EURASIP Journal on Applied Signal Processing 2004:2, 236252
(© 2004 Hindawi Publishing Corporation

New Complexity Scalable MPEG Encoding Techniques

for Mobile Applications

Stephan Mietens

Philips Research Laboratories, Prof. Holstlaan 4, NL-5656 AA Eindhoven, The Netherlands

Email: stephan.mielens@philips.com

Peter H. N. de With

LogicaCMG Eindhoven, Eindhoven University of Technology, P.O. Box 7089, Luchthavenweg 57,

NL-5600 MB Eindhoven, The Netherlands
Email: p.h.n.de.with@tue.nl

Christian Hentschel

Cottbus University of Technology, Universititsplatz 3-4, D-03044 Cottbus, Germany

Email: christian.hentschel@tu-cottbus.de

Received 10 December 2002; Revised 7 July 2003

Complexity scalability offers the advantage of one-time design of video applications for a large product family, including mo-
bile devices, without the need of redesigning the applications on the algorithmic level to meet the requirements of the different
products. In this paper, we present complexity scalable MPEG encoding having core modules with modifications for scalability.
The interdependencies of the scalable modules and the system performance are evaluated. Experimental results show scalability
giving a smooth change in complexity and corresponding video quality. Scalability is basically achieved by varying the number of
computed DCT coefficients and the number of evaluated motion vectors, but other modules are designed such they scale with the
previous parameters. In the experiments using the “Stefan” sequence, the elapsed execution time of the scalable encoder, reflecting
the computational complexity, can be gradually reduced to roughly 50% of its original execution time. The video quality scales
between 20 dB and 48 dB PSNR with unity quantizer setting, and between 21.5dB and 38.5 dB PSNR for different sequences tar-
geting 1500 kbps. The implemented encoder and the scalability techniques can be successfully applied in mobile systems based on

MPEG video compression.

Keywords and phrases: MPEG encoding, scalable algorithms, resource scalability.

1. INTRODUCTION

Nowadays, digital video applications based on MPEG video
compression (e.g., Internet-based video conferencing) are
popular and can be found in a plurality of consumer prod-
ucts. While in the past, mainly TV and PC systems were used,
having sufficient computing resources available to execute
the video applications, video is increasingly integrated into
devices such as portable TV and mobile consumer terminals
(see Figure 1).

Video applications that run on these products are heav-
ily constrained in many aspects due to their limited re-
sources as compared to high-end computer systems or high-
end consumer devices. For example, real-time execution has
to be assured while having limited computing power and
memory for intermediate results. Different video resolutions
have to be handled due to the variable displaying of video

frame sizes. The available memory access or transmission
bandwidth is limited as the operating time is shorter for
computation-intensive applications. Finally the product suc-
cess on the market highly depends on the product cost.
Due to these restrictions, video applications are mainly re-
designed for each product, resulting in higher production
cost and longer time-to-market.

In this paper, it is our objective to design a scalable MPEG
encoding system, featuring scalable video quality and a cor-
responding scalable resource usage [1]. Such a system en-
ables advanced video encoding applications on a plurality of
low-cost or mobile consumer terminals, having limited re-
sources (available memory, computing power, stand-by time,
etc.) as compared to high-end computer systems or high-
end consumer devices. Note that the advantage of scalable
systems is that they are designed once for a whole product
family instead of a single product, thus they have a faster

mailto:stephan.mielens@philips.com
mailto:p.h.n.de.with@tue.nl
mailto:christian.hentschel@tu-cottbus.de

Complexity Scalable MPEG Encoding for Mobile

237

FIGURE 1: Multimedia applications shown on different devices sharing the available resources.

time-to-market. State-of-the-art MPEG algorithms do not
provide scalability, thereby hampering, for example, low-cost
solutions for portable devices and varying coding applica-
tions in multitasking environments.

This paper is organized as follows. Section2 gives a
brief overview of the conventional MPEG encoder architec-
ture. Section 3 gives an overview of the potential scalabil-
ity of computational complexity in MPEG core functions.
Section 4 presents a scalable discrete cosine transformation
(DCT) and motion estimation (ME), which are the core
functions of MPEG coding systems. Part of this work was
presented earlier. A special section between DCT and ME
is devoted to content-adaptive processing, which is of bene-
fit for both core functions. The enhancements on the system
level are presented in Section 5. The integration of several in-
dividual scalable functions into a full scalable coder has given
a new framework for experiments. Section 6 concludes the

paper.

2. CONVENTIONAL MPEG ARCHITECTURE

The MPEG coding standard is used to compress a video se-
quence by exploiting the spatial and temporal correlations of
the sequence as briefly described below.

Spatial correlation is found when looking into individual
video frames (pictures) and considering areas of similar data
structures (color, texture). The DCT is used to decorrelate
spatial information by converting picture blocks to the trans-
form domain. The result of the DCT is a block of transform
coefficients, which are related to the frequencies contained in
the input picture block. The patterns shown in Figure 2 are
the representation of the frequencies, and each picture block
is a linear combination of these basis patterns. Since high fre-
quencies (at the bottom right of the figure) commonly have
lower amplitudes than other frequencies and are less percep-
tible in pictures, they can be removed by quantizing the DCT
coefficients.

Temporal correlation is found between successive frames
of a video sequence when considering that the objects and
background are on similar positions. For data compression
purpose, the correlation is removed by predicting the con-
tents and coding the frame differences instead of complete

A0 RVRE P i
AN
= O O Q0 00 boo o
= 5 NN R
== =S R
=EEEEEEE
EEEEEEH
=EEEEEE

F1GURE 2: DCT block of basis patterns.

frames, thereby saving bandwidth and/or storage space. Mo-
tion in video sequences introduced by camera movements
or moving objects result in high spatial frequencies occur-
ring in the frame difference signal. A high compression rate
is achieved by predicting picture contents using ME and mo-
tion compensation (MC) techniques.

For each frame, the above-mentioned correlations are ex-
ploited differently. Three different types of frames are defined
in the MPEG coding standard, namely, I-, P-, and B-frames.
I-frames are coded as completely independent frames, thus
only spatial correlations are exploited. For P- and B-frames,
temporal correlations are exploited, where P-frames use one
temporal reference, namely, the past reference frame. B-
frames use both the past and the upcoming reference frames,
where I-frames and P-frames serve as reference frames. After
MG, the frame difference signals are coded by DCT coding.

A conventional MPEG architecture is depicted in Figure
3. Since B-frames refer to future reference frames, they can-
not be encoder/decoder before this reference frame is re-
ceived by the coder (encoder or decoder). Therefore, the
video frames are processed in a reordered way, for example,
“IPBB” (transmit order) instead of “IBBP” (display order).

238

EURASIP Journal on Applied Signal Processing

Rate control

F Reordered Frame
Video Frame [Gop rame frames difference MPEG
. memor /\ ..
input T, 7| structure Y PBB &, DCT Quantization VLC output
IBBP ~ Tip
IDCT }(_ Inverse ‘
; uantization| —Motion
Motion d vectors
compensation \L
? +
- Frame
Motion Decoded
estimation DIET Ly new frame

F1GURE 3: Basic architecture of an MPEG encoder.

Note that for the ME process, reference frames that are used
are reduced in quality due to the quantization step. This
limits the accuracy of the ME. We will exploit this property
in the scalable ME.

3. SCALABILITY OVERVIEW OF MPEG FUNCTIONS

Our first step towards scalable MPEG encoding is to re-
design the individual MPEG core functions (modules) and
make them scalable themselves. In this paper, we concentrate
mainly on scalability techniques on the algorithmic level, be-
cause these techniques can be applied to various sorts of
hardware architectures. After the selection of an architecture,
further optimizations on the core functions can be made. An
example to exploit features of a reduced instruction set com-
puter (RISC) processor for obtaining an efficient implemen-
tation of an MPEG coder is given in [2].

In the following, the scalability potentials of the modules
shown in Figure 3 are described. Further enhancements that
can be made by exploiting the modules interconnections are
described in Section 5. Note that we concentrate on the en-
coder and do not consider pre- or postprocessing steps of the
video signal, because such steps can be performed indepen-
dently from the encoding process. For this reason, the input
video sequence is modified neither in resolution nor in frame
rate for achieving reduced complexity.

