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The recursive least squares (RLS) algorithm is one of the most popular adaptive algorithms that can be found in the literature, due
to the fact that it is easily and exactly derived from the normal equations. In this paper, we give another interpretation of the RLS
algorithm and show the importance of linear interpolation error energies in the RLS structure. We also give a very efficient way
to recursively estimate the condition number of the input signal covariance matrix thanks to fast versions of the RLS algorithm.
Finally, we quantify the misalignment of the RLS algorithm with respect to the condition number.
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1. INTRODUCTION

Adaptive algorithms play a very important role in many
diverse applications such as communications, acoustics,
speech, radar, sonar, seismology, and biomedical engineer-
ing [1, 2, 3, 4]. Among the most well-known adaptive filters
are the recursive least squares (RLS) and fast RLS (FRLS) al-
gorithms. The latter is a computationally fast version of the
former. Even though the RLS is not as widely used in prac-
tice as the least mean square (LMS), it has a very significant
theoretical interest since it belongs to the Kalman filters fam-
ily [5]. Also, many adaptive algorithms (including the LMS)
can be seen as approximations of the RLS. Therefore, there
is always a need to interpret and understand in new ways the
different variables that are built in the RLS algorithm.

The convergence rate, the misalignment, and the numer-
ical stability of adaptive algorithms depend on the condition
number of the input signal covariance matrix. The higher
this condition number is, the slower the convergence rate is
and/or the less stable the algorithm is. For ill-conditioned in-
put signals (like speech), the LMS converges very slowly and
the stability and the misalignment of the FRLS are more af-
fected. Thus, there is a need to compute the condition num-
ber in order to monitor the behavior of adaptive filters. Un-
fortunately, there are no simple ways to estimate this condi-
tion number.

The objective of this paper is threefold. We first give an-
other interpretation of the RLS algorithm and show the im-
portance of linear interpolation error energies in the RLS

structure. Second, we derive a very simple way to recursively
estimate the condition number. The proposedmethod is very
efficient when combined with the FRLS algorithm; it requires
only L more multiplications per iteration, where L is the
length of the adaptive filter. Finally, we show exactly how the
misalignment of the RLS algorithm is affected by the con-
dition number, output signal-to-noise ratio (SNR), and pa-
rameter choice.

2. RLS ALGORITHM

In this section, we briefly derive the classical RLS algorithm
in a system identification context. We try to estimate the im-
pulse response of an unknown, linear, and time-invariant
system by using the least squares method.

We define the a priori error signal e(n) at time n as fol-
lows:

e(n) = y(n)− ŷ(n), (1)

where

y(n) = hTt x(n) +w(n) (2)

is the system output,

ht =
[
ht,0 ht,1 · · · ht,L−1

]T
(3)
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is the true (subscript t) impulse response of the system, the
superscript T denotes the transpose of a vector or a matrix,

x(n) =
[
x(n) x(n− 1) · · · x(n− L + 1)

]T
(4)

is a vector containing the last L samples of the input signal x,
and w is a white Gaussian noise (uncorrelated with x) with
variance σ2w. In (1),

ŷ(n) = hT(n− 1)x(n) (5)

is the model filter output and

h(n− 1) =
[
h0(n− 1) h1(n− 1) · · · hL−1(n− 1)

]T
(6)

is the model filter of length L.
We also define the popular RLS error criterion with re-

spect to the modelling filter:

JLS(n) =
n∑

m=0
λn−m

[
y(m)− hT(n)x(m)

]2
, (7)

where λ (0 < λ < 1) is a forgetting factor. The minimization
of (7) leads to the normal equations

R(n)h(n) = r(n), (8)

where

R(n) =
n∑

m=0
λn−mx(m)xT(m) (9)

is an estimate of the input signal covariance matrix and

r(n) =
n∑

m=0
λn−mx(m)y(m) (10)

is an estimate of the cross-correlation vector between x and
y.

