied in combi-
nation with Jaccard or Fowlkes-Mallows index, the estimated
number of clusters is K̂ = 4. A possible explanation for K̂ = 4
relies on the remark, from [7], that ALL B-lineage type sam-
ples can be further split into two clusters. Surprisingly, the
group-average is leading to K̂ = 8, which is hard to be given

a plausible biological interpretation. The experiments with
Leukemia dataset reconfirm that the estimated number of
clusters K̂ depends strongly on the HC algorithm and on
the similarity index. The newly introduced index s(·, ·) is the
only one that leads to correct estimations.

We further investigate how various HC algorithms clus-
ter the 72 × 100 Leukemia dataset in classes when Euclidian
distance is used to measure the distance between objects. We
show in Table 8 the contingency tables when the true parti-
tion is compared with partitions produced by clustering algo-
rithms for K̂ ∈ {3, 4, 8}. In each case, we measure the degree
of agreement between the compared partitions by computing
the optimal assignment (A∗) as defined in Section 3.1: the
larger the value of A∗, the better the degree of agreement.
Remark that only the entries of the contingency matrix as-
sociated with the optimal assignment (bold represented in
Table 8) correspond to samples reliably clustered. The values
of A∗ reported in Table 8 vary between 45 (group-average)
and 53 (complete-linkage), or equivalently, the proportion
of reliably clustered samples varies between 63% and 74%.

As expected, A∗ declines when the estimated number of
clusters K̂ is larger than three. For K̂ = 3, the complete-
linkage method clusters properly 30 samples from ALL B-
cell class, 8 samples from ALL T-cell class, and 15 samples
from AML class. When K̂ raises from 3 to 4, only the num-
ber of samples from AML class, well classified by complete-
linkage method, changes; namely, it decreases from 15 to 12.
For K̂ ∈ {3, 4}, the number of ALL B-cell samples correctly
grouped by Ward’s method is 28, and 14 AML samples are
also well classified. In the case of Ward’s method, the num-
ber of correctly grouped ALL T-cell samples drops from 8 to
6 when K̂ increases from 3 to 4. It is obvious that the smallest
A∗ is obtained for group-average for which K̂ = 8; remark in
this case that 8 ALL T-cell samples are assigned to the same
group.

The importance of feature selection is revealed when
comparing the results reported, in Tables 2 and 8, for K̂ = 3.
Using the measurements of only variance-based selected 100
genes improves significantly the clustering. The issue of fea-
ture selection for stability-based algorithms is addressed in
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Table 8: The contingency tables for the Leukemia dataset: the true partition given by a priori knowledge on the type of disease for each
patient is compared with partitions produced by HC algorithms when K̂ ∈ {3, 4, 8}. Only 100 genes having the largest variance across tumor
samples are used for clustering. For each contingency table, the entries associated to the optimal assignment are represented in bold.

Hierarchical clustering method Cluster ALL B-cell ALL T-cell AML A∗

Group-average K̂ = 8

C1 3 0 11

45

C2 1 1 3

C3 26 0 5

C4 3 0 2

C5 2 0 0

C6 1 0 3

C7 1 0 0

C8 1 8 1

Complete-linkage K̂ = 3

C1 30 0 8

C2 3 8 2 53

C3 5 1 15

Complete-linkage K̂ = 4

C1 5 1 12

50
C2 0 0 3

C3 30 0 8

C4 3 8 2

Ward’s method K̂ = 3

C1 28 0 7

C2 5 8 4 50

C3 5 1 14

Ward’s method K̂ = 4

C1 5 2 4

48
C2 0 6 0

C3 28 0 7

C4 5 1 14

[30], and also a special form, namely, leading principal com-
ponents selection is investigated in [6]. In this paper, we fo-
cus on the choice of the HC algorithm, respectively, the simi-
larity index, and we refer for the feature selection problem to
the rich literature on this topic.

6. CONCLUSION

In this study, we present a stability-based method applied for
the estimation of the number of clusters in microarray data.
To gain insights into the choice of the similarity index and
HC algorithm, a careful study on simulated and real data is
performed.

A new similarity index s(·, ·) is introduced, and its ca-
pabilities are evaluated against other well-known similarity
indices, based on a benchmark originally proposed in [21].
In this framework, s(P,P′) takes small values when partition
P′ is obtained from partition P after severe modifications,
which recommends the use of s(·, ·) in practical applications.
The index s(·, ·) is further evaluated in standard experimen-
tal conditions when measuring the agreement between the
true partition and the partition obtained at each level of an
HC solution. We draw the conclusion that a value of 0.8 for
s(·, ·) is likely to reflect the recovery of some part of the true
structure. Moreover, since microarray data are noisy, when
necessary to obtain grouping in k clusters, we do not choose

automatically the clusters at kth depth in the dendrogram,
but move down the hierarchical tree until k nonsingleton
clusters are identified.