GOP structure

This module defines the types of the input frames to form
group of pictures (GOP) structures. The structure can be
either fixed (all GOPs have the same structure) or dynamic
(content-dependent definition of frame types). The compu-
tational complexity required to define fixed GOP structures
is negligible. Defining a dynamic GOP structure has a higher
computational complexity, for example for analyzing frame
contents. The analysis is used for example to detect scene
changes. The rate distortion ratio can be optimized if a GOP
starts with the frame following the scene change.

Both the fixed and the dynamic definitions of the GOP
structure can control the computational complexity of the
coding process and the bit rate of the coded MPEG stream
with the ratio of I-, P-, and B-frames in the stream. In gen-
eral, I-frames require less computation than P- or B-frames,

because no ME and MC is involved in the processing of I-
frames. The ME, which requires significant computational
effort, is performed for each temporal reference that is used.
For this reason, P-frames (having one temporal reference)
are normally half as complex in terms of computations as
B-frames (having two temporal references). It can be con-
sidered further that no inverse DCT and quantization is re-
quired for B-frames. For the bit rate, the relation is the other
way around since each temporal reference generally reduces
the amount of information (frame contents or changes) that
has to be coded.

The chosen GOP structure has influence on the memory
consumption of the encoder as well, because frames must
be kept in memory until a reference frame (I- or P-frame)
is processed. Besides defining I-, P-, and B-frames, input
frames can be skipped and thus are not further processed
while saving memory, computations, and bit rates.

The named options are not further worked out, because
they can be easily applied on every MPEG encoder without
the need to change the encoder modules themselves. A dy-
namic GOP structure would require additional functionality
through, for example, scene change detection. The experi-
ments that are made for this paper are based on a fixed GOP
structure.

Discrete cosine transformation

The DCT transforms image blocks to the transform domain
to obtain a powerful compression. In conjunction with the
inverse DCT (IDCT), a perfect reconstruction of the im-
age blocks is achieved while spending fewer bits for cod-
ing the blocks than not using the transformation. The ac-
curacy of the DCT computation can be lowered by reduc-
ing the number of bits that is used for intermediate results.
In principle, reduced accuracy can scale up the computation
speed because several operations can be executed in paral-
lel (e.g., two 8-bit operations instead of one 16-bit opera-
tion). Furthermore, the silicon area needed in hardware de-
sign is scaled down with reduced accuracy due to simpler
hardware components (e.g., an 8-bit adder instead of a 16-
bit adder). These two possibilities are not further worked
out because they are not algorithm-specific optimizations
and therefore are suitable for only a few hardware architec-
tures.

Complexity Scalable MPEG Encoding for Mobile

239

An algorithm-specific optimization that can be applied
on any hardware architecture is to scale down the number
of DCT coefficients that are computed. A new technique,
considering the baseline DCT algorithm and a correspond-
ing architecture for finding a specific computation order of
the coefficients, is described in Section 4.1. The computation
order maximizes the number of computed coefficients for a
given limited amount of computation resources.

Another approach for scalable DCT computation pre-
dicts at several stages during the computation whether a
group of DCT coefficients are zero after quantization and
their computation can be stopped or not [3].

Inverse discrete cosine transformation

The IDCT transforms the DCT coefficients back to the spa-
tial domain in order to reconstruct the reference frames for
the (ME) and (MC) process. The previous discussion on scal-
ability options for the DCT also applies to the IDCT. How-
ever, it should be noted that a scaled IDCT should have the
same result as a perfect IDCT in order to be compatible with
the MPEG standard. Otherwise, the decoder (at the receiver
side) should ensure that it uses the same scaled IDCT as in
the encoder in order to avoid error drift in the decoded video
sequence.

Previous work on scalability of the IDCT at the receiver
side exists [4, 5], where a simple subset of the received DCT
coefficients is decoded. This has not been elaborated because
in this paper, we concentrate on the encoder side.

Quantization

The quantization reduces the accuracy of the DCT coetti-
cients and is therefore able to remove or weight frequencies
of lower importance for achieving a higher compression ra-
tio. Compared to the DCT where data dependencies during
the computation of 64 coefficients are exploited, the quan-
tization processes single coefficients where intermediate re-
sults cannot be reused for the computation of other coef-
ficients. Nevertheless, computing the quantization involves
rounding that can be simplified or left out for scaling up the
processing speed. This possibility has not been worked out
further.

Instead, we exploit scalability for the quantization based
on the scaled DCT by preselecting coefficients for the com-
putation such that coefficients that are not computed by the
DCT are not further processed.

Inverse quantization

The inverse quantization restores the quantized coefficient
values to the regular amplitude range prior to computing the
IDCT. Like the IDCT, the inverse quantization requires suf-
ficient accuracy to be compatible with the MPEG standard.
Otherwise, the decoder at the receiver should ensure that it
avoids error drift.

Motion estimation

The ME computes motion vector (MV) fields to indicate
block displacements in a video sequence. A picture block

(macroblock) is then coded with reference to a block in a pre-
viously decoded frame (the prediction) and the difference to
this prediction. The ME contains several scalability options.
In principle, any good state-of-the-art fast ME algorithm of-
fers an important step in creating a scaled algorithm. Com-
pared to full search, the computing complexity is much lower
(significantly less MV candidates are evaluated) while accept-
ing some loss in the frame prediction quality. Taking the fast
ME algorithms as references, a further increase of the pro-
cessing speed is obtained by simplifying the applied set of
motion vectors (MVs).

Besides reducing the number of vector candidates, the
displacement error measurement (usually the sum of abso-
lute pixel differences (SAD)) can be simplified (thus increase
computation speed) by reducing the number of pixel values
(e.g., via subsampling) that are used to compute the SAD.
Furthermore, the accuracy of the SAD computation can be
reduced to be able to execute more than one operation in
parallel. As described for the DCT, this technique is suitable
for a few hardware architectures only.

Up to this point, we have assumed that ME is performed
for each macroblock. However, the number of processed
macroblocks can be reduced also, similar to the pixel count
for the SAD computation. MVs for omitted macroblocks
are then approximated from neighboring macroblocks. This
technique can be used for concentrating the computing ef-
fort on areas in a frame, where the block contents lead to a
better estimation of the motion when spending more com-
puting power [6].

A new technique to perform the ME in three stages by
exploiting the opportunities of high-quality frame-by-frame
ME is presented in Section 4.3. In this technique, we used
several of the above-mentioned options and we deviate from
the conventional MPEG processing order.

Motion compensation

The MC uses the MV fields from the ME and generates the
frame prediction. The difference between this prediction and
the original input frame is then forwarded to the DCT. Like
the IDCT and the inverse quantization, the MC requires suf-
ficient accuracy for satisfying the MPEG standard. Other-
wise, the decoder (at the receiver) should ensure using the
same scaled MC as in the encoder to avoid error drift.

Variable-length coding (VLC)

The VLC generates the coded video stream as defined in the
MPEG standard. Optimization of the output can be made
here, like ensuring a predefined bit rate. The computational
effort is scalable with the number of nonzero coefficients that
remain after quantization.

4. SCALABLE FUNCTIONS FOR MPEG ENCODING

Computationally expensive corner stones of an MPEG en-
coder are the DCT and the ME. Both are addressed in the
scalable form in Section 4.1 on the scalable DCT [7] and in
Section 4.3 on the scalable ME [8], respectively. Additionally,

240

EURASIP Journal on Applied Signal Processing

Section 4.2 presents a scalable block classification algorithm,
which is designed to support and integrate the scalable DCT
and ME on the system level (see Section 5).

4.1. Discrete Cosine Transformation
4.1.1.

The DCT transforms the luminance and chrominance values
of small square blocks of an image to the transform domain.
Afterwards, all coefficients are quantized and coded. For a
given N X N image block represented as a two-dimensional
(2D) data matrix {X[i, j]}, where i,j = 0,1,...,N — 1, the
2D DCT matrix of the coefficients {Y[m,n]} with m,n =
0,1,...,N — 1 is computed by

Basics

Y[m,n] = iz * u(m) * u(n)
NI Qi+1)ymx*xmn
*gg[z]*mT (1)
Qj+n*xm
* cos N ,
where u(i) = 1//2if i = 0 and u(i) = 1 elsewhere. Equa-

tion (1) can be simplified by ignoring the constant factors
for convenience and defining a square cosine matrix K by

B Qp+l)g*m
Ky[p,q] = cos N (2)
so that (1) can be rewritten as
Y = Ky * X * Kj. (3)

Equation (3) shows that the 2D DCT as specified by (1) is
based on two orthogonal 1D DCTs, where Ky * X transforms
the columns of the image block X, and X * K} transforms the
rows. Since the computation of two 1D DCTs is less expensive
than one 2D DCT, state-of-the-art DCT algorithms normally
refer to (3) and concentrate on optimizing a 1D DCT.

