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Least absolute deviation (LAD) regression is an important tool used in numerous applications throughout science and engineer-
ing, mainly due to the intrinsic robust characteristics of LAD. In this paper, we show that the optimization needed to solve the
LAD regression problem can be viewed as a sequence of maximum likelihood estimates (MLE) of location. The derived algorithm
reduces to an iterative procedure where a simple coordinate transformation is applied during each iteration to direct the opti-
mization procedure along edge lines of the cost surface, followed by an MLE of location which is executed by a weighted median
operation. Requiring weighted medians only, the new algorithm can be easily modularized for hardware implementation, as op-
posed to most of the other existing LADmethods which require complicated operations such as matrix entry manipulations. One
exception isWesolowsky’s direct descent algorithm, which among the top algorithms is also based on weighted median operations.
Simulation shows that the new algorithm is superior in speed to Wesolowsky’s algorithm, which is simple in structure as well. The
new algorithm provides a better tradeoff solution between convergence speed and implementation complexity.
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1. INTRODUCTION
Linear regression has long been dominated by least squares
(LS) techniques, mostly due to their elegant theoretical foun-
dation and ease of implementation. The assumption in this
method is that the model has normally distributed errors.
In many applications, however, heavier-than-Gaussian tailed
distributions may be encountered, where outliers in the mea-
surements may easily ruin the estimates [1]. To address this
problem, robust regression methods have been developed so
as to mitigate the influence of outliers. Among all the ap-
proaches to robust regression, the least absolute deviations
(LADs) method, or L1-norm, is considered conceptually the
simplest one since it does not require a “tuning” mechanism
like most of other robust regression procedures. As a result,
LAD regression has drawn significant attentions in statistics,
finance, engineering, and other applied sciences as detailed
in a series of studies on L1-norm methods [2, 3, 4, 5]. LAD
regression is based on the assumption that the model has
Laplacian distributed errors. Unlike the LS approach though,
LAD regression has no closed-form solution, hence numeri-
cal and iterative algorithms must be resorted to.

Surprisingly to many, the LAD regression method first
suggested by Boscovich (1757) and studied by Laplace (1793)
predated the LS technique originally developed by Legen-
dre (1805) and Gauss (1823) [1, 2]. It was not until nearly
a century later that Edgeworth [6] proposed a general nu-
merical method to solve the unconstrained LAD problem,
where the weighted median was introduced as the basic op-
eration in each iteration. Edgeworth’s method, however, suf-
fers from cycling when data has degeneracies [7]. A break-
through came in the 1950’s when Harris [8] brought in the
notion that linear programming techniques could be used
to solve the LAD regression, and Charnes et al. [9] actually
utilized the simplex method to minimize the LAD objective
function. Many simplex-like methods blossomed thereafter,
among which Barrodale and Roberts [10] and Armstrong
et al. [11] are the most representative ones. Other efficient
approaches include the active set method by Bloomfield and
Steiger [12], the direct decent algorithm byWesolowsky [13],
and the interior pointmethod proposed by Zhang [14].More
historical background about LAD estimate can be found in
[2].
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The simple LAD regression problem is formulated as fol-
lows. Consider N observation pairs (Xi,Yi) modelled in a
linear fashion

Yi = aXi + b +Ui, i = 1, 2, . . . ,N , (1)

where a is the unknown slope of the fitting line, b the in-
tercept, and Ui are unobservable errors drawn from a ran-
dom variable U obeying a zero-mean Laplacian distribution
f (U) = (1/2λ)e−|U|/λ with variance σ2 = 2λ2. The LAD re-
gression is found by choosing a pair of parameters a and b
that minimizes the objective function

F(a, b) =
N∑
i=1

∣∣Yi − aXi − b
∣∣, (2)

which has long been known to be continuous and convex [1].
Moreover, the cost surface is of a polyhedron shape, and its
edge lines are characterized by the sample pairs (Xi,Yi).

