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This paper deals with optimized channel coding for OFDM transmissions (COFDM) over frequency-selective channels using
irregular low-density parity-check (LDPC) codes. Firstly, we introduce a new characterization of the LDPC code irregularity called
“irregularity profile.” Then, using this parameterization, we derive a new criterion based on the minimization of the transmission
bit error probability to design an irregular LDPC code suited to the frequency selectivity of the channel. The optimization of this
criterion is done using the Gaussian approximation technique. Simulations illustrate the good performance of our approach for
different transmission channels.
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1. INTRODUCTION

In this paper, we address the problem of designing codes
for transmissions over frequency-selective channels when or-
thogonal frequency division multiplexing (OFDM) modula-
tion technique is used. Multicarrier modulations are good
candidates for the emerging high rate transmissions, either
wired, wireless, single, or multiuser. Several standards have
chosen OFDM modulation because it allows a very simple
mitigation of intersymbol interference (ISI), which could be
very destructive when the information rate is high [1, 2]. The
OFDM modulator transforms a frequency-selective channel
into a set of flat-fading channels, which are easier to equalize.
The problem of channel coding for OFDM systems (Coded-
OFDM or COFDM) has been already addressed [3]. Based
on the emerging capacity approaching coding schemes, we
propose an alternative coding structure for COFDM. In some

applications, like wired xDSL transmissions, there exists a
backward channel that propagates some information from
the receiver back to the transmitter. Properly used, this in-
formation can give to the transmitter an estimation of the
channel that is going to be crossed. We propose in this pa-
per to make use of this Information to design a code that is
adapted to a frequency-selective OFDM channel. Although
we assume perfect channel state information (CSI) at the
transmitter, we will see that partial CSI is sufficient for our
code design.

In 1948, Shannon [4] characterized the optimal perfor-
mance theoretically reachable for coded transmission over
a noisy channel. Since then, the construction of capacity
approaching codes has been the main challenge of coding
research. Turbo codes [5] and Gallager low-density parity-
check (LDPC) codes [6, 7] are the two competing families
of pseudorandom codes that could achieve the capacity for
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various kind of channels. It has been shown that irregular
LDPC codes are especially interesting because one can op-
timize the parameters that characterize their irregularity in
order to find the codes that are the closest to the capacity for
various types of channels. The optimization of these codes
has been done for the binary erasure channel (BEC) [8] and
for the AWGN channel [9]. The optimization of LDPC codes
for various nonstandard channels has also been addressed in
the literature [10, 11].

We propose in this paper to optimize the LDPC code
irregularity for OFDM frequency-selective channels. After
the OFDM demodulation, the signal that feeds the chan-
nel decoder is seen as coming from a set of Gaussian flat-
fading channels, each one having a different noise power. So,
this channel can be interpreted as a nonstationary Gaussian
channel for which the optimization of LDPC codes is not a
direct generalization of existing work. Indeed, such an opti-
mization requires a finer characterization of the LDPC code
irregularity, that we call irregularity profile [12]. This paper
is organized as follow. In Section 2, we define the irregularity
profile and make some recalls about OFDM signaling, LDPC
codes, and their decoding algorithm. Section 3 describes our
optimization algorithm suited to OFDM frequency-selective
channels, the results are presented in Section 4, and a conclu-
sion is given in Section 5.

2. PARAMETERIZATION OF LDPC CODEDOFDM

In this section, we introduce the main concepts and nota-
tions about LDPC codes that we will use for the optimiza-
tion. As well as turbo codes, LDPC codes can achieve reli-
able transmission for a signal-to-noise ratio (SNR) extremely
close to the Shannon limit on the AWGN channel [13].More-
over, these codes present some advantages, such as a simple
description of their structure, the easiness to make them ir-
regular, and a fully parallelizable decoding implementation
[14].

2.1. Irregularity profile

In this section, we propose to generalize the parameteriza-
tion of LDPC irregularity in order to cope with nonstation-
ary channels. This new parameterization is called irregularity
profile [12]. LDPC block codes are defined by a sparse parity-
check matrix H(M × N), where N denotes the codeword
length and M the number of parity checks (in this work, we
use only full-rank parity-check matrix, so, if R is the code
rate we haveM = (1−R)N). An LDPC code can also be rep-
resented by its factor graph which is a bipartite graph with
two kinds of nodes: data nodes representing the codeword
bits and function nodes representing the parity checks [15].
The nth data node and the kth check node are connected by
an edge if and only if Hk,n is equal to 1.