From the normal equations (8), we easily derive the clas-
sical update for the RLS algorithm [1, 3]:

e(n) = y(n)− hT(n− 1)x(n),

h(n) = h(n− 1) + R−1(n)x(n)e(n).
(11)

A fast version of this algorithm can be deduced by com-
puting recursively the a priori Kalman gain vector k′(n) =
R−1(n − 1)x(n) [1]. The a posteriori Kalman gain vector
k(n) = R−1(n)x(n) is related to k′(n) by [1]:

k(n) = λ−1ϕ(n)k′(n), (12)

where

ϕ(n) = λ

λ + xT(n)R−1(n− 1)x(n)
. (13)

3. AN RLS ALGORITHM BASEDON THE
INTERPOLATION ERRORS

In this section, we show another way to write the RLS algo-
rithm. This new formulation, based on linear interpolation,
gives a better insight of the adaptive algorithm structure.

We would like to minimize the criterion [6, 7]:

Jint,i(n) =
n∑

m=0
λn−m


− L−1∑

l=0
cil(n)x(m− l)



2

=
n∑

m=0
λn−m

[− cTi (n)x(m)
]2

= cTi (n)R(n)ci(n),

(14)

with the constraint

cTi (n)ui = cii = −1, (15)

where

ci(n) =
[
ci0(n) ci1(n) · · · ci(L−1)(n)

]T
(16)

is the ith (0 ≤ i ≤ L− 1) interpolator of the signal x(n) and

ui =
[
0 · · · 0 1 0 · · · 0

]T
(17)

is a vector of length L, where its ith component is equal to one
and all others are zero. By using the Lagrange multipliers, it
is easy to see that the solution to this optimization problem
is

R(n)ci(n) = −Ei(n)ui, (18)

where

Ei(n) = cTi (n)R(n)ci(n) =
1

uTi R−1(n)ui
(19)

is the interpolation error energy.
From (18) we find

− ci(n)
Ei(n)

= R−1(n)ui, (20)

hence the ith column of R−1(n) is −ci(n)/Ei(n). We can now
deduce that R−1(n) can be factorized as follows:

R−1(n) =




1 −c10(n) · · · −c(L−1)0(n)−c01(n) 1 · · · −c(L−1)1(n)
...

...
. . .

...
−c0(L−1)(n) −c1(L−1)(n) · · · 1




×




1
E0(n)

0 · · · 0

0
1

E1(n)
· · · 0

...
...

. . .
...

0 0 · · · 1
EL−1(n)




= CT(n)D−1e (n).
(21)



New Insights into the RLS Algorithm 333

Furthermore, since R−1(n) is a symmetric matrix, (21) can
be written as

R−1(n) =




1
E0(n)

0 · · · 0

0
1

E1(n)
· · · 0

...
...

. . .
...

0 0 · · · 1
EL−1(n)




×




1 −c01(n) · · · −c0(L−1)(n)
−c10(n) 1 · · · −c1(L−1)(n)

...
...

. . .
...

−c(L−1)0(n) −c(L−1)1(n) · · · 1




= D−1e (n)C(n).
(22)

The first and last columns of R−1(n) contain, respectively,
the normalized forward and backward predictors and all the
columns between contain the normalized interpolators.

We define, respectively, the a priori and a posteriori in-
terpolation error signals as

ei(n) = −cTi (n− 1)x(n), εi(n) = −cTi (n)x(n). (23)

Using expression (22), we now have an interesting inter-
pretation of the a priori and a posteriori Kalman gain vec-
tors:

k′(n)

= R−1(n− 1)x(n)

=
[

e0(n)
E0(n− 1)

e1(n)
E1(n− 1)

· · · eL−1(n)
EL−1(n− 1)

]T
,

k(n)

= R−1(n)x(n)

=
[
ε0(n)
E0(n)

ε1(n)
E1(n)

· · · εL−1(n)
EL−1(n)

]T
.

(24)

The ith component of the a priori (resp., a posteriori)
Kalman gain vector is the ith a priori (resp., a posteriori) in-
terpolation error signal normalized with the ith interpolation
error energy at time n− 1 (resp., n).

Writing (18) at time n and n− 1, we obtain

−R(n)ci(n)
Ei(n)

= ui = −λR(n− 1)ci(n− 1)
λEi(n− 1)

. (25)

Replacing λR(n− 1) in (25) by

λR(n− 1) = R(n)− x(n)xT(n), (26)

we get

ci(n) = Ei(n)
λEi(n− 1)

[
ci(n− 1) + k(n)ei(n)

]
. (27)

Now, if we premultiply both sides of (27) by uTi , we can easily
find that

Ei(n) = λEi(n− 1) + ei(n)εi(n). (28)

This means that the interpolation error energy can be com-
puted recursively. This relation is well known for the forward
(i = 0) and backward (i = L) predictors [1]. It is used to
obtain fast versions of the RLS algorithm.

