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Effective suppression of multiuser interference (MUI) and mitigation of frequency-selective fading effects within the complex-
ity constraints of the mobile constitute major challenges for broadband cellular downlink transceiver design. Existing wideband
direct-sequence (DS) code division multiple access (CDMA) transceivers suppress MUI statistically by restoring the orthogonality
among users at the receiver. However, they call for receive diversity and multichannel equalization to improve the fading effects
caused by deep channel fades. Relying on redundant block spreading and linear precoding, we design a so-called multicarrier
block-spread- (MCBS-)CDMA transceiver that preserves the orthogonality among users and guarantees symbol detection, re-
gardless of the underlying frequency-selective fading channels. These properties allow for deterministic MUI elimination through
low-complexity block despreading and enable full diversity gains, irrespective of the system load. Different options to perform
equalization and decoding, either jointly or separately, strike the trade-off between performance and complexity. To improve the
performance over multi-input multi-output (MIMO) multipath fading channels, our MCBS-CDMA transceiver combines well
with space-time block-coding (STBC) techniques, to exploit both multiantenna and multipath diversity gains, irrespective of the
system load. Simulation results demonstrate the superior performance of MCBS-CDMA compared to competing alternatives.

Keywords and phrases: multicarrier CDMA, broadband cellular system, frequency-selective fading channels, equalization,
MIMO, space-time block coding.

1. INTRODUCTION
The main drivers toward future broadband cellular systems,
like high-speed wireless internet access and mobile multime-
dia, require much higher data rates in the downlink (from
base to mobile station) than in the uplink (from mobile to
base station) direction. Given the asymmetric nature of most
of these broadband services, the capacity and performance
bottlenecks clearly reside in the downlink of these future sys-
tems. Broadband cellular downlink communications poses
three main challenges to successful transceiver design. First,
for increasing data rates, the underlying multipath channels

become more time dispersive, causing intersymbol interfer-
ence (ISI) and interchip interference (ICI), or, equivalently,
frequency-selective fading. Second, due to the increasing suc-
cess of future broadband services, more users will try to ac-
cess the common network resources, causingmultiuser inter-
ference (MUI). Both ISI/ICI and MUI are important perfor-
mance limiting factors for future broadband cellular systems,
because they determine their capabilities in dealing with high
data rates and system loads, respectively. Third, cost, size,
and power consumption issues put severe constraints on the
receiver complexity at the mobile station (MS).
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Direct-sequence (DS) code division multiple access
(CDMA) has emerged as the predominant air interface tech-
nology for the 3G cellular standard [1], because it increases
capacity and facilitates network planning in a cellular sys-
tem, compared to conventional multiple access techniques
like frequency-division multiple access (FDMA) and time-
division multiple access (TDMA) [2]. In the downlink, DS-
CDMA relies on the orthogonality of the spreading codes
to separate the different user signals. However, ICI destroys
the orthogonality among users, giving rise to MUI. Since
the MUI is essentially caused by the multipath channel, lin-
ear chip-level equalization, followed by correlation with the
desired user’s spreading code, allows to suppress the MUI
[3, 4, 5, 6]. However, chip equalizer receivers suppress MUI
only statistically, and require receive diversity to cope with
the effects caused by deep channel fades [7, 8].

On the other hand, it is well known that orthogo-
nal frequency-division multiplexing (OFDM), also called
multicarrier (MC) modulation, with cyclic prefixing (CP)
constitutes an elegant solution to combat the wireless chan-
nel impairments [9, 10, 11]. It converts a frequency-selective
channel into a number of parallel flat fading channels by
multiplexing blocks of information symbols on orthogonal
subcarriers using implementation efficient fast Fourier trans-
form (FFT) operations. Hence, the complex equalizer com-
monly encountered in single-carrier (SC) systems reduces to
a set of parallel and independent single-tap equalizers. How-
ever, OFDM, in itself, does not extract frequency diversity,
but calls for bandwidth overconsuming forward error correc-
tion (FEC) coding techniques to enable frequency diversity
[12]. Furthermore, OFDM as such does not support multi-
ple users but requires a multiple access technique on top of
it.

In this paper, we propose a novel MC-CDMA transceiver
that synergistically combines the advantages of DS-CDMA
and OFDM to tackle the challenges of broadband cellular
downlink communications. By capitalizing on the general
concepts of redundant block spreading and linear precoding,
our so-called multicarrier block-spread- (MCBS-)CDMA
transceiver possesses three unique properties compared to
competing alternatives (Section 2). First, by CP or zero
padding (ZP) the block-spread symbol blocks, our MCBS-
CDMA transceiver preserves the orthogonality among users,
regardless of the underlying time-dispersive multipath chan-
nels. This property allows for deterministic (as opposed to
statistical) MUI elimination through low-complexity and
channel-independent block despreading. Second, redundant
linear precoding guarantees symbol detectability and full
frequency-diversity gains, thus robustifying the transmis-
sion against deep channel fades. Assuming perfect channel
state information (CSI) at the receiver, different equalization
and decoding options, ranging from linear over decision-
directed to maximum likelihood (ML) detection, strike the
trade-off between performance and complexity (Section 3).
Finally, our transceiver exhibits a rewarding synergy with
multiantenna techniques, to increase the spectral efficiency
and to improve the link reliability of multiple users in a
broadband cellular network (Section 4). Simulation results

demonstrate the outstanding performance of the proposed
transceiver compared to competing alternatives (Section 5).

Several other MC-CDMA techniques that also combine
CDMA with OFDM have recently gained increased momen-
tum as candidate air interface for future broadband cellu-
lar systems [13]. Three different flavours of MC-CDMA ex-
ist, depending on the exact position of the CDMA and the
OFDM component in the transmission scheme. The first
variant, called MC-CDMA, performs the spreading opera-
tion before the symbol blocking (or serial-to-parallel conver-
sion), which results in a spreading of the information sym-
bols across the different subcarriers [14, 15, 16]. However,
like classical DS-CDMA, MC-CDMA does not enable full
frequency-diversity gains. The second variant, called MC-
DS-CDMA, executes the spreading operation after the sym-
bol blocking, resulting in a spreading of the information
symbols along the time axis of the different subcarriers [17,
18]. However, like classical OFDM, MC-DS-CDMA necessi-
tates bandwidth overconsuming FEC coding plus frequency-
domain (FD) interleaving to mitigate frequency-selective
fading. The third variant, called multitone (MT) DS-CDMA,
performs the spreading after the OFDM modulation such
that the resulting spectrum of each subcarrier no longer
satisfies the orthogonality condition [19]. Hence, MT-DS-
CDMA suffers from ISI and intertone interference (ITI),
as well as MUI, and requires expensive multiuser detection
techniques to achieve a reasonable performance. Finally, al-
ternative MUI-free MC transceivers, like AMOUR [20] and
generalized multicarrier (GMC) CDMA [11], rely on an or-
thogonal frequency-division multiple access- (OFDMA-)like
approach to retain the orthogonality among users, regard-
less of the underlyingmultipath channels. Unlike ourMCBS-
CDMA transceiver, these transceivers do not inherit the nice
properties of CDMA related to universal frequency reuse1 in
a cellular network, such as increased capacity and simplified
network planning.

Notation

We use roman letters to represent scalars, lower boldface let-
ters to denote column vectors (i.e., blocks), and upper bold-
face letters to denote matrices (i.e., a collection of blocks).
(·)∗, (·)T , and (·)H represent conjugate, transpose, and Her-
mitian, respectively. Further, |·| and ‖·‖ represent the abso-
lute value and Frobenius norm, respectively. We reserve E{·}
for expectation and �·� for integer flooring. Subscripts nt and
nr point to the ntth transmit and the nr th receive antenna, re-
spectively. Superscript m points to the mth user. Argument i
denotes symbol index for symbol scalar sequences and sym-
bol block index for symbol block sequences. Likewise, argu-
ment n denotes chip index for chip scalar sequences and chip
block index for chip block sequences. Tilded letters x̃ de-
note FD signals and upperlined letters x̄ denote space-time
block-encoded signals at the transmitter and block-despread

1Universal frequency reuse, also called frequency reuse of one-in-one, is
a unique attribute of CDMA systems, which refers to the reuse of the same
frequencies in neighbouring cells.
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Figure 1: MCBS-CDMA downlink transmission scheme.

signals at the receiver. Acuted letters x́ denote space-time
block-decoded signals at the receiver. Hatted letters x̂ denote
soft estimates, whereas hatted and underlined letters x̂ denote
hard estimates.