4.1.2. Scalability

Our proposed scalable DCT is a novel technique for find-
ing a specific computation order of the DCT coefficients.
The results depend on the applied (fast) DCT algorithm. In
our approach, the DCT algorithm is modified by eliminat-
ing several computations and thus coefficients, thereby en-
abling complexity scalability for the used algorithm. Conse-
quently, the output of the algorithm will have less quality,
but the processing effort of the algorithm is reduced, lead-
ing to a higher computing speed. The key issue is to iden-
tify the computation steps that can be omitted to maximize
the number of coefficients for the best possible video qual-
ity.

Since fast DCT algorithms process video data in differ-
ent ways, the algorithm used for a certain scalable applica-
tion should be analyzed closely as follows. Prior to each com-
putation step, a list of remaining DCT coefficients is sorted

x[1] O O yl1]
x[2] O yl2]
x[3] O yI3]

F1GURE 4: Exemplary butterfly structure for the computation of out-
puts y[-] based on inputs x[-]. The data flow of DCT algorithms
can be visualized using such butterfly diagrams.

such that in the next step, the coefficient is computed having
the lowest computational cost. More formally, the sorted list
L = {l,1,...,IN2} of coefficients [taken from an N x N DCT
satisfies the condition

C(l,) = Il];lln C(lk), VI eL (4)

=1

where C(Iy) is a cost function providing the remaining num-
ber of operations required for the coefficient Iy given the fact
that the coefficients I,,, n < k, already have been computed.
The underlying idea is that some results of previously per-
formed computations can be shared. Thus (4) defines a min-
imum computational effort needed to obtain the next coeffi-
cient.

We give a short example of how the computation order
L is obtained. In Figure 4, a computation with six operation
nodes is shown, where three nodes are intermediate results
(ira1, ira2, and irg3). The complexity of the operations that
are involved for a node can be defined such that they rep-
resent the characteristics (like CPU usage or memory access
costs) of the target architecture. For this example, we assume
that the nodes depicted with filled circles () require one
operation and nodes that are depicted with squares ([J) re-
quire three operations. Then, the outputs (coefficients) y[1],
y[2], and y[3] require 4, 3, and 4 operations, respectively. In
this case, the first coefficient in list L is /; = y[2] because
it requires the least number of operations. Considering that,
with y[2], the shared node ir; has been computed and its in-
termediate result is available, the remaining coefficients y[1]
and y[3] require 3 and 4 operations, respectively. Therefore,

= y[1] and Is = y[3], leading to a computation order
= (2, y[1], y[3]}.

The computation order L can be perceptually optimized
if the subsequent quantization step is considered. The quan-
tizer weighting function emphasizes the use of low-frequency
coefficients in the upper-left corner of the matrix. Therefore,
the cost function C(lx) can be combined with a priority func-
tion to prefer those coefficients.

Note that the computation order L is determined by the
algorithm and the optional applied priority function, and it
can be found in advance. For this reason, no computational

Complexity Scalable MPEG Encoding for Mobile

241

0 1 2 3 4 5 6 7
1 33 9 41 5 44 14 36

17 49 21 57 29 63 31 55
10 37 3 42 11 39 7 48
25 61 26 53 18 51 24 60
6 45 15 34 2 35 16 46
28 59 23 52 19 54 27 62
12 47 8 40 13 43 4 38
20 56 32 64 30 58 22 50

N ke W N~ O

FiGure 5: Computation order of coefficients.

overhead is required for actually computing the scaled DCT.
It is possible, though, to apply different precomputed DCTs
to different blocks employing block classification that indi-
cates which precomputed DCT should perform best with a
classified block (see Section 5.3).

4.1.3. Experiments

For experiments, the fast 2D algorithm given by Cho and
Lee [9], in combination with the Arai-Agui-Nakajima (AAN)
1D algorithm [10], has been used, and this algorithm com-
bination is extended in the following with computational
complexity scalability. Both algorithms were adopted be-
cause their combination provides a highly efficient DCT
computation (104 multiplications and 466 additions). The
results of this experiment presented below are discussed
with the assumption that an addition is equal to one op-
eration and a multiplication is equal to three operations
(in powerful cores, additions and multiplications have equal
weight).

The scalability-optimized computation order in this ex-
periment is shown in Figure 5, where the matrix has been
shaded with different gray levels to mark the first and the
second half of the coefficients in the sorted list. It can be seen
that in this case, the computation order clearly favors hori-
zontal or vertical edges (depending on whether the matrix is
transposed or not).

Figure 6 shows the scalability of our DCT computation
technique using the scalability-optimized computation or-
der, and the zigzag order as reference computation order.
In Figure 6a, it can be seen that the number of coefficients
that are computed with the scalability-optimized computa-
tion order is higher at any computation limit than the zigzag
order. Figure 6b shows the resulting peak signal-to-noise ra-
tio (PSNR) of the first frame from the “Voit” sequence us-
ing both computation orders, where no quantization step is
performed. A 1-5dB improvement in PSNR can be noticed,
depending on the amount of available operations.

Finally, Figure 7 shows two picture pairs (based on zigzag
and scalability-optimized orders preferring horizontal de-
tails) sampled from the “Renata” sequence during differ-
ent stages of the computation (representing low-cost and
medium-cost applications). Perceptive evaluations of our ex-

periments have revealed that the quality improvement of our
technique is the largest between 200 and 600 operations per
block. In this area, the amount of coefficients is still rela-
tively small so that the benefit of having much more coef-
ficients computed than in a zigzag order is fully exploited.
Although the zigzag order yields perceptually important co-
efficients from the beginning, the computed number is sim-
ply too low to show relevant details (e.g., see the background
calendar in the figure).

4.2. Scalable classification of picture blocks

4.2.1. Basics

The conventional MPEG encoding system processes each im-
age block in the same content-independent way. However,
content-dependent processing can be used to optimize the
coding process and output quality, as indicated below.

(i) Block classification is used for quantization to distin-
guish between flat, textured, and mixed blocks [11]
and then apply different quantization factors for these
blocks for optimizing the picture quality at given bit
rate limitations. For example, quantization errors in
textured blocks have a small impact on the perceived
image quality. Blocks containing both flat and textured
parts (mixed blocks) are usually blocks that contain
an edge, where the disturbing ringing effect gets worse
with high quantization factors.

(ii) The ME (see Section 4.3) can take the advantage of
classifying blocks to indicate whether a block has a
structured content or not. The drawback of conven-
tional ME algorithms that do not take the advantage
of block classification is that they spend many compu-
tations on computing MV for, for example, relatively
flat blocks. Unfortunately, despite the effort, such ME
processes yield MVs of poor quality. Employing block
classification, computations can be concentrated on
blocks that may lead to accurate MVs [12].

Of course, in order to be useful, the costs to perform block
classification should be less than the saved computations.
Given the above considerations, in the following, we will
adopt content-dependent adaptivity for coding and motion
processing. The next section explains the content adaptivity
in more detail.

4.2.2. Scalability

We perform a simple block classification based on detecting
horizontal and vertical transitions (edges) for two reasons.

(i) From the scalable DCT, computation orders are avail-
able that prefer coefficients representing horizontal or
vertical edges. In combination with a classification, the
computation order that fits best for the block content
can be chosen.

(i1) The ME can be provided with the information whether
it is more likely to find a good MV in up-down or
left-right search directions. Since ME will find equally

242

EURASIP Journal on Applied Signal Processing

70
{

60 /_/_7
/

50 7

40 Scalability-optimized \ —

30

20 HJ Zigza j

0 T gag
/ ,—l_",_'_'_r,

0 100 200 300 400 500 600 700 800
Operation count per processed (8 x 8)-DCT block

Number of calculated coefficients

(a)

50 —
45 ~‘ Floture
voit
40 J—
35 rr —
Scalability-optimized I,_f'y
30
)5 N [f
20 _/—,;—_J_,—

| Zigzag

15
10

SNR (dB) of a complete frame

0 160 260 360 460 560 660 7(')0 800
Operation count per processed (8 x 8)-DCT block

(®)

FiGure 6: Comparison of the scalability-optimized computation order with the zigzag order. At limited computation resources, more DCT
coefficients are computed (a) and a higher PSNR is gained (b) with the scalability-optimized order than with the zigzag order.