A regular (N , tc, tr) LDPC code has a parity-check matrix
with exactly tc ones per column and tr ones per row.When the
data nodes and the check nodes have unequal connection de-
grees (number of edges connected to a node), the LDPC code
is irregular. The irregularity is conveniently specified by two
polynomials: λ(x) = ∑tcmax

i=2 λixi−1 and ρ(x) = ∑trmax
j=2 ρjx j−1,
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Figure 1: Factor graph of a rate R = 1/2 irregular LDPC code.
The connection degree of each node is specified in braces. We
have drawn the irregularity profile according to the fraction of data
nodes.

where λi is the fraction of edges which are connected to a de-
gree i data nodes and ρj is the fraction of edges which are
connected to a degree j check nodes. tcmax and trmax repre-
sent the maximal data and check node connection degrees
and a degree i data node (resp., a degree j check node) is a
node connected to exactly i (resp., j) edges. These two poly-
nomials are related by (1 − R)

∑tcmax
i=2 λi/i =

∑trmax
j=2 ρj/ j. It is

also useful to use the following dual polynomial represen-
tation: λ′(x) = ∑tcmax

i=2 λ′i xi−1 and ρ′(x) = ∑trmax
j=2 ρ′jx j−1 with

λ′i being the fraction of data nodes with a connection de-
gree i and ρ′j being the fraction of degree j check nodes.

(λi, ρj) and (λ′i , ρ
′
j) are related by λ′i = (λi/i)/

∑tcmax
k=2 λk/k and

ρ′j = (ρj/ j)/
∑trmax

k=2 ρk/k. Using these irregularity parameters,
the optimization of LDPC codes has already been performed
for various channels, including BEC [8, 13], AWGN [9], and
Rayleigh channels [16]. The optimization method is based
on the study of the asymptotic behavior of the LDPC codes
during the decoding steps. For more details about irregular
codes, we refer the reader to [13].

In the above described parameterization, (λ′(x), ρ′(x))
represents the distribution functions of the node degrees,
but a node with a given degree could be placed anywhere
within the codeword. This is not an issue for memoryless
channels, but when the channel is not stationary or has
memory, the order in which the nodes are placed in the
codeword matters. That is why we introduce a more gen-
eral description of irregular LDPC codes that we call irreg-
ularity profile. This parameterization includes the location
pi of the set of data nodes with a given connection degree
i. For example, the code described in Figure 1 is defined by

λ′(x) = ∑tcmax
i=2 λ′(pi)i xi−1 = (1/6)(1)x6 + (1/3)(2)x3 + (1/2)(3)x

and ρ′(x) = (1/3)x8 + (2/3)x5. Note that the position of the
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Figure 2: OFDM transmission with LDPC channel coding over frequency-selective channels.

check nodes is arbitrary since the parity checks are not influ-
enced by the channel. This irregularity description provides
a good framework in order to optimize the LDPC param-
eters for a wide range of channels, including nonstationary
channels. We will denote the irregularity profile (λ, p, ρ). The
vectors λ and ρ collect the coefficients of the two polynomi-
als (λ(x), ρ(x)) while the vector p indicates the positions of
the different groups of nodes. Using this parameterization,
we assume that the nodes with the same degree are located in
the same channel neighborhood. Even if better codes that do
not fulfil the last assumption may exist, in order to complete
the optimization of the irregularity profile in a “reasonable
time,” we have decided to restrict the number of parameters.
We will see in the simulations that, although restrictive, this
definition of the irregularity profile yields a significant per-
formance improvement.

Our goal is to optimize the irregularity profile for OFDM
frequency-selective channels, which can be interpreted, at the
OFDM demodulator output, as a no-stationary flat-fading
Gaussian channel. Now, we will briefly present the OFDM
transmission scheme and the derivation of the likelihood ex-
pression which are needed to initialize the LDPC decoder.

2.2. OFDM communication system

The OFDM system consists in dividing the available spec-
trum into many carriers, each one being modulated by a
low-rate data stream. The structure of the communication
system is shown in Figure 2. The information bits bn are en-
coded by an LDPC code and the resulting codeword is sent to
the OFDM transmitter. After a serial-to-parallel conversion
the bits are mapped into a 4-QAM constellation on the Nc

subcarriers to obtain a block of symbols Xk (k = 1, . . . ,Nc).
Then, this block is transformed into a time-domain sequence
by the inverse discrete Fourier transform (IDFT). In wired
(xDSL) transmissions, the signal is baseband and therefore
real valued. Although the optimization of LPDC codes does
not require a baseband channel, we have decided to restrict
the derivation of the formula to this case. In order to transmit
a real signal, we build a block of symbols with a Hermitian
symmetry which leads us to a real signal by IDFT. The trans-

mit signal is xn =
∑2Nc

k=1 Sk cos(2πk f0n+φk) with Xk = Skeiφk .
A cyclic prefix longer than the channel memory is used as a
preamble and the signal xn is sent through the frequency-
selective channel. After removing the cyclic prefix, the re-
ceived signal can be written as yn =