Also, the interpolator vectors can be computed recur-
sively:

ci(n) = 1
1− ki(n)ei(n)

[
ci(n− 1) + k(n)ei(n)

]
. (29)

If we premultiply both sides of (29) by −xT(n), we obtain a
relation between the a priori and a posteriori interpolation
error signals:

εi(n)
ei(n)

= ϕ(n)
1− ki(n)ei(n)

. (30)

We now give another interpretation of the RLS algorithm:

hl(n) = hl(n− 1) +
εl(n)e(n)
El(n)

= hl(n− 1) + ϕ(n)
el(n)e(n)
λEl(n− 1)

, l = 0, 1, . . . ,L− 1.

(31)

In Sections 4 and 5, we will show how the linear interpo-
lation error energies appear naturally in the condition num-
ber formulation.

4. CONDITION NUMBER OF THE INPUT SIGNAL
COVARIANCEMATRIX

Usually, the condition number is computed by using the 2-
normmatrix. In the context of RLS equations, it is more con-
venient to use a different norm as explained below.

The covariance matrix R(n) is symmetric and positive
definite. It can be diagonalized as follows:

QT(n)R(n)Q(n) = Λ(n), (32)

where

QT(n)Q(n) = Q(n)QT(n) = I,

Λ(n) = diag
[
λ0(n), λ1(n), . . . , λL−1(n)

]
,

(33)

and 0 < λ0(n) ≤ λ1(n) ≤ · · · ≤ λL−1(n). By definition, the
square root of R(n) is

R1/2(n) = Q(n)Λ1/2(n)QT(n). (34)

The condition number of a matrix R(n) is [8]

χ
[
R(n)

] = ∥∥R(n)∥∥∥∥R−1(n)∥∥, (35)
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where ‖ · ‖ can be any matrix norm. Note that χ[R(n)] de-
pends on the underlying norm and the subscripts will be
used to distinguish the different condition numbers. Usually,
we take the convention that χ[R(n)] = ∞ for a singular ma-
trix R(n).

Consider the following norm:

∥∥R(n)∥∥E =
{
1
L
tr
[
RT(n)R(n)

]}1/2
. (36)

We can easily check that, indeed, ‖·‖E is a matrix norm since
for any real matricesA and B and a real scalar γ, the following
three conditions are satisfied:

(i) ‖A‖E ≥ 0 and ‖A‖E = 0 if and only if A = 0L×L,
(ii) ‖A + B‖E ≤ ‖A‖E + ‖B‖E,
(iii) ‖γA‖E = |γ|‖A‖E.

Also, the E-norm of the identity matrix is equal to one.
We have

∥∥R1/2(n)
∥∥
E =

{
1
L
tr
[
R(n)

]}1/2 =

 1
L

L−1∑
l=0

λl(n)



1/2

,

∥∥R−1/2(n)∥∥E =
{
1
L
tr
[
R−1(n)

]}1/2 =

 1
L

L−1∑
l=0

1
λl(n)



1/2

.

(37)

Hence, the condition number ofR1/2(n) associated with ‖·‖E
is

χE
[
R1/2(n)

] = ∥∥R1/2(n)
∥∥
E

∥∥R−1/2(n)∥∥E ≥ 1. (38)

If χ[R(n)] is large, then R(n) is said to be an ill-
conditioned matrix. Note that this is a norm-dependent pro-
perty. However, according to [8], any two condition numbers
χα[R(n)] and χβ[R(n)] are equivalent in that constants c1 and
c2 can be found for which

c1χα
[
R(n)

] ≤ χβ
[
R(n)

] ≤ c2χα
[
R(n)

]
. (39)

For example, for the 1- and 2-norm matrices, we can show
[8] that

1
L2

χ2
[
R(n)

] ≤ 1
L
χ1
[
R(n)

] ≤ χ2
[
R(n)

]
. (40)

We now show the same principle for the E- and 2-norm
matrices. We recall that

χ2
[
R(n)

] = λL−1(n)
λ0(n)

. (41)

Since tr[R−1(n)] ≥ 1/λ0(n) and tr[R(n)] ≥ λL−1(n), we
have

tr
[
R(n)

]
tr
[
R−1(n)