(c)

297 (3)

111521 (8)

FIGURE 7: A video frame from the “Renata” sequence coded employing the scalability-optimized order (a) and (c), and the zigzag order
(b) and (d). Index m(n) means m operations are performed for n coefficients. The scalability-optimized computation order results in an

improved quality (compare sharpness and readability).

good MVs for every position along such an edge
(where a displacement in this direction does not in-
troduce large displacement errors), searching for MVs
across this edge will rapidly reduce the displacement
error and thus lead to an appropriate MV. Horizon-
tal and vertical edges can be detected by significant
changes of pixel values in vertical and horizontal di-
rections, respectively.

The edge detecting algorithm we use is in principle based
on continuously summing up pixel differences along rows or
columns and counting how often the sum exceeds a certain
threshold. Let p;, withi = 0,1,..., 15, be the pixel values in a
row or column of a macroblock (size 16 X 16). We then define
a range where pixel divergence (d;) is considered as noise if
|d;| is below a threshold t. The pixel divergence is defined by
Table 1.

Complexity Scalable MPEG Encoding for Mobile

243

(a)

(b)

FiGgure 8: Visualization of block classification using a picture of the “table tennis” sequence. The left (right) picture shows blocks where
horizontal (vertical) edges are detected. Blocks that are visible in both pictures belong to the class “diagonal/structured,” while blocks that

are blanked out in both pictures are considered as “flat.”

TaBLE 1: Definition of pixel divergence, where the divergence is con-
sidered as noise if it is below a certain threshold.

Condition Pixel divergence d;
i=0 0
(i=1,...,15) A (ldi.1] = t) dioi + (pi — pi1)
(i=1,...,15) A(ldiiil >t) dioy + (pi— pic1) —sgn(di1) * ¢

The area preceding the edge yields a level in the inter-
val [—t;+t]. The middle of this interval is at d = 0, which is
modified by adding +t in the case that |d| exceeds the inter-
val around zero (start of the edge). This mechanism will fol-
low the edges and prevent noise from being counted as edges.
The counter ¢ as defined below indicates how often the actual
interval was exceeded:

510 if di <t
=Y |di 5)
i-1 |1 if ’d,| > 1.

The occurrence of an edge is defined by the resulting value of
¢ from (5).

This edge detecting algorithm is scalable by selecting
the threshold ¢, the number of rows and columns that are
considered for the classification, and a typical value for c.
Experimental evidence has shown that in spite of the com-
plexity scalability of this classification algorithm, the evalu-
ation of a single row or column in the middle of a picture
block was found sufficient for a rather good classification.

4.2.3. Experiments

Figure 8 shows the result of an example to classify image
blocks of size 16 X 16 pixels (macroblock size). For this ex-

periment, a threshold of t = 25 was used. We considered a
block to be classified as a “horizontal edge” if ¢ > 2 holds
for the central column computation and as a “vertical edge”
if ¢ = 2 holds for the row computation. Obviously, we can
derive two extra classes: “flat” (for all blocks that do not be-
long to the CLASS “horizontal edge” NOR the class “verti-
cal edge”) and diagonal/structured (for blocks that belong to
both classes horizontal edge and vertical edge).

The visual results of Figure 8 are just an example of a
more elaborate set of sequences with which experiments were
conducted. The results showed clearly that the algorithm
is sufficiently capable of classifying the blocks for further
content-adaptive processing.

4.3. Motion estimation

4.3.1. Basics

The ME process in MPEG systems divides each frame into
rectangular macroblocks (16 X 16 pixels each) and computes
MVs per block. An MV signifies the displacement of the
block (in the x-y pixel plane) with respect to a reference
image. For each block, a number of candidate MVs are ex-
amined. For each candidate, the block evaluated in the cur-
rent image is compared with the corresponding block fetched
from the reference image displaced by the MV. After testing
all candidates, the one with the best match is selected. This
match is done on basis of the SAD between the current block
and the displaced block. The collection of MVs for a frame
forms an MV field.

State-of-the-art ME algorithms [13, 14, 15] normally
concentrate on reducing the number of vector candidates for
a single-sided ME between two frames, independent of the
frame distance. The problem of these algorithms is that a
higher frame distance hampers accurate ME.

244 EURASIP Journal on Applied Signal Processing
........ la 20 el 3a O m‘ e da
-------- r . o \y r
....... " s e T
o e
b la mv fo_1
1b mv fo—o
|_> 2a mv fo_3
2b A mvhios
|_> 3a mvfr-3
3b —
|_) 4a 4a 1
4b b |

FIGURE 9: An overview of the new scalable ME process. Vector fields are computed for successive frames (left) and stored in memory. After
defining the GOP structure, an approximation is computed (middle) for the vector fields needed for MPEG coding (right). Note that for this
example it is assumed that the approximations are performed after the exemplary GOP structure is defined (which enables dynamic GOP
structures), therefore the vector field (1b) is computed but not used afterwards. With predefined GOP structures, the computation of (1b) is

not necessary.

4.3.2. Scalability

The scalable ME is designed such that it takes the advan-
tage of the intrinsically high prediction quality of ME be-
tween successive frames (smallest temporal distance), and
thereby works not only for the typical (predetermined and
fixed) MPEG GOP structures, but also for more general
cases. This feature enables on-the-fly selection of GOP struc-
tures depending on the video content (e.g., detected scene
changes, significant changes of motion, etc.). Furthermore,
we introduce a new technique for generating MV fields from
other vector fields by multitemporal approximation (not to
be confused with other forms of multitemporal ME as found
in H.264). These new techniques give more flexibility for a
scalable MPEG encoding process.

The estimation process is split up into three stages as fol-
lows.

Stage 1 Prior to defining a GOP structure, we perform a sim-
ple recursive motion estimation (RME) [16] for every
received frame to compute the forward and backward
MYV field between the received frame and its predeces-
sor (see the left-hand side of Figure 9). The computa-
tion of MV fields can be omitted for reducing compu-
tational effort and memory.

Stage 2 After defining a GOP structure, all the vector fields
required for MPEG encoding are generated through
multitemporal approximations by summing up vec-
tor fields from the previous stage. Examples are given
in the middle of Figure 9, for example, vector field
(mvfo—3) = (1a) + (2a) + (3a). Assume that the vector
field (2a) has not been computed in Stage 1 (due to a
chosen scalability setting), one possibility to approxi-
mate (mv fo—3) is (mv fo—3) = 2 x (1la) + (3a).

Stage 3 For final MPEG ME in the encoder, the computed
approximated vector fields from the previous stage are

used as an input. Beforehand, an optional refinement
of the approximations can be performed with a second
iteration of simple RME.

We have employed simple RME as a basis for intro-
ducing scalability because it offers a good quality for time-
consecutive frames at low computing complexity.

The presented three-stage ME algorithm differs from
known multistep ME algorithms like in [17], where initially
estimated MPEG vector fields are processed for a second
time. Firstly, we do not have to deal with an increasing tem-
poral distance when deriving MV fields in Stage 1. Secondly,
we process the vector fields in a display order having the ad-
vantage of frame-by-frame ME, and thirdly, our algorithm
provides scalability. The possibility of scaling vector fields,
which is part of our multitemporal predictions, is mentioned
in [17] but not further exploited. Our algorithm makes ex-
plicit use of this feature, which is a fourth difference. In
the sequel, we explain important system aspects of our al-
gorithm.

Figure 10 shows the architecture of the three-stage ME al-
gorithm embedded in an MPEG encoder. With this architec-
ture, the initial ME process in Stage 1 results in a high-quality
prediction because original frames without quantization er-
rors are used. The computed MV fields can be used in Stage
2 to optimize the GOP structures. The optional refinement
of the vector fields in Stage 3 is intended for high-quality ap-
plications to reach the quality of a conventional MPEG ME
algorithm.