∑L−1
j=0 hjxn− j +nn, with hj

( j = 0, . . . ,L− 1) representing the coefficients of the channel
impulse response and nn being the AWGN with zero mean
and variance σ2n . The DFT-transforms the time-domain se-
quence yn into a frequency-domain sequence Yk and the
frequency-selective channel becomes a set of Nc Gaussian ISI
free channels with fading Hk:

Yk = HkXk +Nk ∀k = 1, . . . ,Nc, (1)

with Hk being the kth channel spectrum coefficient, Xk the
kth symbol, and Nk the Gaussian noise with zero mean and
variance σ2n . The equalization corrects the channel distortion,
and is easily done in the frequency domain with a simple
multiplication by a coefficient Kk (for all k = 1, . . . ,Nc) on
each subcarrier: Rk = KkYk for all k = 1, . . . ,Nc. We have
used the zero forcing (ZF) equalizer and, so, the kth equal-
izer coefficient is Kk = H∗

k /|Hk|2. Note that the choice of the
equalizer type is not important in our case since any of the
usual equalizers used in OFDM transmission (ZF, MMSE,
maximum likelihood) would lead to the same expressions of
the messages feeding the LDPC decoder. For the sake of sim-
plicity, we then chose the ZF equalizer. Using the equalizer
output Rk and the channel model (1), we obtain the expres-
sions of the observed log-likelihood ratios u0k (LLRs):

u02k = log
p
(
Rk

∣∣C2k = 1
)

p
(
Rk

∣∣C2k = 0
) = log

∑
Xk/C2k=1 p

(
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∣∣Xk
)

∑
Xk/C2k=0 p

(
Rk

∣∣Xk
)

= 4Re
{
RkK

∗
k H

∗
k

}
∣∣Kk

∣∣2σ2n ,

u02k+1 = log
p
(
Rk

∣∣C2k+1 = 1
)

p
(
Rk

∣∣C2k+1 = 0
) = log

∑
Xk/C2k+1=1 p

(
Rk

∣∣Xk
)

∑
Xk/C2k+1=0 p

(
Rk

∣∣Xk
)

= 4 Im
{
RkK

∗
k H

∗
k

}
∣∣Kk

∣∣2σ2n ∀k = 1, . . . ,Nc,

(2)
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where (C2k,C2k+1) are the 2 codeword bits used to form the
kth 4-QAM symbol Xk, and Re{·} and Im{·} denote the real
and the imaginary parts, respectively. Using these LLRs as
initialization messages, we finally iteratively decode the noisy
codeword to obtain an estimate ûn of the input sequence. The
decoding algorithm will be presented in the next section.

2.3. Decoding LDPC codes using belief propagation

LDPC codes are easily decoded by an iterative probabilistic
algorithm known as belief propagation [7]. The belief prop-
agation algorithm, using the Bayes rule locally, iteratively up-
dates the a posteriori probabilities (APPs) of each bit in the
codeword. So, this algorithm can be viewed as an iterative
message-passing algorithm on the associated factor graph.
Moreover, for a finite codeword length, the factor graph of
an LDPC code contains many cycles which lead to a subopti-
mal calculation of the APPs.

Each iteration of belief propagation is composed of two
steps:

(i) the data pass which updates the messages through the
variable nodes;

(ii) the check pass which updates themessages through the
check nodes.

Usually, it is more convenient to use LLRs as messages. Let
v = log(p(y|c = 1)/p(y|c = −1)) the output message of a
variable node and u = log(p(y′|c′ = 1)/p(y′|c′ = −1)) the
output message of a check node. During the data pass on a
variable node with a connection degree equal to i, the output
message v on the qth branch is as follows

vq = u0 +
i∑

n=1
n�=q

un ∀q = 1, . . . , i, (3)

where un, n = 1, . . . , i, are the incomingmessages from all the
data node neighbors and u0 is the observed LLR (or channel
value). At the first decoding iteration, all the un are set to zero
for n = 1, . . . , i. During a check pass, we use the following
“tanh rule” [17] to express the output message u on the pth
branch:

tanh
up

2
=

j∏
m=1
m �=p

tanh
vm
2

∀p = 1, . . . , j, (4)

where vm, m = 1, . . . , j, are the incoming messages from the
check node neighbors.

After a few iterations of belief propagation, we can cal-
culate the a posteriori ratio w for each data node which is
equal to the sum of all messages feeding a variable node wk =
u0 +

∑i
n=1 un, k = 1, . . . ,N . Finally, we use wk to estimate the

information bits: ûk = (1− sign(wk))/2, k = 1, . . . ,N . Thus,
after having introduced in this part the main notations and
concepts which are essential to optimize the LDPC codes over
OFDM frequency-selective channel, we present in the next
section our proposed optimization scheme.