2. MCBS-CDMA TRANSCEIVER DESIGN

Effective suppression of MUI and mitigation of ISI and
frequency-selective fading, within the complexity constraints
of the MS, pose major challenges to transceiver design
for the broadband cellular downlink application. To tackle
these challenges, we propose a novel MC-CDMA transceiver
that combines two specific CDMA and OFDM concepts,
namely, block-spread CDMA and linearly-precoded OFDM.
The resulting so-called MCBS-CDMA transceiver exhibits
two unique properties compared to competing alternatives.
First, by relying on block-spread CDMA,MCBS-CDMA pre-
serves the orthogonality among users, even after propaga-
tion through a time-dispersivemultipath channel. This prop-
erty allows for deterministic (as opposed to statistical) MUI
elimination at the receiver through low-complexity block de-
spreading. Second, by relying on linearly-precoded OFDM,
MCBS-CDMA mitigates ISI and guarantees symbol detec-
tion, regardless of the underlying frequency-selective multi-
path channel. This property enables full frequency-diversity
gains and, hence, robustness against frequency-selective fad-
ing at the receiver, throughML single-user equalization. Fur-
thermore, different single-user equalization options, ranging
from linear over decision-directed toML detection, strike the
trade-off between performance and complexity.

This section is organized as follows. Section 2.1 intro-
duces the MCBS-CDMA downlink transmission scheme,
and motivates the different operations involved. Section 2.2
demonstrates how our MCBS-CDMA transceiver enables
MUI-resilient reception over frequency-selective multipath
channels. Finally, Section 2.3 argues the need for single-user
equalization and guaranteed symbol detection.

2.1. MCBS-CDMA downlink transmission

We consider a single cell of a cellular system with a base sta-
tion (BS) serving M active MSs within its coverage area. For
now, we limit ourselves to the single-antenna case and de-
fer the multiantenna case to Section 4. The block diagram in
Figure 1 describes the MCBS-CDMA downlink transmission
scheme (where only the mth user is explicitly shown) that
transforms the M user data symbol sequences {sm[i]}Mm=1,
with a rate 1/Ts, into the multiuser chip sequence u[n], with
a rate 1/Tc. Apart from the user multiplexing and the IFFT,
the MCBS-CDMA transmission scheme performs three ma-

jor operations, namely, linear precoding, block spreading,
and adding transmit redundancy. Since our scheme belongs
to the general class of block transmission schemes, the mth
user’s data symbol sequence sm[i] is first serial-to-parallel
converted into blocks of B symbols, leading to the symbol
block sequence sm[i] := [sm[iB], . . ., sm[(i + 1)B − 1]]T .

The first operation involves complex-field linear pre-
coding, where the encoding is performed over the complex
field rather than over the Galois field, as done tradition-
ally [21, 22]. Unlike MC-CDMA that spreads the informa-
tion symbols across the subcarriers employing a user-specific
spreading code [14, 15, 16], MCBS-CDMA precodes the in-
formation symbols on the different subcarriers employing a
linear precoding matrix. Specifically, the information blocks
sm[i] are linearly precoded by a Q × B matrix Θ to yield the
Q × 1 precoded symbol blocks:

s̃m[i] := Θ · sm[i], (1)

whereQ is the number of subcarriers, andΘ is a para-unitary
matrix, that is, ΘH · Θ = IB. The linear precoding can be
either redundant (Q > B) or nonredundant (Q = B). For
conciseness, we limit our discussion to redundant precod-
ing, but the proposed concepts apply equally well to nonre-
dundant precoding. As we will show later, linear precod-
ing guarantees symbol detection and maximum frequency-
diversity gains, and thus robustifies the transmission against
frequency-selective fading.

The second operation entails a block-spreading opera-
tion, which is also depicted in Figure 1. Unlike DS-CDMA
and MC-CDMA that rely on classical symbol spreading (op-
erating on a scalar symbol), MCBS-CDMA relies on block
spreading (operating on a block of symbols). Specifically,
the block sequence s̃m[i] is block spread by a factor N with
the user composite code sequence cm[n], which is the multi-
plication of a short (periodic) orthogonal Walsh-Hadamard
spreading code that is MS specific and a long (aperiodic)
overlay scrambling code that is BS specific. The chip block
sequences of the different active users are added, resulting in
the multiuser chip block sequence:

x̃[n] =
M∑

m=1
s̃m[i]cm[n], (2)

where the symbol block index i relates to the chip block index
n through i = �n/N�. The block spreading operation is also
illustrated in Figure 1, where the N × replicator repeats the
symbol block at its input N times. Collecting N consecutive
chip blocks, x̃[n], into X̃[i] := [x̃[iN], . . . , x̃[(i + 1)N − 1]],



Multicarrier Block-Spread CDMA 1571
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Figure 2: MUI-resilient MCBS-CDMA downlink reception scheme.

we obtain the symbol block level equivalent of (2), that is:

X̃[i] =
M∑

m=1
s̃m[i] · cm[i]T = S̃[i] · C[i]T , (3)

where cm[i] := [cm[iN], . . . , cm[(i + 1)N − 1]]T is the mth
user’s composite code vector used to block-spread its data
symbol block s̃m[i], S̃[i] := [s̃1[i], . . . , s̃M[i]] collects the
symbol blocks of the different active users, and C[i] :=
[c1[i], . . . , cM[i]] collects the composite code vectors of the
different active users. The block spreading operation in (3)
can be viewed as classical symbol spreading, where every
user’s information symbols on the different subcarriers are
spread along the time axis, using the same spreading code.
Furthermore, by choosing Q sufficiently high, each sub-
carrier experiences frequency-flat fading, such that the or-
thogonality among users is preserved on every subcarrier,
even after propagation through a frequency-selective chan-
nel. Consequently, as will become apparent in Section 2.2,
block spreading enables MUI-resilient reception and thus ef-
fectively deals with the MUI. Subsequently, the Q × Q IFFT
matrix FHQ transforms the FD chip block sequence x̃[n] into
the time-domain (TD) chip block sequence: x[n] = FHQ ·x̃[n].

The third operation involves the addition of transmit re-
dundancy. Specifically, the K × Q transmit matrix T, with
K the transmitted block length, K ≥ Q, adds some redun-
dancy to the chip blocks x[n], that is, u[n] := T · x[n]. As
will be clarified later, this transmit redundancy copes with
the time-dispersive effect of multipath propagation, and en-
ables low-complexity equalization at the receiver. Finally, the
resulting transmitted chip block sequence u[n] is parallel-
to-serial converted into the corresponding scalar sequence
[u[nK], . . . ,u[(n+ 1)K − 1]]T := u[n], and transmitted over
the air at a rate 1/Tc. By analyzing the rates of the differ-
ent transmitter blocks in Figure 1, it is clear that the chan-
nel symbol rate, Rs, relates to the chip rate, Rc, through
Rs = (B/K)(1/N)Rc.

From a bandwidth utilization point of view, the BS trans-
mits B information symbols to each of the M users, using
NK = N(Q + L) = N(B + 2L) transmitted chips, where
the overhead of 2L stems from the (B + L) × B redundant
linear precoder, Θ, which guarantees symbol detection, and
the length-L CP, which is common to all users and removes
interblock interference (IBI). Therefore, the bandwidth effi-
ciency of our transceiver supporting M users can be calcu-
lated as

εMCBS-CDMA = MB

NK
= MB

N(B + 2L)
≤ 1. (4)

Clearly, as the number of users approaches its maximum
value, that is, M = N , the bandwidth efficiency also con-
verges to its maximum value, ε̄MCBS-CDMA = B/(B + 2L).

2.2. MUI-resilient receptionwithMCBS-CDMA

Adopting a discrete-time baseband equivalent model, the
synchronized and chip-sampled received signal is a channel-
distorted version of the transmitted signal, and can be writ-
ten as

v[n] =
Lc∑
l=0

h[l]u[n− l] +w[n], (5)

where h[l] is the chip-sampled FIR channel that models
the frequency-selective multipath propagation between the
transmitter and the receiver including the effect of transmit
and receive filters, Lc is the order of h[l], and w[n] denotes
the additive Gaussian noise, which we assume to be white
with variance σ2w. Furthermore, we define L as a known up-
per bound on the channel order L ≥ Lc, which can be well ap-
proximated by L ≈ �τmax/Tc�+1, where τmax is the maximum
excess delay within the given propagation environment.