We note the superiority of s(·, ·) and Jaccard when com-
pared to Fowlkes-Mallows index. In experiments with sim-
ulated data, the use of s(·, ·) was leading to the highest per-
centage of recovering the true number of clusters five times,
while Jaccard index three times and Fowlkes-Mallows index
only once. Also for the Leukemia dataset, s(·, ·) is the only
index which leads to the correct estimation of the number of
clusters (K̂ = 3). We emphasize that the definition of s(·, ·)
relies on optimal assignment, which is the core of a visualiza-
tion tool newly proposed in this paper for the interpretation
of microarray data clustering.

The good performances of complete-linkage algorithm
and Ward’s method, observed in Section 5.1 for artificial
data, have been reconfirmed for Leukemia data. Even when
basing the clustering only on 100 selected genes, the results in
Table 8 show the presence of misclassified samples for K̂ = 3.
A major drawback of agglomerative HC was already pointed
out in [12]: the fusions once made are irrevocable, so when
an algorithm has joined two individuals, they cannot sub-
sequently be separated. A similar drawback occurs for divi-
sive HC algorithms, while partition methods can reconsider,
at every stage of clustering, to which group to assign an ob-
ject [12]. We conclude that agglomerative HC algorithms like
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complete-linkage orWard’s method are well suited to be used
with the newly introduced method for the estimation of the
number of clusters. The resulting method will offer reliable
estimates forK and at the same time will be very fast since the
HC is computationally efficient; the same tree can be used for
all values of k ∈ {2, 3, . . . , kmax} by looking at different levels
of the tree each time. Once K is estimated, partition meth-
ods can be further employed for assigning the objects to the
clusters.

APPENDICES

A. PROOFS OF PROPOSITIONS

Proof of Proposition 1. It results from the definition that
D(P,P′) = D(P′,P) ≥ 0 for each pair of partitions (P,P′),
while D(P,P′) = 0 if and only if P and P′ are identical. It
remains to verify the triangle inequality. Consider three par-
titions P, P′ and P′′ of the objects in T . Let U (and V) de-
note the minimal subset of T which must be removed such
that the induced partitions on P and P′ (resp., on P′ and
P′′) are identical. Removing U

⋃
V from T induces identical

partitions on P, P′, and P′′, which leads to the chain of in-
equalities and equalities: D(P,P′′) ≤ |U⋃V | ≤ |U|+ |V | =
D(P,P′) +D(P′,P′′).

Proof of Proposition 2. Since all entries of M are nonnegative
integers and their sum is N > 0, there exist at least one entry
mij such that mij > 0. This leads to A(P,P′) ≥ 1 which is
equivalent to D(P,P′) ≤ N − 1. When P = {P1,P2, . . . ,PN}
with |P1| = |P2| = · · · = |PN | = 1 and P′ = {T}, the
matrixM reduces to a column vector having only ones as en-
tries, which implies that D(P,P′) = N − 1. Conversely, when
D(P,P′) = N − 1 and |P| = r ≥ c = |P′|, let mij = 1 be the
only entry of M which is considered in the computation of
the optimal assignment A(P,P′) = N − D(P,P′) = 1. Since
no entry of the columns with indexes different of j is con-
sidered in A(P,P′), it follows that all the columns contain
only zeros, so, M is essentially a column vector. Because this
column vector does not have any entry larger than one, the
partition P′ consists of a single cluster and the partition P
consists only of clusters containing single-objects.

B. A LOWER BOUND FOR E[s(·, ·)]UNDER
THE HYPOTHESIS OF GENERALIZED
HYPERGEOMETRIC DISTRIBUTION

Proposition B.1. Under the assumption of fixed margins mi·
andm· j , and random allocation of matching counts tomij ,

E
[
s(P,P′)

] ≥ 1
N − 1

(∑c
i=1 α(i)β(i)

N
− 1

)

≥ 1
N − 1

(∑c
i=1 α(i)
c

− 1

)
,

(B.1)

where α(1),α(2), . . . ,α(r) and β(1),β(2), . . . ,β(c) are the elements
of the set {α1,α2, . . . ,αr}, respectively, the set {β1,β2, . . . ,βc}
decreasingly ordered.