3. OPTIMIZATIONWITH A GAUSSIAN
APPROXIMATION

In order to determine the performance of LDPC codes un-
der belief propagation, Richardson and Urbanke [18] have
introduced a general method to predict the asymptotic be-
havior of the LDPC codes. This method called density evo-
lution is based on the study of the probability density func-
tions (pdfs) of messages being propagated in the factor graph
during the decoding steps under the assumption of cycles-
free graph. For memoryless binary-input continuous-output
AWGN channels, Chung et al. [9] proposed a Gaussian ap-
proximation of message densities to simplify the analysis
of the density evolution. For many channels, including the
AWGN channel, LDPC codes (with an infinite codeword
length) exhibit a threshold phenomenon. This threshold cor-
responds to an SNR above which the bit error probability
converges to zero when the number of belief propagation it-
erations tends to infinity (in [9], the threshold was defined
as a noise power). The criterion used by Chung to optimize
the LDPC codes on the AWGN channels is to choose the code
which exhibits the lowest threshold. So, the Gaussian approx-
imation allows to calculate this threshold quickly and ensures
an easier design for good LDPC codes on AWGN channels. In
this section, we extend Chung’s algorithm to OFDM trans-
missions over frequency-selective channels.

3.1. Gaussian approximation for AWGN channels

Wefirst introduce the notations used in the Gaussian approx-
imation method for a stationary AWGN channel. We assume
that the channel is Gaussian with zero mean and variance σ2n ,
the constellation is BPSK, and the all-zero codeword is sent.
Then the observed LLR u0 is also Gaussian with mean 2/σ2n
and variance 4/σ2n . We note that the variance of u0 is equal
to twice the mean, and this property (called consistency con-
dition in [13]) is preserved through the belief propagation
steps. This reduces the study of the density evolution to only
the mean of the pdf. It is stated in [9] that the Gaussian ap-
proximation is rather a good approximation for the variable
nodes outputs v, but not so good for the check nodes outputs
u. We found that Gaussian approximation has been shown
sufficiently accurate to provide a good LDPC optimization.

From (3), the mean m(l)
v,i of the output message of a vari-

able node with a degree i is given by

m(l)
v,i = mu0 + (i− 1)m(l−1)

u , (5)

where mu0 is the mean of observed LLR u0 and l denotes the
lth decoding iteration. At the lth iteration, an incoming mes-
sage v to a check node has the following Gaussian mixture

density f (l)v :

f (l)v =
tcmax∑
i=2

λiN
(
m(l)

v,i, 2m
(l)
v,i

)
. (6)

From (4) and under the “local tree assumption” which
states the independence between themessages vi, the updated
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meanm(l)
u at the lth iteration can be expressed as follows:

m(l)
u =

trmax∑
j=2

ρjφ
−1

1−

[
1−

tcmax∑
i=2

λiφ
(
m(l)

v,i

)] j−1
 , (7)

where φ(m(l)
v ) is equal to 1 − E[tanh(v(l)/2)] (cf. [9]). Using

(5) and (7) iteratively, we can follow the evolution of m(l)
u

along the decoding iteration. Recalling that the word error

probability converges to zero if and only if m(l)
u → +∞ when

l → +∞. It is easy to calculate the threshold corresponding

to an SNR above which m(l)
u tends to infinity when l tends to

infinity.

3.2. Gaussian approximation for OFDM
frequency-selective channels

Wewill now extend the Gaussian approximation approach to
OFDM channels which are not stationary. This will lead us to
the optimization of the irregularity profile (λ, p, ρ).

Before studying the asymptotical behavior of the decoder,
we first discuss the statistical properties of the observed mes-
sages. As stated in Section 2.2, the messages at the input of
the decoder are

u0,2k = log
p
(
Rk

∣∣C2k = 1
)

p
(
Rk

∣∣C2k = 0
) = 4Re

{
RkK

∗
k H

∗
k

}
∣∣Kk

∣∣2σ2n ,

u0,2k+1= log
p
(
Rk

∣∣C2k+1 = 1
)

p
(
Rk

∣∣C2k+1 = 0
) = 4 Im

{
RkK

∗
k H

∗
k

}
∣∣Kk

∣∣2σ2n ∀k∈N.

(8)

Assuming that the all-zero codeword is sent:

(
C2k,C2k+1

) = (0, 0)∀k, i.e., Xk = 1 + j, (9)

the observed LLRs become

U0,k = u0,2k = u0,2k+1 = 4
∣∣Hk

∣∣2
σ2n

+
4Re

{
H∗

k Nk
}

σ2n
∀k ∈ N.