The block diagram in Figure 2 describes the reception
scheme for theMS of interest (which we assume to be themth
one), which transforms the received sequence v[n] into an
estimate of the desired user’s data symbol sequence ŝm[i]. As-
suming perfect chip and block synchronization, the received
sequence v[n] is serial-to-parallel converted into its corre-
sponding block sequence v[n] := [v[nK], . . . , v[(n + 1)K −
1]]T . From the scalar input/output relationship in (5), we can
derive the corresponding block input/output relationship:

v[n] = H[0] · u[n] +H[1] · u[n− 1] +w[n], (6)

where w[n] := [w[nK], . . . ,w[(n + 1)K − 1]]T is the noise
block sequence,H[0] is aK×K lower triangular Toeplitz ma-
trix with entries [H[0]]p,q = h[p − q], and H[1] is a K × K
upper triangular Toeplitz matrix with entries [H[1]]p,q =
h[K + p − q] (see, e.g., [11] for a detailed derivation of
the single-user case). The time-dispersive nature of multi-
path propagation gives rise to so-called IBI between succes-
sive blocks, which is modelled by the second term in (6). The
Q × K receive matrix R again removes the redundancy from
the blocks v[n]: y[n] := R · v[n]. The purpose of the trans-
mit/receive pair (T,R) is twofold. First, it allows for simple
block-by-block processing by removing the IBI. Second, it
enables low-complexity FD equalization bymaking the linear
channel convolution appear circulant to the received block.
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To guarantee perfect IBI removal, the pair (T,R) should sat-
isfy the following condition [11]:

R ·H[1] · T = 0. (7)

To enable circulant channel convolution, the resulting chan-
nel matrix Ḣ := R ·H[0] ·T should be circulant. In this way,
we obtain a simplified block input/output relationship in the
TD:

y[n] = Ḣ · x[n] + z[n], (8)

where z[n] := R · w[n] is the corresponding noise block se-
quence. In general, two options for the pair (T,R) exist that
satisfy the above conditions. The first option corresponds to
CP in classical OFDM systems [23], and boils down to choos-
ing K = Q + L, and selecting

T = Tcp :=
[
ITcp, I

T
Q

]T
, R = Rcp :=

[
0Q×L, IQ

]
, (9)

where Icp consists of the last L rows of IQ. The circulant prop-
erty is enforced at the transmitter by adding a cyclic prefix of
length L to each block. Indeed, premultiplying a vector with
Tcp copies its last L entries and pastes them to its top. The
IBI is removed at the receiver by discarding the cyclic prefix
of each received block. Indeed, premultiplying a vector with
Rcp deletes its first L entries and thus satisfies (7).

The second option corresponds to ZP, and boils down to
setting K = Q + L, and selecting

T = Tzp :=
[
ITQ, 0

T
Q×L

]T
, R = Rzp :=

[
IQ, Izp

]
, (10)

where Izp is formed by the first L columns of IQ. Unlike clas-
sical OFDM systems, here the IBI is entirely dealt with at the
transmitter. Indeed, premultiplying a vector with Tzp pads L
trailing zeros to its bottom and thus satisfies (7). The circu-
lant property is enforced at the receiver by time-aliasing each
received block. Indeed, premultiplying a vector withRzp adds
its last L entries to its first L entries.

Referring back to (8), circulant matrices possess a nice
property that enables simple per-tone equalization in the FD.

Property 1. Circulant matrices can be diagonalized by FFT
operations [24]

Ḣ = FHQ · H̃ · FQ, (11)

with H̃ := diag(h̃), h̃ := [H(e j0),H(e j(2π/Q)), . . . ,
H(e j(2π/Q)(Q−1))] the FD channel response evaluated on the
FFT grid, H(z) := ∑L

l=0 h[l]z−l the z-transform of h[l], and
FQ the Q ×Q FFT matrix.

Aiming at low-complexity FD processing, we transform
y[n] into the FD by defining ỹ[n] := FQ · y[n]. Relying on
Property 1, this leads to the following FD block input/output

relationship:

ỹ[n] = H̃ · x̃[n] + z̃[n], (12)

where z̃[n] := FQ · z[n] is the corresponding FD noise block
sequence. Collecting N consecutive chip blocks ỹ[n] into
Ỹ[i] := [ỹ[iN], . . . , ỹ[(i + 1)N − 1]], defining X̃[i] and Z̃[i]
in a similar manner as Ỹ[i], and exploiting (3), we obtain the
symbol block level equivalent of (12), that is,

Ỹ[i] = H̃ · S̃[i] · C[i]T + Z̃[i]. (13)

By inspecting (13), we can conclude that our transceiver pre-
serves the orthogonality among users, even after propagation
through a (possibly unknown) frequency-selective multipath
channel. This property allows for deterministic MUI elimi-
nation through low-complexity code-matched filtering. In-
deed, by block despreading (13) with the desired user’s com-
posite code vector cm[i] (we assume the mth user to be the
desired one), we obtain

ỹm[i] := Ỹ[i] · cm[i]∗ = H̃ ·Θ · sm[i] + z̃m[i], (14)

where z̃m[i] := Z̃[i] · cm[i]∗ is the corresponding noise block
sequence. Our transceiver successfully converts (through
block despreading) a multiuser detection problem into an
equivalent but simpler single-user equalization problem.
Moreover, the operation of block despreading preserves ML
optimality, since it does not incur any information loss in
the Shannon sense regarding the desired user’s symbol block
sm[i].

In the above discussion, our main focus was on the
downlink problem, which is simpler in nature than the up-
link problem, since the different user signals experience the
same multipath channel, time offset, and carrier frequency
offset. In theory, the same signal design is also feasible in the
uplink. Assuming perfect time and frequency synchroniza-
tion between the different users and the BS, it can be shown
that the orthogonality among users is still preserved, even
if the user signals now propagate through a different mul-
tipath channel. In practice, perfect time and frequency syn-
chronization cannot be guaranteed, since the user signals ex-
perience a different time offset and carrier frequency offset,
with respect to the BS. Furthermore, the BS receiver can only
compensate for a certain user’s synchronization mismatches
after this user’s signal has been separated from the received
multiuser mixture. Otherwise, a compensation for that par-
ticular user would affect all other users too. However, since
the proposed block spreading scheme relies on the orthogo-
nality preservation property, which requires perfect time and
frequency synchronization, the synchronization mismatches
would have introduced irreducible distortion at that point
already. Therefore, in contrast with the downlink, which can
rely on existing single-user schemes, a new scheme is needed
in the uplink, in which each user estimates its synchroniza-
tion mismatches with respect to the BS and compensates
these before transmission, which we refer to as presynchro-
nization. Only the small residual mismatches that remain af-
ter pre-synchronization should be compensated after separa-
tion, which we refer to as postsynchronization.
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2.3. Single-user equalization forMCBS-CDMA

After successful elimination of the MUI, we still need to de-
tect the desired user’s symbol block sm[i] from (14). Ignor-
ing, for the moment, the presence of Θ (or, equivalently, set-
ting Q = B and selecting Θ = IQ), this requires H̃ to have
full column rank Q. Unfortunately, this condition only holds
for channels that do not invoke any zero diagonal entries in
H̃. In other words, if the MS experiences a deep channel fade
on a particular tone (corresponding to a zero diagonal entry
in H̃), the information symbol on that tone cannot be recov-
ered. To guarantee symbol detectability of the B symbols in
sm[i], regardless of the symbol constellation, we thus need to
design the precoder Θ such that

rank(H̃ ·Θ) = B, (15)

irrespective of the underlying channel realization [11]. Since
an FIR channel of order L can invoke at most L zero diagonal
entries in H̃, this requires any Q − L = B rows of Θ to be
linearly independent.

In [21, 22], two classes of precoders have been con-
structed that satisfy this condition and thus guarantee sym-
bol detectability or, equivalently, enable full frequency-
diversity gain; namely, the Vandermonde precoders and
the real cosine precoders. The Q × B complex Vander-
monde precoder is defined by [Θ(ρ)]q,b = ρbq , where ρ :=
[ρ0, . . . , ρQ−1]T , and the ρq’s, with q = 0, . . . ,Q − 1, are Q
complex points, such that ρq �= ρq′ for all q �= q′. A spe-
cial case of the general Vandermonde precoder is a trun-
cated FFT matrix, defined by choosing ρq = exp(− j2πq/Q).
The Q × B real cosine precoder is defined by [Θ(φ)]q,b =
cos(b+1/2)φq, where φ := [φ0, . . . ,φQ−1]T , and the φq’s, with
q = 0, . . . ,Q − 1, are Q real points, such that φq �= (2k + 1)π
and φq ± φ′q �= 2kπ for all q �= q′ and k integer. A special case
of the general cosine precoder is a truncated discrete cosine
transform (DCT) matrix, defined by choosing φq = qπ/Q.