The main advantage of the proposed architecture is that
it enables a broad scalability range of resource usage and
achievable picture quality in the MPEG encoding process.
Note that a bidirectional ME (usage of B-frames) can be
realized at the same cost of a single-directional ME (usage
of P-frames only) when properly scaling the computational

Complexity Scalable MPEG Encoding for Mobile 245
Rate control
___________ ~ % Reordered ~ Frame { :
Video Frame GOP ! L0 frames difference MPEG
; memor - i
input X structure [Tppp! : Y A DCT FQuantlzatlon—){ VLC output
JCTRL o JTip
Generate T) : % b DT K Inverse M s
o0 = . .
[et S s MPEGMV| &| £ ’g ''''''''''' Motion quantization Ve(ég)(;lg
i 5o Frame S L - : compensation
: g memory T n
I J VA (T2 T T i
! Motion A] Motion Stage 31 nfergln(;e Decoded
1 estimation MV i"|estimation : Y new frame
Sommm - memory it
FiGure 10: Architecture of an MPEG encoder with the new scalable three-stage motion estimation.
31 A 27 0.170
| A 26 x 10.160
23 A /o, N o /l/"-o.wofg
— WY Y VV\’\A | 253 N o 10140 2,
5251 A T " <22 s = 0.130 &
= = LS 130 8
Qzﬁ 23 hi i \AVAV /' lbb\.w.lnvﬂ% % 21 , & = 10.120 2
20 =
£ 21 "\(/J /M } o WW] — 2 10.110 @
A 4
19 U VY U N i 18 [=] 0100
Lo U] el WA L] 288 gs e
17 = 5 A S ¥ O N 4 0 O ¥ NN~ 0O
15 A B <— Exemplary regions with slow (A) or fast (B) motion. =T B Rt B SRS
1 27 54 81 107 134 161 187 214 241 267 294 Complexity of motion estimation process
Frame number -# SNR B- and P-frames
A Bit rate
0O 200% [29%
O 100% 14% FIGURE 12: Average PSNR of motion-compensated P- and B-frames
O 57% 0 0% and the resulting bit rate of the encoded “Stefan” stream at differ-

FIGURE 11: PSNR of motion-compensated B-frames of the “Ste-
fan” sequence (tennis scene) at different computational efforts—
P-frames are not shown for the sake of clarity (N = 16, M = 4).
The percentage shows the different computational effort that re-
sults from omitting the computation of vector fields in Stage 1 or
performing an additional refinement in Stage 3.

complexity, which makes it affordable for mobile devices that
up till now rarely make use of B-frames. A further optimiza-
tion is seen (but not worked out) in limiting the ME process
of Stages 1 and 3 to significant parts of a vector field in order
to further reduce the computational effort and memory.

4.3.3. Experiments

To demonstrate the flexibility and scalability of the three-
stage ME technique, we conducted an initial experiment us-
ing the “Stefan” sequence (tennis scene). A GOP size of N =
16 and M = 4 (thus “IBBBP” structure) was used, com-
bined with a simple pixel-based search. In this experiment,
the scaling of the computational complexity is introduced by
gradually increasing the vector field computations in Stage
1 and Stage 3. The results of this experiment are shown in
Figure 11. The area in the figure with the white background
shows the scalability of the quality range that results from
downscaling the amount of computed MV fields. Each vector

ent computational efforts. A lower average PSNR results in a higher
differential signal that must be coded, which leads to a higher bit
rate. The percentage shows the different computational effort that
results from omitting the computation of vector fields in Stage 1 or
performing an additional refinement in Stage 3.

field requires 14% of the effort compared to a 100% simple
RME [16] based on four forward vector fields and three back-
ward vector fields when going from one to the next reference
frame. If all vector fields are computed and the refinement
Stage 3 is performed, the computational effort is 200% (not
optimized).

The average PSNR of the motion-compensated P- and B-
frames (taken after MC and before computing the differential
signal) of this experiment and the resulting bit rate of the en-
coded MPEG stream are shown in Figure 12. Note that for
comparison purpose, no bit rate control is performed dur-
ing encoding and therefore, the output quality of the MPEG
streams for all complexity levels is equal. The quantization
factors, gscale, we have used are 12 for I-frames and 8 for
P- and B-frames. For a full quality comparison (200%), we
consider a full-search block matching with a search window
of 32x 32 pixels. The new ME technique slightly outperforms
this full search by 0.36 dB PSNR measured from the motion-
compensated P- and B-frames of this experiment (25.16 dB
instead of 24.80dB). The bit rate of the complete MPEG

246

EURASIP Journal on Applied Signal Processing

TABLE 2: Average luminance PSNR of the motion-compensated P- and B-frames for sequences “Stefan” (A), “Renata” (B), and “Teeny” (C)
with different ME algorithms. The second column shows the average number of SAD-based vector evaluations per MV (based on (A)).

Algorithm Tests/MV (A) (B) (@)

2D FS (32 x 32) 926.2 24.80 29.62 26.78
NTSS [14] 25.2 22.55 27.41 24.22
Diamond [15] 21.9 22.46 27.34 26.10
Simple RME [16] 16.0 21.46 27.08 23.89
Three-stage ME 200% (employing [16]) 37.1 25.16 29.24 26.92
Three-stage ME 100% (employing [16]) 20.1 23.52 27.45 24.74

sequence is 0.012 bits per pixel (bpp) lower when using the
new technique (0.096 bpp instead of 0.108 bpp). When re-
ducing the computational effort to 57% of a single-pass sim-
ple RME, an increase of the bit rate by 0.013 bpp compared
to the 32 x 32 full search (FS) is observed.

Further comparisons are made with the scalable three-
stage ME running at full and “normal” quality. Table 2 shows
the average PSNR of the motion-compensated P- and B-
frames for three different video sequences and ME algo-
rithms with the same conditions as described above (same
N, M, etc.). The first data column (tests per MV) shows the
average number of vector tests that are performed per mac-
roblock in the “Stefan” sequence to indicate the performance
of the algorithms. Note that MV tests pointing outside the
picture are not counted, which results in numbers that are
lower than the nominal values (e.g., 926.2 instead of 1024 for
32 x 32 FS). The simple RME algorithm results in the low-
est quality here because only three vector field computations
out of 4 % (4 +3) = 28 can use temporal vector candidates as
prediction. However, our new three-stage ME that uses this
simple RME performs, comparable to FS, at 200% complex-
ity, and at 100%, it is comparable to the other fast ME algo-
rithms.

The results in Table 2 are based on the simple RME al-
gorithm from [16]. A modified algorithm has been found
later [18] that forms an improved replacement for the sim-
ple RME. This modified algorithm is based on the block
classification as presented in Section 4.2. This algorithm was
used for further experiments and is summarized as follows.
Prior to estimating the motion between two frames, the mac-
roblocks inside a frame are classified into areas having hor-
izontal, vertical edges, or no edges. The classification is ex-
ploited to minimize the number of MV evaluations for each
macroblock by, for example, concentrating vector evalua-
tions across the detected edge. A novelty in the algorithm is
a distribution of good MVs to other macroblocks, even al-
ready processed ones, which differs from other known recur-
sive ME techniques that reuse MV from previously processed
blocks.

5. SYSTEM ENHANCEMENTS AND EXPERIMENTS

The key approach to optimize a system is to reuse and com-
bine data that is generated by the system modules in order to
control other modules. In the following, we present several

approaches, where data can be reused or generated at a low
cost in a coding system for an optimization purpose.

5.1. Experimental environment

The scalable modules for the (I)DCT, (de)quantization, ME,
and VLC are integrated into an MPEG encoder framework,
where the scaling of the IDCT and the (de)quantization is
effected from the scalable DCT (see Section 5.2). In order
to visualize the obtained scalability of the computations, the
scalable modules are executed at different parameter settings,
leading to effectively varying the number of DCT coefficients
and MV candidates evaluated. When evaluating the system
complexity, the two different numbers have to be combined
into a joint measure. In the following, the elapsed execu-
tion time of the encoder needed to code a video sequence
is used as a basis for comparison. Although this time param-
eter highly depends on the underlying architecture and on
the programming and operating system, it reflects the com-
plexity of the system due to the high amount of operations
involved.

The experiments were conducted on a Pentium-III Linux
system running at 733 MHz. In order to be able to measure
the execution time of single functions being part of the com-
plete encoder execution, it was necessary to compile the C++
program of the encoder without compiler optimizations. Ad-
ditionally, it should be noted that the experimental C++ code
was not optimized for fast execution or usage of architecture-
specific instructions (e.g., MMX). For these reasons, the en-
coder and its measured execution times cannot be compared
with existing software-based MPEG encoders. However, we
have ensured that the measured change in the execution time
results from the scalability of the modules, as we did not
change the programming style, code structures, or common
coding parameters.