] ≥ tr
[
R(n)

]
λ0(n)

≥ λL−1(n)
λ0(n)

. (42)

Also, since tr[R(n)] ≤ LλL−1(n) and tr[R−1(n)] ≤ L/λ0(n),
we obtain

tr
[
R(n)

]
tr
[
R−1(n)

] ≤ L
tr
[
R(n)

]
λ0(n)

≤ L2
λL−1(n)
λ0(n)

. (43)

Therefore, we deduce that

1
L2

χ2
[
R(n)

] ≤ χ2E
[
R1/2(n)

] ≤ χ2
[
R(n)

]
. (44)

According to the previous expression, χ2E[R
1/2(n)] is then

a measure of the condition number of the matrix R(n).
In Section 5, we will show how to recursively compute
χ2E[R

1/2(n)].

5. RECURSIVE COMPUTATIONOF
THE CONDITION NUMBER

The positive number ‖R1/2(n)‖2E can be easily calculated re-
cursively. Indeed, taking the trace of

R(n) = λR(n− 1) + x(n)xT(n), (45)

we get

tr
[
R(n)

] = λ tr
[
R(n− 1)

]
+ xT(n)x(n). (46)

Therefore,

∥∥R1/2(n)
∥∥2
E = λ

∥∥R1/2(n− 1)
∥∥2
E +

xT(n)x(n)
L

. (47)

Note that the inner product xT(n)x(n) can also be computed
in a recursive way with two multiplications only at each iter-
ation.

Now we need to determine ‖R−1/2(n)‖2E. Thanks to (22),
we find that

tr
[
R−1(n)

] = L−1∑
l=0

1
El(n)

. (48)

Using (24), we have

kT(n)k′(n) =
L−1∑
l=0

el(n)εl(n)
El(n)El(n− 1)

, (49)

and replacing in the previous expression:

El(n)− λEl(n− 1) = el(n)εl(n), (50)

we obtain

kT(n)k′(n) =
L−1∑
l=0

1
El(n− 1)

− λ
L−1∑
l=0

1
El(n)

. (51)



New Insights into the RLS Algorithm 335

Thus,

tr
[
R−1(n)

] = L−1∑
l=0

1
El(n)

= λ−1

 L−1∑

l=0

1
El(n− 1)

− kT(n)k′(n)


.

(52)

Finally,

∥∥R−1/2(n)∥∥2E
= λ−1

[∥∥R−1/2(n− 1)
∥∥2
E −

λ−1ϕ(n)k′T(n)k′(n)
L

]

= λ−1

∥∥R−1/2(n− 1)

∥∥2
E −

λ−1ϕ(n)
L

L−1∑
l=0

e2l (n)

E2
l (n− 1)


.
(53)

By using (47) and (53), we see that we easily compute
χ2E[R

1/2(n)] recursively with only an order of L multiplica-
tions per iteration given that k′(n) is known.

Note that we could have used the inverse of R(n),

R−1(n) = λ−1R−1(n− 1)− λ−2ϕ(n)k′(n)k′T(n), (54)

to estimate ‖R−1/2(n)‖2E, but we have chosen here to use
the interpolation formulation to better understand the link
among all variables in the RLS algorithm, and especially to
emphasize the role of the interpolation error energies since
tr[R−1(n)] = ∑L−1

l=0 1/El(n), even though there are indirect
ways to compute this value. Clearly, everything can be writ-
ten in terms of El(n) and this formulation is more natural
for the condition number estimation. For example, in the ex-
treme cases of an input signal close to a white noise or to a
predictable process, the value maxl[El(n)]/minl[El(n)] gives
a good idea of the condition number of the corresponding
signal covariance matrix.

It is easy to combine the estimation of the condition
number with an FRLS algorithm. There exist several meth-
ods to compute the a priori Kalman gain vector k′(n) in a
very efficient way. Once this gain vector is determined, the es-
timation of χ2E[R

1/2(n)] at each iteration follows immediately
with roughly Lmore multiplications. Algorithm 1 shows the
combination of an FRLS algorithm with the condition num-
ber estimation of the input signal covariance matrix.

6. MISALIGNMENT AND CONDITION NUMBER

We define the normalized misalignment in dB as follows:

m0(n) = 10 log10 E


∥∥ht − h(n)

∥∥2
2∥∥ht∥∥22

, (55)

where ‖ · ‖2 denotes the 2-norm vector. Equation (55) mea-
sures the mismatch between the true impulse response and
the modelling filter.