Notably, theminimization of the LAD cost function (2) is
closely related to the location estimation problem defined as
follows. Let the random variable V be defined as V = U + µ,
where µ is an unknown constant location and U obeys the
Laplacian distribution. The maximum likelihood estimate
(MLE) of location on the sample set {Vi|Ni=1} is

µ∗ = argmin
µ

N∑
i=1

∣∣Vi − µ
∣∣. (3)

The solution to the above minimization problem is well
known to be the sampleMedian

µ∗ =MED
(
Vi

∣∣N
i=1
)
. (4)

The striking similarity between (2) and (3) infers that, for
a fixed a = a0, the minimizer of (2), say b∗a0 , is essentially
an MLE for location under the Laplacian assumption. For
reasons that will be explained shortly in Section 2, the mini-
mizer of (2) a∗b0 , given b = b0, is also anMLE for location un-
der the Laplacian assumption with certain extensions. Thus,
a very intuitive way of solving the LAD regression problem
can be constructed as a “seesaw” procedure: first, hold one
of the parameters a or b constant, optimize the other us-
ing the MLE concept, then alternate the role of the parame-
ters, and repeat this process until both parameters converge.
It will soon be shown in the paper that this method suffers
from some intrinsic limitations that often leads to nonglobal
optimal solutions despite its attractive simplicity. However,
further inspection on this initial algorithm reveals that, with
some specific guidance on how to do the MLE optimiza-
tion and one simple coordinate transformation, a similar but
more accurate algorithm can be formulated where the global
optimum can be reached. In fact, in this paper, we derive
a fast iterative solution where the concept of ML is applied
jointly with coordinate transformations. It is also shown that
the proposed method is comparable with the best algorithms
used to date in terms of computational complexity, and has a
greater potential to be implemented in hardware.

2. ALGORITHMDERIVATION

2.1. Basic understanding

Consider the linear regression model in (1). If the value of
a is fixed at first, say a = a0, the objective function (2) now
becomes a one-parameter function of b:

F(b) =
N∑
i=1

∣∣Yi − a0Xi − b
∣∣. (5)

Assuming a Laplace distribution for the errors Ui, the above
cost function reduces to an ML estimator of location for b.
That is, we observe the sequence of random samples {Yi −
a0Xi}, and the goal is to estimate the fixed but unknown lo-
cation parameter b. Thus according to (4), the parameter b∗

in this case can be obtained by

b∗ =MED
(
Yi − a0Xi

∣∣N
i=1
)
. (6)

If, on the other hand, we fix b = b0, the objective function
reduces to

F(a) =
N∑
i=1

∣∣Yi − b0 − aXi

∣∣

=
N∑
i=1

∣∣Xi

∣∣∣∣∣∣Yi − b0
Xi

− a
∣∣∣∣.

(7)

Again, if the error random variable Ui obeys a Laplacian
distribution, the observed samples {(Yi − b0)/Xi} are also
Laplacian distributed, but with the difference that each sam-
ple in this set has different variance. The reason is obvious
since for each known Xi and zero-mean Ui, Ui/Xi remains a
zero-mean Laplacian with variance scaled by 1/X2

i . Thus the
parameter a∗ minimizing the cost function (7) can still be
seen as the ML estimator of location for a, and can be calcu-
lated out as the weighted median

a∗ =MED

(∣∣Xi

∣∣� Yi − b0
Xi

∣∣∣∣
N

i=1

)
, (8)

where � is the replication operator. For a positive inte-
ger |Xi|, |Xi| � Yi means Yi is replicated |Xi| times. When
the weights |Xi| are not integers, the computation of the
weighted median is outlined in the appendix.

A simple and intuitive approach to the LAD regression
problem is through the following iterative algorithm.

(1) Set k = 0. Find an initial value a0 for a, such as the LS
solution.

(2) Set k = k +1 and obtain a new estimate of b for a fixed
ak−1 using

bk =MED
(
Yi − ak−1Xi

∣∣N
i=1
)
. (9)

(3) Obtain a new estimate of a for a fixed bk using

ak =MED

(∣∣Xi

∣∣� Yi − bk
Xi

∣∣∣∣
N

i=1

)
. (10)

(4) Once ak and bk do not deviate from ak−1 and bk−1
within a tolerance range, end the iteration. Otherwise,
go back to step (2).
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Figure 1: Illustration of (a) the sample space and (b) the parameter space in the simple linear regression problem. The circles in (a) represent
the samples; the dot in (b) represents the global minimum.

Since the median and weighted median operations are both
ML location estimators under the least absolute criterion, the
cost functions will be nonincreasing throughout the iterative
procedure, that is,

F
(
ak−1, bk−1

) ≥ F
(
ak−1, bk

) ≥ F
(
ak, bk

)
. (11)

The algorithm then converges iteratively. Since the objective
function F(a, b) is continuous and convex, one may readily
conclude that the algorithm converges to the global mini-
mum. However, careful inspection reveals that there are cases
where the algorithm does not reach the global minimum. To
see this, it is important to describe the relationship between
the sample space and the parameter space.