Proof. Consider the particular assignment value a(P,P′) �∑c
i=1m(i),(i). By definition, A(P,P′) ≥ a(P,P′), and con-

sequently, E[A(P,P′)] ≥ E[a(P,P′)]. This observation, to-
gether with definition (3) and E[a(P,P′)] = ∑c

i=1 α(i)β(i)/N ,
proves the first inequality in (B.1). The second inequality re-
sults from the Chebyshev inequality [31] applied for the se-
quences (α(1),α(2), . . . ,α(c)) and (β(1),β(2), . . . ,β(c)); we also
used the identity

∑c
i=1 β(i) = N . Note that the equality oc-

curs if and only if α(1) = α(2) = · · · = α(c) or β(1) = β(2) =
· · · = β(c).

Corollary B.1. (a) When r > c, the maximum value of the
lower bound,

max
α1,α2,...,αr

1
N − 1

(∑c
i=1 α(i)
c

− 1

)
= 1

c

N − r

N − 1
, (B.2)

is achieved whenever α(c+1) = α(c+2) = · · · = α(r) = 1.
(b)When r = c, the expression of the lower bound becomes

(1/(N − 1))(N/c − 1).

C. ASYMPTOTIC AND FINITE SAMPLE
CHARACTERISTICS FOR THE SIMILARITY INDICES

We illustrate the computation of s(P,P′) by considering
an example from [21]: two partitions of six objects, P =
{{x1, x2, x3}, {x4, x5, x6}} and P′ = {{x1, x2}, {x3, x4, x5},
{x6}}. Elementary calculations lead to s(P,P′) = 0.6 which is
equal to the Rand index value reported in [21]. The same ex-
ample was used in [25] to compare RandHA, which takes the
value 2/17 ≈ 0.1176, with RandMA = 1/3 ≈ 0.3333. For this
particular case, s(·, ·) and Rand index take the same value
which is larger than the adjusted forms of Rand. We consider
in this section more comparisons of the newly introduced
index with Rand, RandHA, RandMA, Jaccard, and Fowlkes-
Mallows indices.

To study the finite and asymptotic characteristics, assume
that the original data partition P consists of K clusters with n
objects each; ten cases when P′ is obtained from P after vari-
ous simple and major modifications are considered. This ap-
proach was firstly proposed in [21] to establish some formal
properties of Rand index and further used in [9] when eval-
uating the performances of the Fowlkes-Mallows index. The
expressions of Rand, RandMA, Jaccard, and Fowlkes-Mallows
indices for all the ten cases are given in [23]. We compute
in Table C.1 the close forms for the partition distance and
the index s(P,P′) when P′ is obtained by modifying P as de-
scribed in [21].

We compute also the asymptotics when the number of
objects in each cluster increases without bound (n → ∞),
while the number of clusters is fixed (K fixed). We observe
from the fourth column in Table C.1 that the index asymp-
totics for the fourth and fifth scenarios are equal to 1.0, which
is also true for all similarity indices analyzed in [23]. As
it was already pointed out in [23], this is reasonable since
P and P′ are different in, at most, K points; differences of
this magnitude are not very serious if an infinite number
of the other points are clustered identically by P and P′.
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Table C.1: Expressions for the partition distance D(·, ·) and the index s(·, ·) between two similar partitions, given an initial partition P
which has K clusters of n objects each.

P′ is a simple modification of the original partition P

Modification of P D(P,P′) s(P,P′)
limn→∞ s(P,P′) limn→∞ s(P,P′)

K fixed K = λn

Two clusters joined n
n(K − 1)− 1

nK − 1
K − 1
K

1.0

One cluster splits into
two equal parts (n even)

n/2
n(K − 1/2)− 1

nK − 1
K − 1/2

K
1.0

One cluster splits into
single-object clusters

n− 1
n(K − 1)
nK − 1

K − 1
K

1.0

One object taken from each cluster
to form a new cluster of K objects

K
(n− 1)K − 1

nK − 1
1.0 1.0

P′ and P′′ are similar modifications of the original partition P

Differences between P′ and P′′ D(P′,P′′) s(P′,P′′)
limn→∞ s(P′,P′′) limn→∞ s(P′,P′′)

K fixed K = λn

Movement of an object
to different clusters

1
nK − 2
nK − 1

1.0 1.0

Different clusters split into two
equal parts (n even)

n
n(K − 1)− 1

nK − 1
K − 1
K

1.0

Different pairs of clusters
joined

2n
n(K − 2)− 1

nK − 1
K − 2
K

1.0

P′ is a major modification of the original partition P

Modification of P D(P,P′) s(P,P′)
limn→∞ s(P,P′) limn→∞ s(P,P′)