Initialization.

h(0) = k′(0) = a(0) = b(0) = 0,

α(0) = λ,

Ea(0) = E0, (positive constant),

∥∥R1/2(0)
∥∥2
E =

E0

L

L−1∑
l=0

λ−l ,

∥∥R−1/2(0)∥∥2E = 1
LE0

L−1∑
l=0

λl.

Prediction.

ea(n) = x(n)− aT(n− 1)x(n− 1),

α1(n) = α(n− 1) + e2a(n)/Ea(n− 1),[
t(n)
m(n)

]
=
[

0
k′(n− 1)

]
+

[
1

−a(n− 1)

]
ea(n)/Ea(n− 1),

Ea(n) = λ
[
Ea(n− 1) + e2a(n)/α(n− 1)

]
,

a(n) = a(n− 1) + k′(n− 1)ea(n)/α(n− 1),

eb(n) = x(n− L)− bT(n− 1)x(n),

k′(n) = t(n) + b(n− 1)m(n),

α(n) = α1(n)− eb(n)m(n),

b(n) = b(n− 1) + k′(n)eb(n)/α(n).

Filtering.

e(n) = y(n)− hT(n− 1)x(n),

h(n) = h(n− 1) + k′(n)e(n)/α(n).

Condition Number.

∥∥R1/2(n)
∥∥2
E = λ

∥∥R1/2(n− 1)
∥∥2
E +

xT(n)x(n)
L

,

∥∥R−1/2(n)∥∥2E = λ−1
[∥∥R−1/2(n− 1)

∥∥2
E −

k′T(n)k′(n)
Lα(n)

]
,

χ2E
[
R1/2(n)

] = ∥∥R1/2(n)
∥∥2
E

∥∥R−1/2(n)∥∥2E.

Algorithm 1: The FRLS algorithm and estimation of the condition
number.

It can easily be shown, under certain conditions, that [9]

E
[∥∥ht − h(n)

∥∥2
2

]
≈ 1

2
σ2w tr

[
R−1(n)

]
. (56)

Hence, we can write (56) in terms of the interpolation error
energies:

E
[∥∥ht − h(n)

∥∥2
2

]
≈ 1

2
σ2w

L−1∑
l=0

1
El(n)

. (57)

However, we are more interested here to write (56) in terms
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of the condition number. Indeed, we have

∥∥R1/2(n)
∥∥2
E =

1
L
tr
[
R(n)

]
,

∥∥R−1/2(n)∥∥2E = 1
L

L−1∑
l=0

1
El(n)

.

(58)

But

tr
[
R(n)

] = tr


 n∑

m=0
λn−mx(m)xT(m)




=
n∑

m=0
λn−mxT(m)x(m)

≈ L

1− λ
σ2x ,

(59)

for n large and for a stationary signal x with power σ2x . The
condition number is then

χ2E
[
R1/2(n)

] ≈ σ2x
(1− λ)L

L−1∑
l=0

1
El(n)

, (60)

and expression (57) becomes

E
[∥∥ht − h(n)

∥∥2
2

]
≈ (1− λ)L

2
σ2w
σ2x

χ2E
[
R1/2(n)

]
. (61)

If we divide both sides of (61) by ‖ht‖22, we get

E


∥∥ht − h(n)

∥∥2
2∥∥ht∥∥22

 ≈ (1− λ)L

2
σ2w∥∥ht∥∥22σ2x χ

2
E

[
R1/2(n)

]
. (62)

Finally, we have a formula for the normalized misalign-
ment in dB (which is valid only after convergence of the RLS
algorithm):

m0(n) ≈ 10 log10
(1− λ)L

2
+ 10 log10

σ2w∥∥ht∥∥22σ2x
+ 10 log10 χ

2
E

[
R1/2(n)

]
.

(63)

Expression (63) depends on three terms or three factors: the
exponential window, the level of noise at the system output,
and the condition number. The closer the exponential win-
dow is to one, the better the misalignment is, but the tracking
abilities of the RLS algorithm will suffer a lot. A high level of
noise as well as an input signal with a large condition num-
ber will obviously degrade the misalignment. With a fixed
exponential window and noise, it is interesting to see how
the misalignment will degrade by increasing the condition
number of the input signal. For example, by increasing the
condition number from 1 to 10, the misalignment will de-
grade by 10 dB; the simulations confirm this.