3. EQUALIZATIONOPTIONS

In this section, we discuss different options to perform equal-
ization and decoding of the linear precoding, either jointly
or separately, under the assumption of perfect CSI at the re-
ceiver. These options allow to trade-off performance versus
complexity, ranging from optimal ML detection with expo-
nential complexity to linear and decision-directed detection
with linear complexity. To evaluate the complexity, we dis-
tinguish between the initialization phase, when the equaliz-
ers are calculated based on the channel knowledge, and the
data processing phase, when the received data is actually pro-
cessed. The rate of the former is related to the channel’s fad-
ing rate, whereas that of the latter is executed continuously at
the symbol block rate. By analyzing the rate of the different
receiver blocks in Figure 2, it is clear that the equalizer oper-
ates at a rate which is B times lower than the symbol rate that
is, Req = Rs/B.

This section is organized as follows. Section 3.1 investi-
gates ML detection. Section 3.2 studies joint linear equaliza-
tion and decoding, whereas Section 3.3 introduces joint deci-

Table 1: Complexity of ML.

Data processing

Multiplications QCB

Additions Q
2CB+1 −CB − 1

C − 1
−CB

Data transfers 3Q
2CB+1 −CB − 1

C
− 1 + 2QCB − 3

sion feedback equalization and decoding. Finally, Section 3.4
proposes separate linear equalization and decoding.

3.1. ML detection

The ML algorithm is optimal in an ML sense but has a very
high complexity. Amongst all possible transmitted blocks, it
retains the one that maximizes the likelihood function or,
equivalently, minimizes the Euclidean distance:

ŝm[i] = arg min
sm[i]∈S

∥∥ỹm[i]− H̃ ·Θ · sm[i]∥∥2. (16)

In other words, the ML metric is given by the Euclidean dis-
tance between the actual received block and the block that
would have been received if a particular symbol block had
been transmitted in a noiseless environment. The number of
possible transmit vectors in S is the cardinality of S, that is,
|S| = CB, with C the constellation size. Consequently, the
number of points to inspect grows exponentially with the ini-
tial block length B.

The ML algorithm does not require an initialization
phase. During the data processing phase, the ML algorithm
calculates the Euclidean distance metric of (16), for all possi-
ble transmit vectors sm[i]. To lower the complexity, a tree-
like implementation avoids frequent recalculation of com-
mon subexpressions. Table 1 summarizes the complexity of
the ML algorithm in terms of complex multiplications, addi-
tions, and data transfers. The overall complexity is O(QCB)
during data processing. Hence, this algorithm is only feasible
for a small block length B and a small constellation size C.

3.2. Joint linear equalization and decoding

Linear equalizers that perform joint equalization and decod-
ing combine a low complexity with medium performance. A
first possibility is to apply a zero-forcing block linear equal-
izer (ZF-BLE) [25]

GZF =
(
ΘH · H̃H · H̃ ·Θ)−1 ·ΘH · H̃H , (17)

which completely eliminates the ISI, irrespective of the noise
level. A second possibility is to apply a minimum mean-
square-error block linear equalizer (MMSE-BLE) [25]

GMMSE =
(
ΘH · H̃H · H̃ ·Θ +

σ2w
σ2s

IB

)−1
·ΘH · H̃H , (18)

which minimizes the MSE between the actual transmitted
symbol block and its estimate. Here, σ2w and σ2s are the noise
variance and the information symbol variance, respectively.
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Table 2: Complexity of ZF-BLE.

Initialization Data processing

Multiplications
B3Q

3
+ 3B2Q +

13
6
BQ BQ

Additions
B3Q

3
+ 3B2Q − 5

6
BQ− B2 BQ− B

Data transfers 2B3Q + 21B2Q + 7BQ− 3B2 6BQ− 3B

Table 3: Complexity of MMSE-BLE.

Initialization Data processing

Multiplications
B3Q

6
+
5
2
B2Q +

7
3
BQ + 1 BQ

Additions
5
2
B2Q − BQ

2
− B2 + B BQ− B

Data transfers
B3Q

2
+ 15B2Q +

11
2
BQ− 3B2 + 3B + 3 6BQ− 3B

During the initialization phase, GZF and GMMSE can be
computed from the set of multiple linear systems, implicitly
shown in (17) and (18), respectively. For the ZF-BLE, the so-
lution of each linear system can be found using the LU de-
composition, which relies on Gauss elimination with partial
pivoting [24]. For the MMSE-BLE, each linear system can be
solved based on the LDLH decomposition (instead of the LU
decomposition), which relies on Gauss elimination without
pivoting [24]. During the data processing phase, the equal-
izers GZF and GMMSE are applied to the received block ỹm[i].
Tables 2 and 3 summarize the complexity of the ZF- and the
MMSE-BLE, respectively, in terms of complex multiplica-
tions, additions, and data transfers. In both cases, the overall
complexity is O(B3Q) during initialization and O(BQ) dur-
ing data processing.

3.3. Joint decision feedback equalization
and decoding

The class of nonlinear equalizers that perform joint decision
feedback equalization and decoding lies in between the for-
mer categories, both in terms of performance and in com-
plexity. The block decision feedback equalizers (BDFEs) con-
sist of a feedforward section, represented by the matrix W,
and a feedback section, represented by the matrix B [26, 27]:

ŝm[i] = slice
[
W · ỹm[i]− B · ŝm[i]]. (19)

The feedforward and feedback sections can be designed ac-
cording to a ZF or MMSE criterium. In either case, B should
be a strictly upper or lower triangular matrix with zero di-
agonal entries, in order to feedback decisions in a causal
way. To design the decision feedback counterpart of the ZF-
BLE, we compute the Cholesky decomposition of the matrix
ΘH · H̃H · H̃ ·Θ in (17), that is,

ΘH · H̃H · H̃ ·Θ = (Σ1 ·U1
)H · Σ1 ·U1, (20)

where U1 is an upper triangular matrix with ones along the
diagonal and Σ1 is a diagonal matrix with real entries. The
ZF-BDFE then follows from

WZF = U1 ·GZF = Σ−11 · (UH
1 · Σ1

)−1 ·ΘH · H̃H ,

BZF = U1 − IB.
(21)

The linear feedforward section WZF suppresses the ISI orig-
inating from “future” symbols, the so-called precursor ISI,
whereas the nonlinear feedback section BZF eliminates the
ISI originating from “past” symbols, the so-called postcursor
ISI.

Likewise, to design the decision feedback counterpart of
the MMSE-BLE, we compute the Cholesky decomposition of
the matrix ΘH · H̃H · H̃ ·Θ + (σ2w/σ

2
s )IB in (18), that is,

ΘH · H̃H · H̃ ·Θ +
σ2w
σ2s

IB =
(
Σ2 ·U2

)H · Σ2 ·U2, (22)

where U2 is an upper triangular matrix with ones along the
diagonal, and Σ2 is a diagonal matrix with real entries. The
MMSE-BDFE can then be calculated as

WMMSE = U2 ·GMMSE = Σ−12 · (UH
2 · Σ2

)−1 ·ΘH · H̃H ,

BMMSE = U2 − IB.
(23)

During the initialization phase, the feedforward and
feedback filters of the ZF- and MMSE-BDFE are computed
based on (21) and (23), respectively, relying on the Cholesky
decomposition [24]. During the data processing phase, the
received data is first filtered with the feedforward filter, W,
and then fed back with the feedback filter, B, according to
(19). Tables 4 and 5 summarize the complexity of the ZF- and
MMSE-BDFE, respectively, in terms of complex multiplica-
tions, additions, and data transfers. In both cases, the overall
complexity is O(B3Q) during initialization and O(BQ) dur-
ing data processing. Hence, the nonlinear BDFEs involve the
same order of complexity as their linear counterparts.
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Table 4: Complexity of ZF-BDFE.

Initialization Data processing

Multiplications
B3Q

3
+ 4B2Q +

B3

6
+
13
6
BQ +

B2

2
+
B

3
BQ + B2

Additions
B3Q

3
+ 4B2Q +

B3

6
− 11

6
BQ− B2 +

5
6
B BQ + B2 − B

Data transfers 2B3Q + 27B2Q + B3 + 4BQ − B2 + 4B 6BQ + 6B2 − 3B

Table 5: Complexity of MMSE-BDFE.

Initialization Data processing

Multiplications
B3Q

6
+
7
2
B2Q +

B3

6
+
7
3
BQ +

B2

2
+
B

3
+ 1 BQ + B2

Additions
7
2
B2Q +

B3

6
− 3

2
BQ− B2 +

11
6
B BQ + B2 − B

Data transfers
B3Q

2
+ 21B2Q + B3 +

5
2
BQ− B2 + 7B + 3 6BQ + 6B2 − 3B

3.4. Separate linear equalization and decoding

Previously, we have only considered joint equalization and
decoding of the linear precoding. However, in order to even
further reduce the complexity with respect to the block linear
equalizers of Section 3.2, equalization and decoding can be
performed separately as well:

ŝm[i] = ΘH · G̃ · ỹm[i], (24)

for which we rely on the para-unitary property ofΘ. Here, G̃
performs per-tone linear equalization (PT-LE) only, and tries
to restore s̃m[i], whereas ΘH subsequently performs linear
decoding only, and tries to restore sm[i].