As shown in Figure 1, the two spaces are dual to each
other. In the sample space (Figure 1a), each sample pair
(Xi,Yi) represents a point on the plane. The solution to the
problem (1), namely (a∗, b∗), is represented as a line with
slope a∗ and intercept b∗. If this line goes through some sam-
ple pair (Xi,Yi), then the equation Yi = a∗Xi + b∗ is satis-
fied. On the other hand, in the parameter space (Figure 1b),
(a∗, b∗) is a point on the plane, and (−Xi,Yi) represents a
line with slope (−Xi) and intercept Yi. When b∗ = (−Xi)a∗+
Yi holds, it can be inferred that the point (a∗, b∗) is on
the line defined by (−Xi,Yi). As can be seen in Figure 1,
the line going through (X1,Y1) and (X5,Y5) in the sample
space has a slope a∗ and an intercept b∗, but in the pa-
rameter space, it is represented as a point which is the in-
tersection of two lines with slopes (−X1) and (−X5), respec-
tively. The sample set used to generate Figure 1 is, in a (Xi,Yi)
manner, [(−1.4,−0.4), (0.6, 8.3), (1.2, 0.5), (−0.7,−0.9),
(0.8, 2.6)].
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Figure 2: The cost surface of the LAD regression problem. The dot
at an intersection on the a-b plane represents the global minimum.
To better illustrate the inner topology of the function, the half sur-
face that is towards the viewers is cut off.

The structure of the objective function F(a, b) is well de-
fined as a polyhedron sitting on top of the a-b plane, as seen
in Figure 2. The projections of the polyhedron edges onto the
plane are exactly the lines defined by sample pairs (Xi,Yi),
which is why the term “edge line” is used. In other words,
every sample pair (Xi,Yi) has a corresponding edge line in
the parameter space. Moreover, the projections of the poly-
hedron corners are those locations on the a-b plane, where
two or more of the edge lines intersect. Most importantly,
the minimum of this convex, linearly-segmented error sur-
face occurs at one of these corners.
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Figure 3: The parameters’ trajectories during the iterations. Vertical dashed lines represent b updates, while horizontal dotted lines represent
a updates; (a) zigzag case, (b) nonoptimal case. The marked dots represent the global minima. To better illustrate, the initial values for a and
b are not set from the LS solution.

To describe the dynamics of this simple iterative method,
consider Step (2) in the procedure, where a new estimate bk is
calculated based on a fixed, previously obtained ak−1 through
a median operation. Since the median is of selection type, its
output is always one of the inputs. Without loss of general-
ity, assume bk = Yj − ak−1Xj , which means that the newly
estimated parameter pair (ak−1, bk) is on the edge line de-
fined by (−Xj) and Yj . Thus, the geometrical interpretation
of Step (2) can be derived as follows: draw a vertical line at
a = ak−1 in the parameter space and mark all the intersec-
tions of this line with N edge lines.1 The intersection on the
edge line defined by (−Xj) and Yj is vertically the median
of all; thus its b-coordinate value is accepted as bk, the new
update for b. Similar interpretation can be made for Step (3),
except that the chosen intersection is a weighted median out-
put, and there may be some edge lines parallel to the a-axis.

The drawback of this algorithm is that the convergence
dynamics depends on the geometry of the edge lines in
the parameter space. As can be seen in Figure 3a, the it-
eration is carried on between edge lines in an inefficient
zigzag manner, needing infinite steps to converge to the
global minimum. Moreover, as illustrated in Figure 3b, it
is possible that vertical optimization and horizontal op-
timization on the edge lines can both give the same re-
sults in each iteration. Thus the algorithm gets stuck in a
nonoptimal solution. The sample set used for Figure 3a is
[(−0.1,−3.2), (−0.9,−2.2), (0.4, 5.7), (−2.4,−2.1), (−0.4,
−1.0)], and the initial values for a and b are 5 and
6. The sample set used for Figure 3b is [(0.3, −1.0),

1Since all meaningful samples are finite, no edge lines will be parallel to
the b-axis; hence there must be N intersections.

(−0.4,−0.1), (−2.0,−2.9), (−0.9,−2.4), (−1.1, 2.2)], and
the initial values for a and b are −1 and 3.5.