5.2. Effect of scalable DCT

The fact that a scaled DCT computes only a subset S of all
possible DCT coefficients C can be used for the optimization
of other modules. The subset S is known before the subse-
quent quantization, dequantization, VLC, and IDCT mod-
ules. Of course, coefficients that are not computed are set
to zero and therefore they do not have to be processed fur-
ther in any of these modules. Note that because the subset
S is known in advance, no additional tests are performed to

Complexity Scalable MPEG Encoding for Mobile 247
Proportion of execution time when using 64 coefficients Proportion of execution time when using 64 coefficients
21% 25% 36% 18% 100% 12% 6% 9% 11% 100%
DCT ---- Quant ------ VLC Other —x— System DCT/IDCT - - - Quant/dequant ----VLC Other —%- System
L Q
g g
2 100% — = 100% —
E s0u RS € sou T
o= (] = o= 0 .,
E N 2 S =~ =~ S
~ < S
3 60% tx\\ — g 60% k=
: o g ==
E 40% Se \‘/\\X E, 40% ‘\._\. —
Té 20% — - Té 20% —
2 0% T T T T T T T 2 0% T T T T T T T
64 56 48 40 32 24 16 8 64 56 48 40 32 24 16 8

Number of coefficients calculated

(a) (1,1)-GOP (I-frames only).

Number of coefficients calculated

(b) (12,4)-GOP (IBBBP structure).

FiGure 13: Complexity reduction of the encoder modules relative to the full DCT processing, with (1,1)-GOPs (a) and with (12,4)-GOPs)
(b). Note that in this case, 62% of the coding time is spent in (b) for ME and MC (not shown for convenience). For visualization of the
complexity reduction, we normalize the execution time for each module to 100% for full processing.

detect zero coefficients. This saves computations as follows.

(i) The quantization and dequantization require a fixed
amount of operations per processed intra- or interco-
efficient. Thus, each skipped coefficient ¢ € C\ S saves
1/64 of the total complexity of the quantization and
dequantization modules.

(ii) The VLC processes the DCT coefficients in a zigzag or
an alternate order and generates run-value pairs for
coefficients that are unequal to zero. “Run” indicates
the number of zero coefficients that are skipped before
reaching a nonzero coefficient. The usage of a scaled
DCT increases the probability that zero coefficients oc-
cur, for which no computations are spent.

(iii) The IDCT can be simplified by knowing which coef-
ficients are zero. It is obvious that, for example, each
multiplication with a known factor of 0 and additions
with a known addend of 0 can be skipped.

The execution time of the modules when coding the “Stefan”
sequence and scaling the modules that process coefficients
is visualized in Figure 13. The category “other” is used for
functions that are not exclusively used by the scaled modules.
Figure 13a shows the results of an experiment, where the se-
quence was coded with I-frames only. Similar results are ob-
served in Figure 13b from another experiment, for which P-
and B-frames are included. To remove the effect of quanti-
zation, the experiments were performed with gscale = 1. In
this way, the figures show results that are less dependent on
the coded video content.

The measured PSNR of the scalable encoder running
at full quality is 46.5dB for Figure 13a and 48.16dB for
Figure 13b. When the number of computed coefficients is
gradually reduced from 64 to 8, the PSNR drops gradually
to 21.4dB Figure 13a, respectively, 21.81 dB in Figure 13b.
In Figures 13a and 13b, the quality gradually reduces from
“no noticeable differences” down to “severe blockiness.” In
Figure 13b, the curve for the ME module is not shown for

convenient because the ME (in this experiment, we used dia-
mond search ME [15]) is not affected from processing a dif-
ferent number of DCT coefficients.

5.3. Selective DCT computation based on
block classification

The block classification introduced in Section 4.2 is used to
enhance the output quality of the scaled DCT by using differ-
ent computation orders for blocks in different classes. A sim-
ple experiment indicates the benefit in quality improvement.
In the experiment, we computed the average values of DCT
coefficients when coding the “table tennis” sequence with I-
frames only. Each DCT block is taken after quantization with
gscale = 1. Figure 14 shows the statistic for blocks that are
classified as having a horizontal (left graph) or vertical (right
graph) edge only. It can be seen that the classification leads
to a frequency concentration in the DCT coefficient matrix
in the first column, respectively, row.

We found that the DCT algorithm of Arai et al. [10] can
be used best for blocks with horizontal or vertical edges,
while background blocks have a better quality impression
when using the algorithm by Cho and Lee [9]. The exper-
iment made for Figure 15 shows the effect of the two algo-
rithms on the table edges ([10] is better) and the background
([9] is better). In both cases, the computation orders de-
signed for preferring horizontal edges are used. The compu-
tation limit was set to 256 operations, leading to 9 computed
coefficients for [10] and 11 for [9], respectively. The coeffi-
cients that are computed are marked in the corresponding
DCT matrix. It can be seen that [10] covers all main vertical
frequencies, while [9] covers a mixture of high and low ver-
tical and horizontal frequencies. The resulting overall PSNR
are 26.58 dB and 24.32 dB, respectively.

Figure 16 shows the effect of adaptive DCT computation
based on classification. Almost all of the background blocks
were classified as flat blocks and therefore, ChoLee was cho-
sen for these blocks. For convenient, both algorithms were set

248

EURASIP Journal on Applied Signal Processing

Class “horizontal”

140

120

100

80

60

40

20

Class “vertical”

FIGURE 14: Statistics of the average absolute values of the DCT coefficients taken after quantization with gscale = 1. Here, the “table tennis”
sequence was coded with I-frames only. The left (right) graph shows the statistic for blocks classified as having horizontal (vertical) edges.

1 AR BAJ 1

11 n_ﬂ)um!

JUNICIR IR]

Arai-Agui-Nakajima (AAN)

()

L1

B BRIl LR Ru

FiGure 15: Example of scaled AAN-DCT (a) and ChoLee-DCT (b) at 256 operations. AAN fits better for horizontal edges, while ChoLee has

better results for the background.

to compute 11 coefficients. Blocks with both detected hori-
zontal and vertical edges are treated as blocks having hori-
zontal edges only because an optimized computation order
for such blocks is not yet defined. The resulting PSNR is
26.91dB.

5.4. Dynamic interframe DCT coding

Besides intraframe coding, the DCT computation on frame
differences (for interframe coding) occurs more often than
intraframe coding (N — 1 times for (N, M) GOPs). For this
reason, we look more closely to interframe DCT coding,
where we discovered a special phenomenon from the scal-
able DCT. It was found that the DCT coded frame differences
show temporal fluctuations in frequency content. The tem-
poral fluctuation is caused by the motion in the video con-
tent combined with the special selection function of the co-
efficients computed in our scalable DCT. Due to the motion,
the energy in the coefficients shifts over the selection pattern

so that the quality gradually increases over time. Figure 17
shows this effect from an experiment when coding the “Ste-
fan” sequence with IPP frames (GOP structure (GOP size N,
IP distance M) = (12,1)) while limiting the computation
to 32 coefficients. The camera movement in the shown se-
quence is panning to the right. It can be seen for example
that the artifacts around text decrease over time.

The aforementioned phenomenon was mainly found in
sequences containing not too much motion. The described
effect leads to the idea of temporal data partitioning using a
cyclical sequence of several scalable DCTs with different co-
efficient selection functions. The complete cycle would com-
pute each coefficient at least once. Temporal data partition-
ing means that the computational complexity of the DCT
computation is spread over time, thereby reducing the av-
erage complexity of the DCT computation (per block) at
the expense of obtaining delayed quality obtainment. Using
this technique, picture blocks having a static content (blocks

Complexity Scalable MPEG Encoding for Mobile

249

FiGure 16: Both DCT algorithms were used to code this frame. Af-
ter block classification, the ChoLee-DCT was used to code blocks
where no edges were detected and the AAN-DCT for blocks with
detected edges.

FIGURE 17: Visualization of a phenomenon from the scalable DCT,
leading to a gradual quality increase over time.

having zero motion like nonmoving background) and there-
fore having no temporal fluctuations in their frequency con-
tent will obtain the same result as a nonpartitioned DCT
computation after full computation of the partitioned DCT.

Based on the idea of temporal data partitioning, we de-
fine N subsets s; (with i = 0,...,N — 1) of coefficients such
that

N-1
U Si = S, (6)
i=0

where the set S contains all the 64 DCT coefficients. The sub-
sets s; are used to build up functions f; that compute a scaled
DCT for the coefficients in s;. The functions f; are applied to
blocks with static contents in cyclical sequence (one per in-
tercoded frame). After N intercoded frames, each coefficient
for these blocks is computed at least once.

We set up an experiment using the “table tennis” se-
quence as follows in order to measure the effect of dynamic
interframe coding. The computation of the DCT (for in-

FiGure 18: Example of coefficient subsets (marked gray) used for
dynamic interframe DCT coding with a limitation to 32 coefficients
per subset.