The ZF-per-tone linear equalizer (PT-LE), which can be
expressed as

G̃ZF =
(
H̃H · H̃)−1 · H̃H , (25)

perfectly removes the amplitude and phase distortion on ev-
ery tone, irrespective of the noise level.

The MMSE-PT-LE, which balances amplitude and phase
distortion with noise enhancement on every tone, can be ex-
pressed as

G̃MMSE =
(
H̃H · H̃ + σ2wR

−1
s̃

)−1 · H̃H , (26)

where Rs̃ := E{s̃m[i] · s̃m[i]H} = σ2s Θ ·ΘH is the covariance
matrix of s̃m[i]. The MMSE equalizer only decouples into Q
parallel and independent single-tap equalizers, if we neglect
the color in the precoded symbols, that is, Rs̃ ≈ σ2s IQ.

During the initialization phase, G̃ZF and G̃MMSE are cal-
culated from (25) and (26), respectively, where the matrix
inversion reduces to Q parallel scalar divisions. During the
data processing phase, the received data is separately equal-
ized and decoded, according to (24). Furthermore, the lin-
ear decoding step relies on implementation efficient IDCT or
IFFT operations. Tables 6 and 7 summarize the complexity
of the ZF- and MMSE-PT-LE, respectively, in terms of com-

plex multiplications, additions, and data transfers. In both
cases, the overall complexity is O(Q) during initialization
and O(Q log2(Q)) during data processing.

4. EXTENSION TOMULTIPLE ANTENNAS

As shown in Sections 2 and 3, MCBS-CDMA successfully
addresses the challenges of broadband cellular downlink
communications. However, the spectral efficiency of single-
antenna MCBS-CDMA is still limited by the received signal-
to-noise ratio (SNR) and cannot be further improved by tra-
ditional communication techniques. As opposed to single-
antenna systems, MIMO systems that deploy NT trans-
mit and NR receive antennas enable an Nmin-fold capac-
ity increase in rich scattering environments, where Nmin =
min{NT ,NR} is called the multiplexing gain [28, 29, 30]. Be-
sides the time, frequency, and code dimensions, MIMO sys-
tems create an extra spatial dimension that allows to increase
the spectral efficiency and/or to improve the performance.
On the one hand, space-division multiplexing (SDM) tech-
niques achieve high spectral efficiency by exploiting the spa-
tial multiplexing gain [31] (see also [32]). On the other hand,
space-time coding (STC) techniques achieve high quality-
of-service (QoS) by exploiting diversity and coding gains
[33, 34, 35]. Besides the leverages they offer, MIMO systems
also sharpen the challenges of broadband cellular down-
link communications. First, time dispersion and ISI are now
caused by NTNR frequency-selective multipath fading chan-
nels instead of just 1. Second, MUI originates from NTM
sources instead of justM. Third, the presence of multiple an-
tennas seriously impairs a low-complexity implementation
of theMS. To tackle these challenges, we will demonstrate the
synergy between our MCBS-CDMA waveform and MIMO
signal processing. In particular, we focus on a space-time
block-coded (STBC) MCBS-CDMA transmission, but the
general principles apply equally well to a space-time trellis
coded or a space-division multiplexed MCBS-CDMA trans-
mission.



1576 EURASIP Journal on Applied Signal Processing

Table 6: Complexity of ZF-PT-LE.

Initialization Data processing

Multiplications 2Q Q
(
1
2
log2(Q) + 1

)
Additions — Q log2(Q)

Data transfers 6Q 3Q
(
3
2
log2(Q) + 1

)

Table 7: Complexity of MMSE-PT-LE.

Initialization Data processing

Multiplications 2Q + 1 Q
(
1
2
log2(Q) + 1

)
Additions Q Q log2(Q)

Data transfers 9Q + 3 3Q
(
3
2
log2(Q) + 1

)

This section is organized as follows. Section 4.1 details
the STBCMCBS-CDMA transmission scheme for the case of
NT = 2 transmit antennas. Section 4.2 demonstrates how the
user orthogonality preservation property of MCBS-CDMA
translates to the MIMO case, which allows to convert a diffi-
cult multiuser MIMO detection problem into an equivalent
but simpler single-userMIMO equalization problem. Finally,
Section 4.3 explains how space-time decoding and equaliza-
tion can then be performed for each user separately.

4.1. Space-time block-codedMCBS-CDMA
transmission

The block diagram in Figure 3 describes the STBC MCBS-
CDMA downlink transmission scheme (where only the mth
user is explicitly shown), that transforms the M user data
symbol sequences {sm[i]}Mm=1 into NT ST coded multiuser
chip sequences {unt [n]}NT

nt=1 with a rate 1/Tc. For conciseness,
we limit ourselves to the case of NT = 2 transmit antennas
with rate R = 1 space-time block codes. Note, however, that
the proposed technique can be easily extended to the case of
NT > 2 transmit antennas with R = 1/2 space-time block
codes, by resorting to the generalized orthogonal designs of
[35]. As for the single-antenna case, the information sym-
bols are first grouped into blocks of B symbols and linearly
precoded. Unlike the traditional approach of performing ST
encoding at the scalar symbol level, we perform ST encoding
at the symbol block level; this was also done in, for exam-
ple, [36]. Out ST encoder operates in the FD and takes two
consecutive symbol blocks {s̃m[2i], s̃m[2i + 1]} to output the
following 2Q × 2 matrix of ST coded symbol blocks:

[
s̄m1 [2i] s̄m1 [2i + 1]
s̄m2 [2i] s̄m2 [2i + 1]

]
=
[

s̃m[2i] −s̃m[2i + 1]∗

s̃m[2i + 1] s̃m[2i]∗

]
. (27)

At each time interval i, the ST coded symbol blocks s̄m1 [i] and
s̄m2 [i] are forwarded to the first and the second transmit an-
tenna, respectively. From (27), we can easily verify that the

transmitted symbol block at time instant 2i + 1 from one
antenna is the conjugate of the transmitted symbol block at
time instant 2i from the other antenna (with a possible sign
change). This corresponds to a per-tone implementation of
the classical Alamouti scheme for frequency-flat fading chan-
nels [34]. As we will show later, this property allows for de-
terministic transmit stream separation at the receiver.

After ST encoding, the resulting symbol block sequences
{s̄mnt [i]}NT

nt=1 are block-spread and code-division multiplexed
with those of the other users:

x̃nt [n] =
M∑

m=1
s̄mnt [i]c

m[n], n = iN + n′. (28)

At this point, it is important to note that each of the NT par-
allel block sequences are block spread by the same composite
code sequence cm[n], guaranteeing an efficient utilization of
the available code space. As will become apparent later, this
property allows for deterministic user separation at every re-
ceive antenna. After IFFT transformation and the addition of
some form of transmit redundancy

unt [n] = T · FHQ · x̃nt [n], (29)

the corresponding scalar sequences {unt [n]}NT
nt=1 are trans-

mitted over the air at a rate 1/Tc.

4.2. MUI-resilientMIMO reception

The block diagram in Figure 4 describes the reception
scheme for the MS of interest, which transforms the dif-
ferent received sequences {vnr [n]}NR

nr=1 into an estimate of
the desired user’s data sequence ŝm[i]. After transmit redun-
dancy removal and FFT transformation, we obtain the mul-
tiantenna counterpart of (13):

Ỹnr [i] =
NT∑
nt=1

H̃nr ,nt · X̃nt [i] + Z̃nr [i], (30)

where Ỹnr [i] := [ỹnr [iN], . . . , ỹnr [(i + 1)N − 1]] stacks N
consecutive received chip blocks ỹnr [n] at the nr th receive
antenna, H̃nr ,nt is the diagonal FD channel matrix from the
ntth transmit to the nr th receive antenna, and X̃nt [i] and
Z̃nr [i] are similarly defined as Ỹnr [i]. From (28) and (30),
we can conclude that our transceiver retains the user orthog-
onality at each receive antenna, irrespective of the underly-
ing frequency-selective multipath channels. As in the single-
antenna case, a low-complexity block despreading operation
with the desired user’s composite code vector cm[i] deter-
ministically removes the MUI at each receive antenna:

ȳmnr [i] := Ỹnr [i] · cm[i]∗ =
NT∑
nt=1

H̃nr ,nt · s̄mnt [i] + z̄mnr [i]. (31)

Hence, our transceiver successfully converts (through block
despreading) a multiuser MIMO detection problem into an
equivalent single-user MIMO equalization problem.
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Figure 3: STBC MCBS-CDMA downlink transmission scheme.
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Figure 4: MUI-resilient STBC/MCBS-CDMAMIMO reception scheme.