(10)

So, the observed message U0,k has a consistent Gaussian pdf
fu0,k :

fu0,k = N


4
∣∣Hk

∣∣2
σ2n

,
8
∣∣Hk

∣∣2
σ2n


=N

(
mu0,k , 2mu0,k

) ∀k ∈ N.

(11)

First of all, remark that the “local tree” assumption re-
quires an infinite codeword length, and thereby an infinite
number of subcarriers. Unlike the AWGN channel case, each
observedmessage has different statistical properties. Since we
have an infinite number of observed messages (one for each
subcarrier), the model of the densities (11) involves an in-
finite number of equations. To circumvent this problem, we
build a rectangular approximation of the channel spectrum
which reduces the model to a finite number of equations.

|H(ν)|

H3,2

b0 = 0 b1 b2 b3 = 1
ν

α3,2

λ′(1)4 λ′(2)3 λ′(3)2

Figure 3: Rectangular approximation of a frequency-selective chan-
nel spectrum.

First, we split the channel spectrum into tcmax − 1
parts according to the irregularity profile as represented in
Figure 3. Each part corresponds to the spectrum bandwidth

(of length λ
′(pi)
i ), where the bits with the same connection de-

gree i are transmitted. We sort the parts in ascending order
of the positions pi in the irregularity profile so that

Bi =
[
bpi−1; bpi

]=

 ki−1∑

j=k1
λ
′(pj )
j ;

ki∑
j=k1

λ
′(pj )
j


 ∀i = 2, . . . , tcmax,

(12)

where the kl are such that pkl = l for all l = 1, . . . , tcmax − 1.
In order to build the rectangular approximation of the

channel spectrum H(ν) in each band Bi, we have chosen a
staircase function such that the amplitude of the channel
spectrum is divided into Ns(i) equal parts. This type of ap-
proximation is called a simple function [19]. This means that
the channel is modeled, in the band Bi, by

sNs(i)(ν) =
Ns(i)∑
k=1

Hi,k · 1Ai,k (ν) ∀ν ∈ Bi. (13)

1A represents the indicator function of set A, Ns(i) is the
number of stairs in each band, Hi,k are the amplitudes of the
stairs, and Ai,k(ν) are the sets defined as

Ai,k =
{

ν;
∣∣H(ν)

∣∣ ∈ [mi +
k

Ns(i)

(
Mi −mi

)
,

mi +
k + 1
Ns(i)

(
Mi −mi

)]} (14)

with mi = minν∈Bi(|H(ν)|) and Mi = maxν∈Bi(|H(ν)|). We
have drawn on Figure 3 the approximation of a typical ADSL
spectrum, and its approximation with tcmax − 1 = 3 and
(Ns(4) = 3, Ns(3) = 4, Ns(2) = 3).

At this point, we can remark that we do not need an ac-
curate measure of the channel shape since only a rectangu-
lar approximation is used in the optimization process. This
ensures a certain robustness of our code design with respect
to the channel knowledge at the transmitter. This is a clear
advantage since the method is still valid for slowly varying
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channels or when channel estimation errors occur. This issue
is further discussed in the conclusion.

Let αi,k denote the normalized width of the subband k
located in the bandwidth Bi with

αi,k =
supν∈Ai,k

|ν| − infν∈Ai,k |ν|
λ
′(pi)
i

. (15)

So, an observed message incoming a data node with a con-
nection degree i has a Gaussian mixture density fu0,i :

fu0,i =
Ns(i)∑
k=1

αi,kN
(
mu0

(
Hi,k

)
, 2mu0

(
Hi,k

))
, (16)

where mu0 (Hi,k) is the mean of the LLRs located on the kth
subband of Bi:

mu0

(
Hi,k

) = 4H2
i,k

σ2n
= 4

σ2nαi,k

∫
Ai,k

∣∣H(ν)
∣∣2dν. (17)

It is important to note that the density fu0,i is consistent for
all i because it is a mixture of consistent Gaussian densi-
ties. Therefore, the variance of the messages u0,i is twice its
mean and so, density evolution can be used for frequency-
selective channels. Thus, the main difference between OFDM
frequency-selective channels and AWGN channels is that the
density of incoming messages to the factor graph fu0,i is a
function of the code irregularity profile. Actually, as shown
in (17), the mean mu0 (Hi,k) depends on the λi’s through the
parameter αi,k and the set Ai,k.