Usually, we take for the exponential window

λ = 1− 1
K0L

, (64)

where K0 ≥ 3. Also, the second term in (63) represents
roughly the inverse output SNR in dB. We can then rewrite
(63) as follows:

m0(n) ≈ −10 log10
(
2K0

)− oSNR + 10 log10 χ
2
E

[
R1/2(n)

]
.

(65)

For example, if we take K0 = 5 and an output SNR (oSNR)
of 39 dB, we obtain

m0(n) ≈ −49 + 10 log10 χ
2
E

[
R1/2(n)

]
. (66)

If the input signal is a white noise, χ2E[R
1/2(n)] = 1, then

m0(n) ≈ −49dB. This will be confirmed in the following sec-
tion.

7. SIMULATIONS

In this section, we present some results on the condition
number estimation and how this number affects the mis-
alignment in a system identification context. We try to es-
timate an impulse response ht of length L = 512. The same
length is used for the adaptive filter h(n).We run the FRLS al-
gorithm with a forgetting factor λ = 1−1/(5L). Performance
of the estimation is measured by means of the normalized
misalignment (55). The input signal x(n) is a speech signal
sampled at 8 kHz. The output signal y(n) is obtained by con-
volving ht with x(n) and adding a white Gaussian noise sig-
nal with an SNR of 39 dB. In order to evaluate the condi-
tion number in different situations, a white Gaussian signal is
added to the input x(n) with different SNRs. The range of the
input SNR is −10dB to 50 dB. Therefore, with an input SNR
equal to −10dB (the white noise dominates the speech), we
can expect the condition number of the input signal covari-
ancematrix to be close to 1, while with an input SNR of 50 dB
(the speech largely dominates the white noise), the condition
number will be high. Figures 1, 2, 3, 4, 5, 6, and 7 show the
evolution in time of the input signal, the normalized mis-
alignment (we approximate the normalized misalignment
with its instantaneous value), and the condition number of
the input signal covariance matrix with different input SNRs
(from−10dB to 50 dB). We can see that as the input SNR in-
creases, the condition number degrades as expected since the
speech signal is ill-conditioned. As a result, the normalized
misalignment is greatly affected by a large value of the con-
dition number. As expected, the value of the misalignment
after convergence in Figure 1 is equal to −49dB and the con-
dition number is almost one. Now compare this to Figure 3.
In Figure 3, the misalignment is equal to −40dB and the av-
erage condition number is 8.2. The higher condition num-
ber in this case degrades the misalignment by 9 dB, which is
exactly the degradation predicted by formula (63). We can
verify the same trend with the other simulations.
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Figure 1: Evolution in time of the (a) input signal, (b) normalized
misalignment, and (c) condition number of the input signal covari-
ance matrix. The input SNR is −10dB.
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Figure 2: The presentation is the same as in Figure 1. The input
SNR is 0 dB.
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Figure 3: The presentation is the same as in Figure 1. The input
SNR is 10 dB.
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Figure 4: The presentation is the same as in Figure 1. The input
SNR is 20 dB.
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Figure 5: The presentation is the same as in Figure 1. The input
SNR is 30 dB.
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Figure 6: The presentation is the same as in Figure 1. The input
SNR is 40 dB.
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Figure 7: The presentation is the same as in Figure 1. The input
SNR is 50 dB.

8. CONCLUSIONS

The RLS algorithm plays a major role in adaptive signal pro-
cessing. A very good understanding of its different variables
may lead to new concepts and new algorithms. In this paper,
we have shown that the update equation of the RLS can be
written in terms of the a priori or a posteriori interpolation
error signals normalized with their respective interpolation
error energies. Hence, the interpolation error energy formu-
lation can be further exploited. This formulation has moti-
vated us to propose a simple and an efficient way to estimate
the condition number of the input signal covariance matrix.
We have shown that this condition number can be easily inte-
grated in the FRLS structure at a very low cost from an arith-
metic complexity point of view. Finally, we have shown how
the misalignment of the RLS depends on the condition num-
ber. A formula was derived, predicting how themisalignment
degrades when the condition number increases. The accu-
racy of this formula was exemplified by simulations.
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