4.3. Single-user space-time decoding and equalization

After MUI elimination, the information blocks sm[i] still
need to be decoded from the received block despread se-
quences {ȳmnr [i]}NR

nr=1. Our ST decoder decomposes into three
steps: an initial ST decoding step, a transmit stream separa-
tion step for each receive antenna, and, finally, a receive an-
tenna combining step.

The initial ST decoding step considers two consecutive
symbol blocks {ȳmnr [2i] and ȳmnr [2i + 1]}, both satisfying the
block input/output relationship of (31). By exploiting the ST
code structure of (27) as in [36], we arrive at

ȳmnr [2i] = H̃nr ,1 · s̄m1 [2i] + H̃nr ,2 · s̄m2 [2i] + z̄mnr [2i], (32)

ȳmnr [2i + 1]∗ = −H̃∗
nr ,1 · s̄m2 [2i] + H̃∗

nr ,2 · s̄m1 [2i] + z̄mnr [2i + 1]∗.
(33)

Combining (32) and (33) into a single block matrix form, we
obtain[

ȳmnr [2i]

ȳmnr [2i + 1]∗

]
︸ ︷︷ ︸

r̄mnr [i]

=
[
H̃nr ,1 H̃nr ,2

H̃∗
nr ,2 −H̃∗

nr ,1

]
︸ ︷︷ ︸

H̄nr

·
[

s̃m[2i]
s̃m[2i + 1]

]
+

[
z̄mnr [2i]

z̄mnr [2i + 1]∗

]
︸ ︷︷ ︸

η̄mnr [i]

,

(34)

where s̄m1 [2i] = s̃m[2i] and s̄m2 [2i] = s̃m[2i + 1] follow
from (27). From the structure of H̄nr in (34), we can de-
duce that our transceiver retains the orthogonality among
transmit streams at each receive antenna for each tone sep-
arately, regardless of the underlying frequency-selective mul-
tipath channels. A similar property was also encountered

in the classical Alamouti scheme but only for single-user
frequency-flat fading multipath channels [34].

The transmit stream separation step relies on this prop-
erty to deterministically remove the transmit stream inter-
ference through low-complexity linear processing. We define
the Q × Q matrix D̃nr with nonnegative diagonal entries as
D̃nr := [H̃nr ,1 · H̃∗

nr ,1 + H̃nr ,2 · H̃∗
nr ,2]

1/2. From (34), we can ver-
ify that the channel matrix H̄nr satisfies H̄

H
nr · H̄nr = I2 ⊗ D̃2

nr ,
where ⊗ stands for Kronecker product. Based on H̄nr and
D̃nr , we can construct a unitarymatrix Ūnr := H̄nr ·(I2⊗D̃−1nr ),
which satisfies ŪH

nr · Ūnr = I2Q and ŪH
nr · H̄nr = I2 ⊗ D̃nr . Per-

forming unitary combining on (34) (through ŪH
nr ) collects

the transmit antenna diversity at the nrth receive antenna:

[
ýmnr [2i]

ýmnr [2i + 1]

]
︸ ︷︷ ︸

ŕmnr [i]

:= ŪH
nr · r̄mnr [i]

=
[

D̃nr · s̃m[2i]
D̃nr · s̃m[2i + 1]

]
+

[
źmnr [2i]

źmnr [2i + 1]

]
︸ ︷︷ ︸

ήmnr [i]

,

(35)

where the resulting noise ήmnr [i] := ŪH
nr · η̄mnr [i] is still white

with variance σ2w. Since multiplying with a unitary matrix
preserves ML optimality, we can deduce from (35) that the
symbol blocks s̃m[2i] and s̃m[2i + 1] can be decoded sep-
arately in an optimal way. As a result, the different symbol
blocks s̃m[i] can be detected independently from

ýmnr [i] = D̃nr · s̃m[i] + źmnr [i]. (36)

Stacking the blocks from the different receive antennas
{ýmnr [i]}NR

nr=1 for the final receive antenna combining step, we
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obtain 

ým1 [i]
...

ýmNR
[i]




︸ ︷︷ ︸
ým[i]

=



D̃1
...

D̃NR




︸ ︷︷ ︸
H́

·s̃m[i] +



źm1 [i]
...

źmNR
[i]




︸ ︷︷ ︸
źm[i]

(37)

At this point, we have only collected the transmit antenna
diversity at each receive antenna, but still need to collect the
receive antenna diversity. We define theQ×Qmatrix D̃ with
nonnegative diagonal entries as D̃ := [

∑NT
nt=1

∑NR
nr=1 H̃nr ,nt ·

H̃∗
nr ,nt ]

1/2. From (37), we can verify that: H́H · H́ = D̃2. Based
on H́ and D̃, we can construct a tall unitary matrix Ú := H́ ·
D̃−1, which satisfies ÚH · Ú = IQ and ÚH · H́ = D̃. Gathering
the receive antenna diversity through multiplying (37) with
ÚH , we finally obtain

ỹm[i] := ÚH · ým[i] = D̃ ·Θ · sm[i] + z̃m[i], (38)

where the resulting noise z̃m[i] := ÚH·źm[i] is still white with
variance σ2w. Since the multiplication with a tall unitary ma-
trix, which does not remove information, preserves ML de-
coding optimality, the blocks sm[i] can be optimally decoded
from (38). Furthermore, since (38) has the same structure
as its single-antenna counterpart in (14), the design of the
linear precoder Θ in Section 2.3 and the different equaliza-
tion options that we have discussed in Section 3 can be ap-
plied here as well. Specifically, with Lt the number of taps of
the underlying multipath channels, the ML detector achieves
the full diversity order ofNTNRLt, hence, bothmulti-antenna
andmultipath diversity. The transmit antenna diversity is en-
abled at the transmitter by the space-time encoder and col-
lected at each receive antenna by the transmit stream sepa-
ration step. The receive antenna diversity is collected by the
final receive antenna combining step. The multipath diver-
sity is enabled at the transmitter by the linear precoder, and
extracted at the receiver by the ML joint equalization and de-
coding step.

5. SIMULATION RESULTS

We consider the downlink of an MCBS-CDMA system, op-
erating at a carrier frequency of Fc = 2GHz and transmitting
with a chip rate of Rc = 1/Tc = 4.096MHz. Each user’s bit
sequence is QPSKmodulated with nb = 2 bits per symbol. To
assess the performance of the MCBS-CDMA system, we have
selected ITU’s outdoor-to-indoor and pedestrian B channel
model, which models typical urban propagation environ-
ments. The main parameters of this tapped delay line model
are summarized in Table 8. Hence, the multipath channel has
Lt = 6 Rayleigh fading taps with a maximum excess delay
of τmax = 3700 ns, resulting in a minimum channel order
of Lmin = �τmax/Tc = 16. To satisfy the IBI removal con-
dition L ≥ Lmin, we choose the CP length L = 32. This
specific design can even handle a maximum excess delay of
Tg = LTc = 7812.5 ns, with Tg the guard time. However, a
larger transmit redundancy can be used to handle more ICI.

Table 8: Parameters of the ITU pedestrian B channel.

Tap Excess delay (ns) Average relative power (dB)

1 0 0
2 200 −0.9
3 800 −4.9
4 1200 −8.0
5 2300 −7.8
6 3700 −23.9

Table 9: Main MCBS-CDMA system parameters.

Carrier frequency Fc = 2GHz
Chip rate Rc = 4.096MHz
Modulation format nb = 2 (QPSK)
Initial block length B = 224
Cyclic prefix length L = 32
Number of subcarriers Q = 256
Transmitted block length K = 288
Symbol rate Rs = 199 kHz

Adversely, a smaller transmit redundancy is allowed if less ICI
has to be handled. To limit the overhead, we choose the num-
ber of subcarriers Q = 8L = 256, leading to a transmitted
block length K = Q + L = 288. Hence, the information sym-
bols are parsed into blocks of B = Q − L = 224 symbols and
linearly precoded into blocks of sizeQ = 256. TheQ×B pre-
codingmatrix,Θ, constitutes the first B columns of theQ×Q
DCT matrix [22]. The precoded symbol blocks are subse-
quently block spread by a real orthogonal Walsh-Hadamard
spreading code of length N = 16, along with a complex ran-
dom scrambling code. For the above parameters, this results
in a channel symbol rate of Rs = (B/K)(1/N)Rc = 199 kHz.
For convenience, the mainMCBS-CDMA system parameters
are summarized in Table 9.