2.2. New algorithm

To overcome these limitations, the iterative algorithm must
be modified exploiting the fact that the optimal solution is
at an intersection of edge lines. Thus, if the search is di-
rected along the edge lines, then a more accurate and more
efficient algorithm can be formulated. The approach pro-
posed in this paper is through coordinates transformation.
The basic idea is as follows. In the parameter space, if the
coordinates are transformed so that the edge line contain-
ing the previous estimate (ak−1, bk−1) is parallel to the a′-axis
at height b′k−1, then the horizontal optimization based upon
b′k−1 is essentially an optimization along this edge line. The
resultant (a′k, b

′
k) will be one of the intersections that this line

has with all other edge lines, thus avoiding possible zigzag
dynamics during the iterations. Transforming the obtained
parameter pair back to the original coordinates results in
(ak, bk). This is illustrated in Figure 4. The only requirement
for this method is that the shape of the cost surface must be
preserved upon transformation; thus the same optimization
result can be achieved. Notice that, if an edge line is horizon-
tal, its slope (−Xj) has to be 0. We will show shortly that a
simple shifting in the sample space can satisfy the require-
ment.

The following is the proposed algorithm for LAD regres-
sion.

(1) Set k = 0. Initialize b to be b0 using the LS solution

b0 =
∑N

i=1
(
Xi − X̄

)(
ȲXi − X̄Yi

)
∑N

i=1
(
Xi − X̄

)2 . (12)
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original coordinates. The sample set is [(1.6, 2.8), (−1.4,−3.8), (1.2, 3.5), (−4.3,−4.7), (−1.8,−2.2)].

Calculate a0 by a weighted median

a0 =MED

(∣∣Xi

∣∣� Yi − b0
Xi

∣∣∣∣
N

i=1

)
. (13)

Keep the index j which satisfies a0 = (Yj − b0)/Xj . In
the parameter space, (a0, b0) is on the edge line with
slope (−Xj) and intercept Yj .

(2) Set k = k + 1. In the sample space, right shift the co-
ordinates by Xj so that the newly formed y′-axis goes
through the original (Xj ,Yj). The transformations in
the sample space are

X ′i = Xi − Xj , Y ′i = Yi, (14)

and the transformations in the parameter space are

a′k−1 = ak−1, b′k = b′k−1 = bk−1 + ak−1Xj. (15)

The shifted sample space (X ′,Y ′) corresponds to a new
parameter space (a′, b′), where (−X ′j ,Y ′j ) represents a
horizontal line.

(3) Perform a weighted median to get a new estimate of a′:

a′k =MED

(∣∣X ′i ∣∣� Y ′i − b′k
X ′i

∣∣∣∣
N

i=1

)
. (16)

Keep the new index t which gives a′k = (Y ′t − b′k)/X
′
t .

(4) Transform back to the original coordinates

ak = a′k, bk = b′k − a′kXj . (17)

(5) Set j = t. If ak is identical to ak−1 within the tolerance,
end the program. Otherwise, go back to step (2).

It is simple to verify that the transformed cost function is the
same as the original one using the relations in (14) and (15).
For fixed bk,

F′(a′) =
N∑
i=1

∣∣Y ′i − a′X ′i − b′k
∣∣

=
N∑
i=1

∣∣Yi − a
(
Xi − Xj

)− (aXj + bk
)∣∣

=
N∑
i=1

∣∣Yi − aXi − bk
∣∣ = F(a).

(18)

This relationship guarantees that the new update in each it-
eration is correct.

3. SIMULATIONS

The major part of the computational power of the proposed
algorithm is consumed in the weighted median operation at
each iteration. Essentially, it is a sorting problem, which, for
n samples, is in the order of n logn. Fortunately, for this par-
ticular application, some speed-up can be achieved by not
doing a full sorting every time. In [13], where the weighted
median is also used as the kernel operation, a shortcut to cir-
cumvent this time-consuming full-sorting procedure is de-
veloped. The basic idea is the previous estimate can be con-
sidered close enough to the true value, thus “fine tuning” can
be executed around this point by making use of the weighted
median inequalities shown next in (21).
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Consider a weighted median defined as follows:

a∗ =MED
(
Wi � Zi

∣∣n
i=1
)

= argmin
a

N∑
i=1

Wi

∣∣Zi − a
∣∣, (19)

where the weights Wi ≥ 0. If we order the samples Zi as
Z(1) ≤ Z(2) ≤ · · · ≤ Z(N), then the weight associated with the
ith order statistic Z(i) is often referred to as the concomitant
W[i] [15]. In this way, the weighted median a∗ can always
be identified as Z( j) whose index j satisfies the following in-
equalities:

j−1∑
i=1

W[i] <
N∑
i= j

W[i], (20)

j∑
i=1

W[i] ≥
N∑

i= j+1

W[i]. (21)

Comparing to (16), we should notice that the weights Wi

and samples Zi in every LAD iteration are different. Suppose
that the previous estimate ak−1, which is also the output of a
weighted median, corresponds to Zj . We do not have to fully
order all these samples, but classify them into two categories,
the ones smaller than it and the ones larger. Check the in-
equalities to see if they still hold. If not, transfer the boundary
sample and its weight into another group and recheck until
the new weighted median output is found.