Now, we discuss the accuracy of the rectangular approx-
imation. The greater Ns(i) in each bandwidth Bi, the best
the approximation, but the resulting density will be more
computationally difficult to manage—because it is a mix-
ture of Ns(i) Gaussian densities. In order to choose the
number of stairs in each Bi, we fix a maximum number
Nsmax and a threshold ε. Then we evaluate the Kullback di-
vergence iteratively between fu0,i(Nsmax) and fu0,i(n) for all
n ∈ {1, . . . ,Nsmax}. We choose for Ns(i) the maximum value
of n such that DK ( fu0,i(Nsmax), fu0,i(n)) < ε. Using a Kull-
back divergence [20], well suited to evaluate the distance be-
tween the tails of pdfs, we ensure that the likelihood values
computed from the approximation will not be too different
than the actual likelihood values—and so will be the mean
mu0 (Hi,k). The choice of Nsmax and of ε is a tradeoff between
accuracy and computational complexity.

It is now easy to generalize the equations describing
the evolution of the mean (5)–(7) to the case of OFDM
frequency-selective channels. The mean m(l)

vi,k of the output
message of a variable node with a degree i in the kth subband
Bi is given by

m(l)
vi,k = mu0

(
Hi,k

)
+ (i− 1)m(l−1)

u . (18)

Then, at the lth iteration of belief propagation decoding,
an incoming message v to a check node will have the follow-

ing Gaussian mixture density f (l)v :

f (l)v =
tcmax∑
i=2

λ
(pi)
i


Ns(i)∑

k=1
αi,kN

(
m(l)

vi,k , 2m
(l)
vi,k

) (19)

which leads to the generalization of (7):

m(l)
u

=
trmax∑
j=2

ρjφ
−1

1−

[
1−

tcmax∑
i=2

λ
(pi)
i

( Ns(i)∑
k=1

αi,kφ
(
m(l)

vi,k

))] j−1
 .

(20)

Now, using (18) and (20) iteratively, we can follow the evo-

lution of m(l)
u along the decoding iterations for a frequency-

selective channel. We will make use of these equations in or-
der to optimize the LDPC code profile.

3.3. Optimization

In [9], the optimization criterion was to minimize the LDPC
decoding threshold, which seems to be the best choice for sta-
tionary channels. We think that a different optimization cri-
terion could be used for OFDM frequency-selective channels
based on their nonstationarity, leading to a codeword which
is unequally fed by varying likelihoods. Indeed, it is more rel-
evant to place the information bits in the codeword when
the channel is less noisy. For this reason, as an optimization
criterion, we choose to minimize the information bit error
probability after L iterations of belief propagation at a care-
fully chosen Eb/N0. Using this optimization criterion, we get
the LDPC code that asymptotically achieves the best perfor-
mance after a finite number of decoding iterations for a given
Eb/N0. We will see through simulations that the choice of this
optimization criterion is relevant, especially for small block
length.

The probability of error at the lth iteration for a degree i
bits that is transmitted in the subband k (which is located in
Bi) is given by

Pel,i,k = Q



√

mu0
(
Hi,k

)
+ im(l)

u

2


 , (21)

where Q(·) is the Gaussian tail function.
Let Binfo be the band of normalized length R where the

information bits are transmitted. Likewise, Binfo,i,k = Binfo ∩
Ai,k defines the band where the information bits of degree i
of the subband k are transmitted. So, the length αinfo,i,k of this
band can be written as

αinfo,i,k = sup
ν∈Binfo,i,k

|ν| − inf
ν∈Binfo,i,k

|ν|. (22)

Therefore, we have the following property:

tcmax∑
i=2

Nst(i)∑
k=1

αinfo,i,k = R. (23)
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With these notations, the bit error probability on the in-
formation bits is defined by

Pel,info =
1
R

tcmax∑
i=2

Nst(i)∑
k=1

αinfo,i,kQ



√

mu0
(
Hi,k

)
+ im(l)

u

2


. (24)

We can note that this bit error probability depends on
the λi and pi through the parameter αinfo,i,k and the mean
mu0(Hi,k). The problem is that the dependance of (24) is non-
linear in the required parameters λi, which is the main differ-
ence of our optimization scheme compared to existing work.
It should be noted that the nonlinearity is not a result of the
criterion chosen, but comes from the nonstationarity of the
channel. It is then not possible to optimize the code profile
easily with linear programming, as in [9, 18] for the erasure
and the AWGN channels.

This nonlinear cost function minimization with contin-
uous space parameters can be solved efficiently using differ-
ential evolution [21], a method that has been previously used
for LDPC optimization in Rayleigh fading channels [16]. For
more details about differential evolution applied, we refer the
reader to [22].

4. SIMULATION RESULTS

This part presents the results obtained with our approach
(minPe) for different channels including AWGN channel,
ADSL channel, and a nonmonotonous spectrum channel.
The results are compared with those of a regular channel cod-
ing scheme and the method which consists in the minimiza-
tion of the threshold for frequency-selective channels called
minT . Section 4.1 presents the obtained irregular profiles
while Section 4.2 gives the comparison of the performances
for different codeword lengths.