In the following, we show the average bit error rate (BER)
versus the average received SNR for three different test cases.
Here, the SNR is defined as the average received energy per
bit of the desired user versus the noise power spectral den-
sity. Section 5.1 compares the different single-user equaliza-
tion options, from a BER performance as well as a complex-
ity point of view. Section 5.2 compares the BER performance
of the proposed MCBS-CDMA transceiver with two com-
peting CDMA transceivers. Finally, Section 5.3 discusses the
BER performance of the SIBC-MCBS-CDMA transceiver in
different propagation environments.

5.1. Comparison of different equalization options

We test the different equalization options, discussed in
Section 3, for a fully-loadedMCBS-CDMA system withM =
16 active users.

Figure 5 compares the performance of the different block
linear equalizers (BLEs) and BDFEs that perform joint equal-
ization and decoding. As a reference also, the performance
of a system without linear precoding (uncoded) as well as
the optimal ML performance are shown. Clearly, the system
without linear precoding only achieves diversity 1, whereas
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Figure 5: Performance comparison of joint block linear equaliza-
tion (BLE) and decoding versus joint block decision feedback equal-
ization (BDFE) and decoding for fully-loaded MCBS-CDMA sys-
tem withM = 16 users. Both ZF and MMSE critera are considered.
Uncoded and ML performances are shown as a reference.

ML detection achieves the full frequency-diversity gain Lt =
6. The ZF-BLE performs worse than the uncoded system at
low SNR but better at high SNR (SNR ≥ 9 dB). The MMSE-
BLE always outperforms the uncoded system and achieves
a diversity gain between 1 and Lt = 6. At a BER of 10−3,
it realizes a 3 dB gain compared to its ZF counterpart. The
nonlinear ZF- and MMSE-BDFEs outperform their respec-
tive linear counterparts, although this effect is more pro-
nounced for the ZF than for theMMSE criterion. For a target
BER of 10−3, the MMSE-BDFE exhibits a 1.9 dB gain relative
to the MMSE-BLE, whereas the ZF-BDFE exhibits a 4.2 dB
gain relative to the ZF-BLE. Furthermore, the MMSE-BDFE
marginally outperforms the ZF-BDFE by 0.7 dB, and comes
within 1.4 dB of the optimal ML detector.

Figure 6 compares the performance of separate PT-LE
and decoding versus joint block linear equalization (BLE)
and decoding, both of which perform linear equalization.
On the one hand, the ZF-PT-LE always performs worse than
the uncoded system, due to the excessive noise enhancement
caused by the presence of channel nulls. For a target BER of
10−2, the ZF-BLE outperforms its corresponding ZF-PT-LE
by 7.4 dB. On the other hand, the MMSE-PT-LE performs
within 0.3 dB of its corresponding MMSE-BLE, and, thus,
achieves a diversity gain between 1 and Lt = 6. The MMSE-
BLE, on its turn, outperforms the uncoded system by 4.8 dB
and comes within 2.7 dB of the optimal ML detector.

Tables 10 and 11 summarize the complexity results for
the different MCBS-CDMA equalization options. Table 10
compares the initialization complexity of the different equal-
ization options. The initialization complexity of the ZF-BLE,
which is similar to that of the ZF-BDFE, involves an opera-
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Figure 6: Performance comparison of separate PT-LE and decod-
ing versus joint block linear equalization (BLE) and decoding for
a fully-loaded MCBS-CDMA system with M = 16 users. Both the
ZF and the MMSE criteria are considered. Uncoded andML perfor-
mances are shown as a reference.

Table 10: Comparison of the initialization complexity of the differ-
ent MCBS-CDMA equalization options.

Initialization
mpys adds dts

ML — — —
ZF-BLE 998M 998M 6.0G
MMSE-BLE 512M 32M 1.6G
ZF-BDFE 1.0G 1.0G 6.1G
MMSE-BDFE 527M 47M 1.7G
ZF-PT-LE 0.5 k - 1.5 k
MMSE-PT-LE 0.5 k 0.3 k 2.3 k

Table 11: Comparison of the data processing complexity of the dif-
ferent MCBS-CDMA equalization options.

Data processing
mpys/s adds/s dts/s

ML 1.7 · 10131 G 3.9 · 10131 G 1.5 · 10132 G
ZF-BLE 51M 51M 305M
MMSE-BLE 51M 51M 305M
ZF-BDFE 96M 95M 573M
MMSE-BDFE 96M 95M 573M
ZF-PT-LE 1M 2M 9M
MMSE-PT-LE 1M 2M 9M

tion count of 998Mmpys and 998Madds, and a data trans-
fer count of 6.0Gdts. The initialization complexity of the
MMSE-BLE, which is similar to that of the MMSE-BDFE,
involves 2 times less multiplications, 30 times less additions,
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and 3.7 times less data transfers. Specifically, it amounts to
an operation count of 512Mmpys and 32Madds, and a data
transfer count of 1.6Gdts. On the other hand, the MMSE-
PT-LE involves an initialization complexity, which is between
5 and 6 orders of magnitude smaller than that of its cor-
responding MMSE-BLE. Specifically, its initialization com-
plexity amounts to an operation count of 0.5 kmpys and
0.3 kadds, and a data transfer count of 2.3 kdts.

Table 11 compares the data processing complexity of the
different equalization options. Note that the equalizer block
operates at a rate which is B times lower than the symbol rate
Rs, that is, Req = Rs/B = 889Hz. The data processing com-
plexity of the optimal ML algorithm is astronomically high,
which certainly prohibits implementation, even on the most
advanced quantum computers. The BLEs have a data pro-
cessing complexity, which amounts to an operation count of
51Mmpys/s and 51Madds/s, and a data transfer bandwidth
of 305Mdts/s. On the one hand, the data processing com-
plexity of the BDFEs is approximately twice that of the BLEs.
On the other hand, the data processing complexity of the PT-
LEs is roughly between 1 and 2 orders of magnitude lower
than that of the corresponding BLEs. Specifically, it amounts
to an operation count of 1Mmpys/s and 2Madds/s, and a
data transfer bandwidth of 9Mdts/s.

5.2. Comparison of different CDMA transceivers

In the following, we compare three different CDMA tran-
sceivers.

(1) The first transceiver applies the downlink DS-CDMA
transmission scheme used in 3G cellular standards,
performing classical symbol spreading. The receiver
employs either a classical RAKE combiner or an
MMSE time-domain chip equalizer (TD-CE) [3, 4, 5,
6, 7, 8] based on perfect CSI. The number of fingers
in the RAKE combiner equals Lt = 6, while the order
of the chip equalizer equals Qc = 23. The bandwidth
efficiency of this first transceiver, supportingM1 users,
can be calculated as ε1 = M1/N , where N is the length
of the Walsh-Hadamard spreading codes.

(2) The second transceiver applies the downlink MC-
CDMA transmission scheme, performing classical
symbol spreading followed by OFDMmodulation [14,
15, 16]. The receiver employs an MMSE frequency-
domain chip equalizer (FD-CE) based on perfect CSI.
The bandwidth efficiency of this second transceiver,
supporting M2 users, can be calculated as ε2 =
εMC-CDMA = M2B2/(B2N + L), where B2 is the initial
block length and Q2 = B2N is the number of subcar-
riers. The overhead of L stems from the CP for IBI re-
moval.

(3) The third transceiver is our MCBS-CDMA transceiver
that we have derived in Section 2, combining block-
spread CDMA and linearly-precoded OFDM. The re-
ceiver employs an MMSE PT-LE or ML detection. As
discussed in Section 2.1, the bandwidth efficiency of
this third transceiver, supportingM3 users, can be cal-
culated as ε3 = εMCBS-CDMA =M3B3/N(B3+2L), where
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DS-CDMA/MMSE-TD-CE
MC-CDMA/MMSE-FD-CE
MCBS-CDMA/MMSE-PT-LE
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Figure 7: Comparison of DS-CDMA, MC-CDMA, and MCBS-
CDMA for small system load with M1 = 3, M2 = 3, and M3 =
4 users, respectively: RAKE and MMSE-TD-CE for DS-CDMA;
MMSE-FD-CE for MC-CDMA; MMSE-PT-LE and ML for MCBS-
CDMA.

B3 is the initial block length and Q3 = B3 + L is the
number of tones. The overhead of 2L stems from the
redundant linear precoding, on the one hand, and the
CP, on the other.

In order to make a fair comparison between the three
transceivers, we should force their respective bandwidth ef-
ficiencies to be the same, that is, ε1 = ε2 = ε3. This leads
to the following relationship between the number of users to
be supported by the different transceivers: M2 = ((B2N +
L)/B2N)M1, and M3 = ((B3 + 2L)/B3)M1. With N = 16,
L = 32, Q2 = Q3 = 8L = 256, B2 = 16, and B3 = 224,
we can derive that M2 = (9/8)M1 and M3 = (9/7)M1. Fur-
thermore, we ensure that the total transmit power is the same
for the different transceivers.