K fixed K = λn

All clusters joined into
one large cluster

n(K − 1)
n− 1
nK − 1

1/K 0.0

All clusters split into
single-object clusters

(n− 1)K
K − 1
nK − 1

0.0 0.0

n clusters are formed with K
objects in each, one object
from each original cluster

nK −min(n,K)
min(n,K)− 1

nK − 1
0.0 0.0

The asymptotic values for s(P,P′) and the Jaccard index co-
incide for seven out of ten evaluated situations, while the
asymptotics of Jaccard index never exceed the asymptotics of
Fowlkes-Mallows index [23]. Comparing the expressions of
Jaccard and Fowlkes-Mallows indices given in Section 3.1, it
is easy to prove that the Jaccard index cannot be larger than
the Fowlkes-Mallows index when both are well defined. We
pay particular attention to the behavior of the similarity in-
dices for the last three scenarios (severe cases). The asymp-
totics for s(P,P′) are 0.0 in the last two cases (identical with
the values of RandMA and Jaccard), which shows the supe-
riority of s(·, ·) when comparing with the Rand index. The
value reported for Rand in [21] in both cases is (K − 1)/K ,
and seems unacceptable since it is too close to 1.0. For the
nineth modification, the Fowlkes-Mallows index is not de-
fined, while for the tenth modification, it is equal to 0.0.
The asymptotic value of s(P,P′) is 1/K when the modifica-
tion is such that all clusters are joined into one large cluster,

and being smaller than 0.5 for any K ≥ 2, it may be con-
sidered acceptable. For that case, Rand and Jaccard are also
equal to 1/K , while Fowlkes-Mallows is larger (1/

√
K) and

RandMA = 0.0.
When K is allowed to increase without bound (K → ∞),

n must also increase without limit, and the solution is to let
K increase as a simple proportion of n (K = λn) [9]. The re-
sults are reported in the last column of Table C.1: only in the
severe cases, the computed value is 0.0, while for other situ-
ations is 1.0. The behavior is identical for RandMA, Jaccard,
and Fowlkes-Mallows indices, while Rand is equal to 1.0 for
the last two severe cases.

Considering an example based on fixed values for n and
K , Table C.2 compares different indices when n = K = 4.
The severity of the modification from the true clustering is
ranked as in [23], where Rand, RandMA, Fowlkes-Mallows
and Jaccard similarity measures have been compared for n =
K = 4. Rand takes values close to one in many cases, while
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Table C.2: Six criteria measures computed for two similar partitions, given an initial partition which has K = 4 clusters with n = 4 objects
each (the largest and second largest values are framed).

Modification of true clustering Rand RandHA RandMA Fowlkes Mallows Jaccard s(·, ·)
Two clusters joined (Serious) 0.8667 0.6667 0.7143 0.7746 0.6000 0.7333

One cluster splits into two equal parts
(Not Serious)

0.9667 0.8889 0.9130 0.9129 0.8333 0.8667

One cluster splits into single-object
clusters (Slight Severity)

0.9500 0.8276 0.8667 0.8660 0.7500 0.8000

One object taken from each cluster to form
a new cluster of k objects (Serious)

0.8500 0.4828 0.6000 0.5774 0.4000 0.7333

Movement of an object to different
clusters (Not Serious)

0.9333 0.7979 0.8367 0.8400 0.7241 0.9333

Different clusters split into two
equal parts (Slight)

0.9333 0.7600 0.8171 0.8000 0.6667 0.7333

Different pairs of clusters joined (Serious) 0.7333 0.4000 0.4667 0.6000 0.4286 0.4667

All clusters joined into one large cluster
(Severe)

0.2000 0.0000 0.0000 0.4472 0.2000 0.2000

All clusters split into single-object clusters
(Severe)

0.8000 0.0000 0.3333 undefined 0.0000 0.2000

n clusters are formed with k objects in each,
one object from each original cluster (Severe)

0.6000 −0.2500 0.0000 0.0000 0.0000 0.2000

the indices “corrected for chance” (RandHA and RandMA)
have always smaller values. We observe that in all cases,
RandHA is smaller than RandMA. The value of RandHA in
the last row of the table is negative. In general, RandHA takes
values between −1 and 1, but negative values of the index
have no substantive use [25]. When the compared parti-
tions are chosen as described in the last row of Table C.2,
for any n = K ≥ 2, the contingency table is an n × n ma-
trix with all entries equal to one. Simple calculations show
that RandHA = −1/n < 0, which leads to RandHA = −0.25
for n = 4. When n (and implicitly K) is allowed to increase
without bound, RandHA has the limit 0.0.

When the similarity index takes small values for severe
cases, then it is recommended to be used in practical applica-
tions [23]. Among the considered indices, s(·, ·) is the largest
only for a modification ranked not serious, and the second
largest for a serious modification and two severe modifica-
tions. For the case n = K = 4, the only index which shows a
better behavior is Jaccard.
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