4.1. Optimized irregular LDPC code profiles

In this section, we present the structure of optimized LDPC
codes over the two different frequency-selective channels:

(i) a typical ADSL channel called chA with impulse re-
sponse

hA = [0.06, 0.72, 0.54, 0.36, 0.18, 0.114,

0.078, 0.054, 0.033, 0.018, 0.012];
(25)

(ii) a nonmonotonous spectrum channel denoted by chB
with impulse response

hB = [−0.21,−0.17, 0.31, 0.68,−0.27,−0.15, 0.19, 0.13].
(26)

In order to find the good profiles in a reasonable time,
some parameters of the LDPC codes are fixed. Here we set
ρ(x) = x7, tcmax = 10, and we choose a coding rate equal to
R = 1/2.

To obtain the optimized code for a given channel, we have
minimized the bit error probability (using (24)) for a value
of Eb/N0 slightly lower than the threshold exhibited by the
minT method. Figures 4 and 5 depict the irregularity profiles
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Figure 4: Data nodes connection degrees for the chA with R = 0.5.
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Figure 5: Data nodes connection degrees for the chB with R = 0.5.

of LDPC codes obtained after optimization with respect to
chA and chB. The resulting degree distributions λ′ chA and
λ′ chB are

λ′ chA =
[
λ′2, . . . , λ

′
10

]
= [0.5, 0.1221, 0.0165, 0.1035, 0.0029, 0.1016, 0.0675,

0.0772, 0.0087],

λ′ chB =
[
λ′2, . . . , λ

′
10

]
= [0.5, 0.0069, 0.111, 0.1202, 0.1455, 0.0263, 0.0102,

0.0058, 0.0745].

(27)
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Interestingly, the optimization process gives proportions
of degree 2 bit nodes (λ′2) equal to 1 − R, R being the code
rate. This result is due to the minimization of the probabil-
ity of error only on the information bits, which represent ex-
actly a proportion of R of the codeword. This means that the
optimization criterion tries to protect the information bits
better that the redundancy bits by allocating more edges in
the graph to the information bits. Again, this would not be
an issue on stationary channels, but for OFDM frequency-
selective channels, the position of the information bits in the
codeword matters.

Having a look at Figures 4 and 5, we remark that putting
the node degree locations as parameters in the cost function
leads to an irregularity profile that has two behaviors. First,
the redundancy bits are connected to exactly 2 edges and
are placed in the codeword where the channel has the low-
est gain. Secondly, the connections on the information bits
are inversely proportional to the channel shape. This kind of
profile could be interpreted as a compensation for the chan-
nel selectivity. We can explain this phenomenon by the fol-
lowing way: a bit which is connected to a large number of
check nodes is well protected against the additive noise be-
cause it gets lots of information coming from the other bits
during the decoding process. So, an information bit trans-
mitted on a subcarrier with a small SNR must have a large
connection degree in order to be well protected. We once
more recall that the obtained profiles result from the op-
timization process thanks to the introduction of location
parameters in the code profile, and do not require any a pri-
ori or heuristic.

4.2. Performance study

One of LDPC drawbacks is their high encoding complex-
ity. Several authors have proposed LDPC encoding meth-
ods whose complexity scales as O(N) [12, 23, 24], but these
methods need to permute the codeword bits, breaking down
the desired irregularity profile of the code. In [25], MacKay
et al. propose to encode the information bits directly with the
parity matrix, which can be done in linear time when the par-
ity matrix is upper triangular. This approach allows to keep
the irregularity profile while ensuring a simple encoding. For
this purpose, we have derived a bit filling algorithm to build
an upper triangular parity matrix H with the profiles of Fig-
ures 4 and 5 and no cycles of length 4.

In our simulations, the number of subcarriers Nc is set to
1024, the length of the cyclic prefix is set to 12, and the LDPC
codeword length N = k × Nc. Two codeword block sizes are
used: N = 16384 (which is decoding with 200 iterations of
belief propagation) in order to obtain the performances close
to the asymptotic behavior and N = 1024 (decoding with 40
iterations of belief propagation) in order to consider more
practical cases. The results are plotted in Figures 6–10.

Figures 6 and 7 illustrate the performance between reg-
ular and optimized irregular coding schemes for a transmis-
sion over the AWGN, chA, and chB channels. The regular
code is defined by λ(x) = x3 and ρ(x) = x7. For an error
probability equal to 10−5, we can note an improvement of
1.5 dB for the optimized code compared to the regular one

Regular code ADSL channel
Optimized code ADSL channel
Regular code AWGN channel
Optimized code AWGN channel
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Figure 6: Performance comparison between our method and the
regular coding scheme for a rate R = 1/2 over chA and over the
AWGN channel. N = 1024.
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Figure 7: Performance comparison between our method and the
regular coding scheme for a rate R = 1/2 over chB. N = 1024.

for chA with roughly the same decoding complexity. The
same remarks hold true for chB with an improvement of
0.8 dB.