2 ’/’M”‘I"\w .
2 N \ "W !\’
AR

22 :

121 41 61 81 101 121 141 161 181 201 221 241 261 281
Frame number
— Dynamic

Horizontal
— I-frames

FIGURE 19: PSNR measures for the coded “table tennis” sequence,
where the DCT computation was scaled to compute 32 coefficients.
Compared to coding I-frames only (medium gray curve), inter DCT
coding results in an improved output quality in case of motion
(light gray curve) and even a higher output quality with dynamic
interframe DCT computation.

traframe coding and interframe coding) was limited to 32
coefficients. The coefficient subsets we used are shown in
Figure 18. Figure 19 shows the improvement in the PSNR
that is achieved with this approach. Three curves are shown
in this figure, plotting the achieved PSNR of the coded
frames. The medium gray curve results from coding all the
frames as I-frames, which we take as a reference in this ex-
periment. The other two curves result from applying a GOP
structure with N = 16 and M = 4. First, all blocks are pro-
cessed with a fixed DCT (light gray curve) computing only
the coefficients as shown in the left subset of Figure 18. It
can be seen that when the content of the sequence changes
due to movement, the PSNR increases. Second, the dynamic
inter-DCT coding technique is applied to the coding pro-
cess, which results in the dark gray curve. The dark gray
curve shows an improvement to the light gray curve in case
of no motion. The comb-like structure of the curve results
from the periodic I-frame occurrence that restarts the quality
buildup. The low periodicity of the quality drop gives a visu-
ally annoying effect that can be solved by computing more

250 EURASIP Journal on Applied Signal Processing
70 % 50 S ——
60 - E 45 1 DCT more
= 50 5 40 A coefficients
o | ME 2 35 I
o
g 40 | ; 30 A / /
§ 30 {MC Z 25
5 (De) quant A~
g 20 {MDCT & 207
& 5 15 -
10 LVLC ::>’ 0 MYV candidates
o s 30 35 40 45 50 55 60 65 70 75

12.53 11.1110.06 8.61 7.78 6.99 549 438 294 1.48 0091 0.42
Average number of MV evaluations per macroblock

FiGure 20: Example of ME scalability for the complete encoder
when using a (12,4)-GOP (“IBBBP” structure) for coding.

coefficients for the I-frames. Although this seems interesting,
this was not further pursued because of limited time.

5.5. Effect of scalable ME

The execution time of the MPEG modules when coding
the “Stefan” sequence and scaling the ME is visualized in
Figure 20. It can be seen that the curve for the ME block
scales linearly with the number of MV evaluations, whereas
the other processing blocks remain constant. The average
number of vector candidates that are evaluated per mac-
roblock by the scalable ME in this experiment is between
0.42 and 12.53. This number is clearly below the achieved
average number of candidates (21.77) when using the di-
amond search [15]. At the same time, we found that our
scalable codec results in a higher quality of the MC frame
(up to 25.22dB PSNR in average) than the diamond search
(22.53 dB PSNR in average), which enables higher compres-
sion ratios (see the next section).

5.6. Combined effect of scalable DCT and scalable ME

In this section, we combine the scalable ME and DCT
in the MPEG encoder and apply the scalability rules for
(de)quantization, IDCT, and VLC, as we have described them
in Section 2. Since the DCT and ME are the main sources for
scalability, we will focus on the tradeoff between MVs and
the number of computed coefficients.

Figure 21 portrays the obtained average PSNR of the
coded “Stefan” sequence (CIF resolution) and Figure 22
shows the achieved bit rate corresponding to Figure 21. The
experiments are performed with a (12,4)-GOP and gscale =
1. Both figures indicate the large design space that is available
with the scalable encoder without quantization and open-
loop control. The horizontally oriented curves refer to a
fixed number of DCT coefficients (e.g., 8,16,24,32,...,64),
whereas vertically oriented curves refer to a fixed number of
MV candidates. A normal codec would compute all the 64
coefficients and would therefore operate on the top horizon-
tal curve of the graph. The figures should be jointly evalu-
ated. Under the above-mentioned measurement conditions,
the potential benefit of the scalable ME is only visible in the

Execution time (s)

FIGURE 21: PSNR results of different configurations for the scalable
MPEG modules.

2.5

DCT more v A
coefficients O_E, S

MV candidates

30 35 40 45 50 55 60 65 70 75
Execution time (s)

FIGURE 22: Obtained bit rates of different configurations for the
scalable modules. The markers refer to points in the design space,
where the same bit rate and quality (not computational complex-
ity) is obtained as resulting from using diamond search (A) or full
search with a 32 X 32 (B) or 64 x 64 (C) search area for ME.

reduction of the bit rate (see Figure 22) since an improved
ME leads to less DCT coefficients for coding the difference
signal after the MC in the MPEG loop.

In Figure 22, it can be seen that the bit rate decreases
when computing more MV candidates (going to the right).
The reduction is only visible when the bit rate is high enough.
For comparison, the markers “A,” “B”, and “C” refer to three
points from the design space. With these markers, the ob-
tained bit rate of the scalable encoder is compared to the en-
coder using another ME algorithm. Marker “A” refers to the
configuration of the encoder using the scalable ME, where
the same bit rate and video quality (not the computational
complexity) are achieved compared to the diamond search.
As mentioned earlier, the diamond search performs 21.77
MV candidates on the average per macroblock. Our scalable
coder operating under the same quality and bit rate combi-
nation as the diamond search in marker “A” results in 10.06
average MV candidates, thus 53.8% less than the diamond
search. Markers “B” and “C” result from using the full-search
ME with a 32 X 32 and 64 X 64 search area, respectively, re-
quiring substantially more vector candidates (1024 and 4096,
respectively). Figure 21 shows a corresponding measurement
with the average PSNR, as the outcome, instead of the bit
rate.

Complexity Scalable MPEG Encoding for Mobile

251

Figures 21 and 22 both present a large design space, but
in practice, this is limited due to the quantization and bit rate
control. Further experiments using quantization and bit rate
control at 1500 kbps for the “Stefan,” “Foreman,” and “ta-
ble tennis” sequence resulted in a quality level range from
roughly 22 dB to 38 dB. As could be expected from inserting
the quantization, the curves moved to lower PSNR (the lower
half of Figure 21) and less computation time is required since
fewer coefficients are computed. It was found that the re-
maining design space is larger for sequences having less mo-
tion.

6. CONCLUSIONS

We have presented techniques for complexity scalable MPEG
encoding that gradually reduce the quality as a function of
limited resources. The techniques involve modifications to
the encoder modules in order to pursue scalable complexity
and/or quality. Special attention has been paid to exploiting
a scalable DCT and ME because they represent two compu-
tational expensive corner stones of MPEG encoding. The in-
troduced new techniques for the scalability of the two func-
tions show considerable savings of computational complex-
ity for video applications having low-quality requirements.
In addition, a scalable block classification technique has been
presented, which is designed to support the scalable process-
ing of the DCT and ME. In the second step, performance
evaluations have been carried out by constructing a com-
plete MPEG encoding system in order to show the design
space that is achieved with the scalability techniques. It has
been shown that even a higher reduction in computational
complexity of the system could be obtained if available data
(e.g., which DCT coefficients are computed during a scal-
able DCT computation) is exploited to optimize other core
functions.

The obtained execution times of the encoder when cod-
ing the “Stefan” sequence as an example for complexity has
been measured. It was found that the overall execution time
of the scalable encoder can be gradually reduced to roughly
50% of its original execution time. At the same time, the
codec provides a wide range of video quality levels (roughly
from 20 dB to 48 dB PSNR in average) and compression ra-
tios (from 0.58 to 2.02 Mbps). Further experiments target-
ing a bit rate of 1500 kbps for the Stefan, Foreman, and table
tennis sequence result in a quality level range from roughly
21.5dB to 38.5dB. Compared with the diamond search ME
from literature which requires 21.77 MV candidates on the
average per macroblock, our scalable coder operating un-
der the same quality and bit rate combination uses 10.06
average MV candidates, thus 53.8% less than the diamond
search.

Another result of our experiments is that the scalable
DCT has an integrated coefficient selection function which
may enable a quality increase during interframe coding. This
phenomenon can lead to an MPEG encoder with a number
of special DCTs with different selection functions, and this
option should be considered for future work. This should

also include different scaling of the DCT for intra- and inter-
frame coding. For scalable ME, future work should examine
the scalability potentials of using various fixed and dynamic
GOP structures, and of concentrating or limiting the ME to
frame parts, whose content (could) have the current viewer
focus.