Two criteria are often used to compare LAD algorithms:
speed of convergence and complexity. Most of the effi-
cient algorithms, in terms of convergence speed (except for
Wesolowsky’s and its variations), are derived from linear pro-
gramming (LP) perspectives, such as simplex and interior
point. Take Barrodale and Roberts’ algorithm2 [10], for ex-
ample; its basic idea is to apply row and column operations
on a constructed (N+K)×(K+1) matrix A. The initial value
of A is

A =
[
X Y
I 0

]
, (22)

where Y is an N × 1 vector of observations of the depen-
dent variable and X is an N × K matrix of the indepen-
dent variables. For the simple regression case, K = 2. BR-
like algorithms usually consist of two phases: Phase I forms
a set of independent edge direction vectors, Phase II updates
the variable basis until it converges. In general, BR-like al-
gorithms are slightly faster than other algorithms with sim-
pler structures. Their computational complexity, however, is
significantly higher. The complicated variable definition and

2which can be considered as the basic form of the other two best
simplex-type algorithms, namely, Bloomfield and Steiger’s [1], and Arm-
strong, Frome, and Kung’s [11], according to [2].

logical branches used in BR-like algorithms cause tremen-
dous efforts in their hardware implementations and are thus
less attractive in such cases. Focusing on efficient algorithms
that have a simple structure for ease of implementation,
Wesolowsky’s direct descent algorithm stands out. The algo-
rithm is summarized below.

Step 1. Set k = 0. Choose the initial values a0, b0. Choose j
so that |Yj − a0Xj − b0| is a minimum.

Step 2. Set k = k + 1. Use the weighted median structure to
get the update for b,

bk =MED



∣∣∣∣∣1− Xi

Xj

∣∣∣∣∣� Yi − YjXi/Xj

1− Xi/Xj

∣∣∣∣∣
N

i=1


. (23)

Record the index i at which the term (Yi − YjXi/Xj)/(1 −
Xi/Xj) is the weighted median output.

Step 3. (a) If bk − bk−1 = 0: if k ≥ 3, go to Step 4; if not, set
j = i and go to Step 2.

(b) If bk − bk−1 �= 0: set j = i and go to Step 2.

Step 4. Let b∗ = bk, a∗ = Yj/Xj − b∗/Xj .

The major difference between Wesolowsky’s algorithm
and ours is that the weighted median operations in their
case are used for intercept b updates, while in our algo-
rithm, they are used for slope a updates. Since the realiza-
tion of the weighted median in both algorithms can bene-
fit from the partial sorting scheme stated above, to compare
them, we only need to count the iteration times. Also no-
tice that in the initialization of Step 1, there is a minimum-
finding procedure, which can be considered a sorting op-
eration thus treated as having the same order of complex-
ity as a weighted median, even though they may be imple-
mented with totally different structures. For this reason, this
step in Wesolowsky’s algorithm will be counted as one it-
eration. Figure 5 depicts the comparison of the newly pro-
posed algorithm and Wesolowsky’s direct descent algorithm
in terms of number of iterations. It can be observed from
Figure 5 that, for large sample sets, the newly proposed LAD
regression method needs 5% less iterations, and about 15%
less for small sample sets.

4. CONCLUSIONS

A new iterative algorithm for LAD regression is developed
based on MLEs of location. A simple coordinate transfor-
mation technique is used so that the optimization within
each iteration is carried out by a weighted median operation,
thus the proposed algorithm is well suited for hardware im-
plementation. Simulation shows that the new algorithm is
comparable in computational complexity with the best algo-
rithms available to date.
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APPENDIX

WEIGHTEDMEDIAN COMPUTATION

The weighted median

Y =MED

(
Wi � Xi

∣∣∣∣
N

i=1

)
, (A.1)

having a set of positive real weights, can be computed out as
follows.

(1) Calculate the thresholdW0 = (1/2)
∑N

i=1Wi.
(2) Sort all the samples into X(1), . . . ,X(N) with the corre-

sponding concomitant weightsW[1], . . . ,W[N].
(3) Sum the concomitant weights beginning with W[1]

and continuing up in order.
(4) The weighted median output is the sample X( j) whose

weight causes the inequality
∑ j

i=1W[i] ≥ W0 to hold
first.
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