We have also performed the simulations with the opti-
mized code (obtained for chA) and the regular one on the
AWGN channel. These results show that the gap is greater in
the case of frequency-selective channel than for the AWGN
channel. So, we can conclude that optimized irregular cod-
ing strategy is well suited to transmissions over frequency-
selective channels.
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Figure 8: Performance comparison over chA between the code
obtained using the minPe and the minT methods. R = 1/2 and
N = 1024.

Code optimized by the minimization of Pe
Code optimized by the minimization of the threshold

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Eb/N0 (dB)

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Figure 9: Performance comparison over chA between the code
obtained using the minPe and the minT methods. R = 1/2 and
N = 16384.

Figures 8 and 9 compare the performances of LDPC
codes obtained with two different optimization criteria,
namely, the minimization of the bit error probability minPe
and the threshold minimization minT . In the case where
N = 1024 (Figure 8), the LDPC code obtained by minPe
outperforms the one obtained by the minT method. For ex-
ample, for a bit error rate (BER) equal to 10−5, we observe
an improvement equal to 1.1 dB. For N = 16384 depicted
in Figure 9, two regions can be distinguished, namely, a re-
gion in which the performances obtained by minPe are bet-

Optimized code ADSL channel
Interleaved AWGN code ADSL channel

1 2 3 4 5 6 7 8

Eb/N0 (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Figure 10: Performance comparison over chA between ourmethod
and the LDPC code obtained by optimization on AWGN channel
for a rate R = 1/2. N = 1024.

ter than ones obtained with minT . This region is defined for
the SNRs lower than 5.15 dB. For SNR higher than 5.15 dB,
the minT code presents a threshold phenomenon and out-
performs the minPe code. So, for applications where N is
constrained to a relatively small value, the use of minPe
criterion to design an optimized channel coding scheme
will be preferable.

In order to be sure that the optimization of LDPC codes
for a specific channel is of great importance, we have also
compared our codes to irregular LDPC codes presented in
[18], which have been optimized for the AWGN channel
(with the same parameters, i.e., ρ(x) = x7, tcmax = 10, and
R = 1/2). Because the positions of the codeword bits are a
result of our optimization process, we have added an inter-
leaver in the case of the code optimized on the AWGN chan-
nel. The comparison is done in Figure 10 for a codeword of
length 1024 and with the frequency-selective channel chA.
We can notice that adapting the LDPC code irregularity to
the channel shape leads to a high improvement of the coding
performances.

5. DISCUSSION AND CONCLUSION

In this paper, we have optimized the structure of LDPC codes
for transmissions over OFDM frequency-selective channel.
The optimization is based on a new and general parameter-
ization of the LDPC code irregularity: the irregularity pro-
file. We have optimized the irregularity profile using a Gaus-
sian approximation technique. We have shown that it is rele-
vant to minimize the bit error probability instead of trying to
get a vanishing block error probability LDPC code. This has
been shown by simulations on several channels and for small
and large codeword lengths. We obtain optimized LDPC
codes that exhibit a performance improvement of several dBs
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compared to a regular LDPC code. This improvement is
greater than the one observed on stationary Gaussian chan-
nel, which means that using irregular LDPC codes is even
more important on OFDM frequency-selective channels
than more simple channels.

We must emphasize that the proposed method does not
required a perfect a priori knowledge on the CSI for the op-
timization of the channel code and therefore is well suited to
practical case. Actually, the a priori knowledge on the CSI is
quite often incomplete due to the use of a short training se-
quence to estimate it. Moreover, we think that our method
is still interesting for a slowly varying channel and/or when
channel estimation mismatches occurs. However, we are cur-
rently working on the robustness of the optimized codes with
respect to partial or wrong CSI. This work will be reported
in future publication. Another discussion can be engaged to
compare our approach and power allocation approach as in
DMT standard. When perfect CSI knowledge is available at
the transmitter, the power allocation transforms a frequency-
selective channel into an AWGN channel. So, in theory, it is
possible to find the optimal channel code leading to the fre-
quency channel capacity. We can notice that this assumes a
perfect power allocation with respect to waterfilling principle.
Once again, in some practical case, perfect power allocation
is not a realistic assumption due to the CSI estimation but
also because power allocation implies the use of a bit load-
ing algorithm which authorizes to use just a few number of
constellations which assume to use integer bits. For these rea-
sons, we believe that power allocation and irregularity pro-
file optimization are not necessarily competitive and could
be used jointly in order to achieve performance close to the
capacity.

The methods that we have developed in this paper could
also be successfully applied to multiuser multicarrier modu-
lations such as MC-CDMA.
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