REFERENCES

[1] C. Hentschel, R. Braspenning, and M. Gabrani, “Scalable al-
gorithms for media processing,” in IEEE International Confer-
ence on Image Processing (ICIP ’01), vol. 3, pp. 342-345, Thes-
saloniki, Greece, October 2001.

[2] R. Prasad and K. Ramkishor, “Efficient implementation of
MPEG-4 video encoder on RISC core,” in IEEE International
Conference on Consumer Electronics, Digest of Technical papers
(ICCE02), pp. 278-279, Los Angeles, Calif, USA, June 2002.

[3] K. Lengwehasatit and A. Ortega, “DCT computation based
on variable complexity fast approximations,” in Proc. IEEE
International Conference of Image Processing (ICIP °98), vol. 3,
pp. 95-99, Chicago, Ill, USA, October 1998.

[4] S.Peng, “Complexity scalable video decoding via IDCT data
pruning,” in International Conference on Consumer Electronics
(ICCE ’01), pp. 74-75, Los Angeles, Calif, USA, June 2001.

[5] Y. Chen, Z. Zhong, T. H. Lan, S. Peng, and K. van Zon, “Reg-
ulated complexity scalable MPEG-2 video decoding for media
processors,” IEEE Trans. Circuits and Systems for Video Tech-
nology, vol. 12, no. 8, pp. 678-687, 2002.

[6] R.Braspenning, G. de Haan, and C. Hentschel, “Complexity
scalable motion estimation,” in Proc. of SPIE: Visual Commu-
nications and Image Processing 2002, vol. 4671, pp. 442—453,
San Jose, Calif, USA, 2002.

[7] S. Mietens, P. H. N. de With, and C. Hentschel, “New DCT
computation technique based on scalable resources,” Journal
of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 34, no. 3, pp. 189-201, 2003.

[8] S. Mietens, P. H. N. de With, and C. Hentschel, “Frame
reordered multi-temporal motion estimation for scalable
MPEG,” in Proc. 23rd International Symposium on Informa-
tion Theory in the Benelux, Louvain-la-Neuve, Belgium, May
2002.

[9] N. Cho and S. Lee, “Fast algorithm and implementation of
2-D discrete cosine transform,” IEEE Trans. Circuits and Sys-
tems, vol. 38, no. 3, pp. 297-305, 1991.

[10] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for
images,” Transactions of the Institute of Electronics, Information
and Communication Engineers, vol. 71, no. 11, pp. 1095-1097,
1988.

[11] D. Farin, N. Mache, and P. H. N. de With, “A software-based
high-quality MPEG-2 encoder employing scene change detec-
tion and adaptive quantization,” IEEE Transactions on Con-
sumer Electronics, vol. 48, no. 4, pp. 887-897, 2002.

[12] T. Kummerow and P. Mohr, Method of determining motion
vectors for the transmission of digital picture information, EPO
496 051, European Patent Application, November 1991.

[13] M. Chen, L. Chen, and T. Chiueh, “One-dimensional full
search motion estimation algorithm for video coding,” IEEE
Trans. Circuits and Systems for Video Technology, vol. 4, no. 5,
pp. 504-509, 1994.

[14] R. Li, B. Zeng, and M. Liou, “A new three-step search algo-
rithm for block motion estimation,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 4, no. 4, pp. 438—442, 1994.

[15] J. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A
novel unrestricted center-biased diamond search algorithm
for block motion estimation,” IEEE Trans. Circuits and Sys-
tems for Video Technology, vol. 8, no. 4, pp. 369-377, 1998.

252

EURASIP Journal on Applied Signal Processing

[16] P.N. H. de With, “A simple recursive motion estimation tech-
nique for compression of HDTV signals,” in IEE 4th Interna-
tional Conference on Image Processing and Its Applications (IPA
’92), pp. 417-420, Maastricht, The Netherlands, April 1992.

[17] FE. Rovati, D. Pau, E. Piccinelli, L. Pezzoni, and J. M. Bard, “An
innovative, high quality and search window independent mo-
tion estimation algorithm and architecture for MPEG-2 en-
coding,” IEEE Transactions on Consumer Electronics, vol. 46,
no. 3, pp. 697-705, 2000.

[18] S. Mietens, P. H. N. de With, and C. Hentschel, “Com-
putational complexity scalable motion estimation for mobile
MPEG encoding,” IEEE Transactions on Consumer Electronics,
2002/2003.

Stephan Mietens was born in Frankfurt
(Main), Germany in 1972. He graduated in
Computer Science from the Technical Uni-
versity of Darmstadt, Germany, in 1998 on
the topic of “asynchronous VLSI design.”
Subsequently, he joined the University of
Mannheim, where he started his research on
“flexible video coding and architectures” in
cooperation with Philips Research Labora-
tories in Eindhoven, The Netherlands. He
joined the Eindhoven University of Technology in Eindhoven, The
Netherlands, in 2000, where he is working towards a Ph.D. degree
on “scalable video systems.” Since 2003, he became a Scientific Re-
searcher at Philips Research Labs. in the Storage and System Ap-
plications group, where he is involved in projects to develop new
coding techniques.

Peter H. N. de With obtained his M.S. engi-
neering degree from the University of Tech-
nology in Eindhoven in 1984 and his Ph.D.
degree from the University of Technology
Delft, The Netherlands in 1992. From 1984
to 1993, he joined the Magnetic Recording
Systems Department, Philips Research Labs.
in Eindhoven, and was involved in several
European projects on SDTV and HDTV
recording. He also contributed as a prin-
cipal coding expert to the DV digital camcording standard. In
1994, he joined the TV Systems group, where he was leading ad-
vanced programmable architectures design as Senior TV Systems
Architect. In 1997, he became a Full Professor at the University of
Mannheim, Germany, in the Faculty of Computer Engineering. In
2000, he joined CMG Eindhoven as a principal consultant and he
became a Professor in Electrical Engineering Faculty, University of
Technology Eindhoven (EE Faculty). He has written numerous pa-
pers on video coding, architectures, and their realization. He is a
Regular Teacher of postacademic courses at external locations. In
1995 and 2000, he coauthored papers that received the IEEE CES
Transactions Paper Award. In 1996, he obtained a company Inven-
tion Award. Mr. de With is an IEEE Senior Member, Program Mem-
ber of the IEEE CES (Tutorial Chair, Program Chair) and Chairman
of the Benelux Information Theory Community.

Christian Hentschel received his Dr.-Ing.
(Ph.D.) in 1989 and Dr.-Ing. habil. in 1996
from Braunschweig University of Technol-
ogy, Germany. He worked on digital video
signal processing with focus on quality
improvement. In 1995, he joined Philips
Research Labs. in Briarcliff Manor, USA,
where he headed a research project on
moiré analysis and suppression for CRT-
based displays. In 1997, he moved to Philips
Research Labs. in Eindhoven, The Netherlands, leading a cluster for
programmable video architectures. He got the position of a Princi-
pal Scientist and coordinated a project on scalable media processing
with dynamic resource control between different research labora-
tories. Since August 2003, he is a Full Professor at the University of
Technology in Cottbus, Germany, where he heads the Department
of Media Technology. He is a member of the Technical Committee
of the International Conference on Consumer Electronics (IEEE)
and a member of the FKTG in Germany.

	1. INTRODUCTION
	2. CONVENTIONAL MPEG ARCHITECTURE
	3. SCALABILITY OVERVIEW OF MPEG FUNCTIONS
	4. SCALABLE FUNCTIONS FOR MPEG ENCODING
	4.1. Discrete Cosine Transformation
	4.1.1. Basics
	4.1.2. Scalability
	4.1.3. Experiments

	4.2. Scalable classification of picture blocks
	4.2.1. Basics
	4.2.2. Scalability
	4.2.3. Experiments

	4.3. Motion estimation
	4.3.1. Basics
	4.3.2. Scalability
	4.3.3. Experiments

	5. SYSTEM ENHANCEMENTS AND EXPERIMENTS
	5.1. Experimental environment
	5.2. Effect of scalable DCT
	5.3. Selective DCT computation based on block classification
	5.4. Dynamic interframe DCT coding
	5.5. Effect of scalable ME
	5.6. Combined effect of scalable DCT and scalable ME

	6. CONCLUSIONS
	REFERENCES