Figure 7 compares the performance of the different
transceivers for a small system load with M1 = 3, M2 = 3,
and M3 = 4 users, respectively (ε1 ≈ ε2 ≈ ε3). The DS-
CDMA RAKE receiver starts flooring off at 10−3, due to
ISI/ICI and associated MUI. The DS-CDMA MMSE-TD-
CE actively suppresses these interferences and achieves a sig-
nificant performance improvement compared to the RAKE.
On the other hand, the MC-CDMA MMSE-FD-CE has the
same performance as the DS-CDMA MMSE-TD-CE at low
SNR (SNR < 8), but clearly outperforms it at high SNR.
Furthermore, the MCBS-CDMA MMSE-PT-LE that deter-
ministically removes the MUI but still suffers from ISI per-
forms worse than both the DS-CDMA MMSE-TD-CE and
the MC-CDMAMMSE-FD-CE. Specifically, for a target BER
of 10−4, the DS-CDMAMMSE-TD-CE realizes a 0.5 dB gain
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Figure 8: Comparison of DS-CDMA, MC-CDMA, and MCBS-
CDMA for large system load with M1 = 12, M2 = 14, and M3 =
16 users, respectively: RAKE and MMSE-TD-CE for DS-CDMA;
MMSE-FD-CE for MC-CDMA; MMSE-PT-LE and ML for MCBS-
CDMA.

compared to the MCBS-CDMA MMSE-PT-LE, whereas the
MC-CDMAMMSE-FD-CE realizes a 2.8 dB gain. Finally, the
optimal MCBS-CDMAML achieves the full diversity gain of
Lt = 6.

Figure 8 depicts the performance of the different tran-
sceivers for a large system load with M1 = 12, M2 = 14,
and M3 = 16 users, respectively (ε1 ≈ ε2 ≈ ε3). The DS-
CDMA RAKE receiver clearly suffers from a BER floor at
8 · 10−2, since it does not cope at all with the increased
MUI. Although the DS-CDMA MMSE-TD-CE still outper-
forms the RAKE, its performance also starts flooring off, be-
cause it does not completely suppress these interferences at
high SNR. Indeed, the existence of a ZF solution for DS-
CDMA TD chip equalization requires multichannel recep-
tion at the MS [7, 8]. Hence, both DS-CDMA receivers suf-
fer from a BER saturation level that increases with the sys-
tem load M1. Likewise, since the MC-CDMA MMSE-FD-
CE does not deterministically suppress the MUI either, its
performance is also affected by the increased MUI. How-
ever, unlike the DS-CDMAMMSE-TD-CE, it does not suffer
from a BER floor, since it more effectively copes with the ICI
through CP. In contrast with DS-CDMA and MC-CDMA,
MCBS-CDMA is an MUI-free CDMA transceiver, such that
its performance remains unaffected by the increased MUI.
Consequently, even at large system load, the MCBS-CDMA
MMSE-PT-LE achieves a diversity order between 1 and Lt =
6. Furthermore, the MCBS-CDMA MMSE-PT-LE now per-
forms better than both the DS-CDMA MMSE-TD-CE and
the MC-CDMAMMSE-FD-CE. Specifically, for a target BER
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Figure 9: Performance of STBC-MCBS-CDMA for channels with
small delay spread. Different MIMO system setups, ranging from
(1, 1) over (2, 1) to (2, 2). MMSE-PT-LE and ML detection.

of 3 · 10−3, the MCBS-CDMA MMSE-PT-LE outperforms
the DS-CDMA MMSE-TD-CE by 6.8 dB. Additionally, for a
target BER of 10−4, the MCBS-CDMA MMSE-PT-LE per-
forms 1 dB better than the MC-CDMA MMSE-FD-CE. Fi-
nally, the optimal MCBS-CDMA ML still achieves the full
diversity gain of Lt = 6.

5.3. Performance of space-time block-coded
MCBS-CDMA

We test our STBC-MCBS-CDMA transceiver of Section 4,
employing a cascade of STBC and MCBS-CDMA, for three
different MIMO system setups (NT ,NR): the (1, 1) setup, the
(2, 1) setup with TX diversity only, and the (2, 2) setup with
both TX and RX diversity. The system is fully loaded sup-
portingM = 16 active users. For each setup, the receiver em-
ploys an MMSE-PT-LE or an ML detector based on perfect
CSI.

Figure 9 depicts the performance over a propagation en-
vironment with a small delay spread. The underlying multi-
path channel has Lt = 2 chip-spaced Rayleigh fading taps of
equal average power. For a target BER at 10−3, and focusing
on the MMSE-PT-LE, the (2, 1) setup outperforms the (1, 1)
setup by 6 dB. The (2, 2) setup achieves, on its turn, a 3.7 dB
gain compared to the (2, 1) setup. Comparing the MMSE-
PT-LE with its corresponding ML detector, it incurs a 4.2 dB
loss for the (1, 1) setup, but only a 0.3 dB loss for the (2, 2)
setup. So, the larger the number of transmit and/or receive
antennas, the better the linear MMSE-PT-LE succeeds in ex-
tracting the full diversity of order NTNRLt .

Figure 10 shows the performance over a propagation
environment with a large delay spread. The underlying
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Figure 10: Performance of STBC-MCBS-CDMA for channels with
large delay spread. Different MIMO system setups, ranging from
(1, 1) over (2, 1) to (2, 2). MMSE-PT-LE and ML detection.

multipath channel, which is the ITU pedestrian B channel
that we have introduced before, has Lt = 6 Rayleigh fad-
ing taps. For a target BER at 10−3, and focusing on the
MMSE-PT-LE, the (2, 1) setup outperforms the (1, 1) setup
by 4.4 dB, whereas the (2, 2) setup achieves, on its turn, a
1.1 dB gain compared to the (2, 1) setup. So, compared to
Figure 9, the corresponding gains due to multiantenna diver-
sity are now smaller because of the inherently larger underly-
ing multipath diversity. Comparing the MMSE-PT-LE with
its corresponding ML detector, it incurs a 0.9 dB loss for the
(2, 2) setup.

6. CONCLUSION

To cope with the challenges of broadband cellular down-
link communications, we have designed a novel multicarrier
CDMA transceiver that enables significant performance im-
provements compared to 3G cellular systems, yielding gains
of up to 6.8 dB in full load situations. To this end, our
MCBS-CDMA transmission technique capitalizes on redun-
dant block spreading and linear precoding to preserve the
orthogonality among users and to enable full multipath di-
versity gains, regardless of the underlying multipath chan-
nels. The corresponding receiver relies on low-complexity
block despreading to convert a difficult multiuser detection
problem into an equivalent but simpler single-user equal-
ization problem, for which any single-user equalizer allows
to trade-off performance versus complexity. In this perspec-
tive, we have evaluated the performance and complexity of
four different single-user equalization options for a realis-
tic MCBS-CDMA cellular system that fits the UMTS chan-
nel bandwidth. On the one hand, the performance results
show that, for a target BER of 10−3, the MMSE-BDFE ex-
hibits a 1.9 dB gain relative to the MMSE-BLE, and comes

within 1.4 dB of the optimal ML detector. Furthermore, the
MMSE-PT-LE performs within 0.3 dB of the MMSE-BLE,
while it is 3.6 dB away from the ML detector. On the other
hand, the complexity estimates show that the initialization
complexity of the MMSE-BDFE is similar to that of the
MMSE-BLE, while its data processing complexity is approx-
imately two times higher. Furthermore, the MMSE-PT-LE
involves an initialization complexity, which is between 5
and 6 orders of magnitude smaller than that of the MMSE-
BLE, while its data processing complexity is roughly be-
tween 1 and 2 orders of magnitude smaller. Based on this
study, we can conclude that the MMSE-PT-LE offers a good
trade-off between performance and complexity. Finally, to
increase the spectral efficiency and to improve the link relia-
bility of multiple users in a broadband cellular network, we
have demonstrated the rewarding synergy between MCBS-
CDMA and existing and evolving MIMO communication
techniques. Specifically, our STBC-MCBS-CDMA transmis-
sion technique not only retains the orthogonality among
users but also among the different transmit streams of each
user. At the receiver, these properties, respectively, allow for
deterministic ML user separation through low-complexity
block despreading as well as deterministic transmit stream
separation through simple linear processing. Consequently,
ML equalization per transmit stream and per user achieves
maximum multiantenna and multipath diversity gains for
every user in the system, irrespective of the system load. Fur-
thermore, the low-complexity MMSE-PT-LE approaches the
optimal ML performance (within 0.9 dB for a (2, 2) system),
and comes close to extracting the full diversity in reduced as
well as full load settings.
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