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We propose a new approach to reduce speckle noise and enhance structures in speckle-corrupted images. It utilizes a median-
anisotropic diffusion compound scheme. The median-filter-based reaction term acts as a guided energy source to boost the struc-
tures in the image being processed. In addition, it regularizes the diffusion equation to ensure the existence and uniqueness of
a solution. We also introduce a decimation and back reconstruction scheme to further enhance the processing result. Before the
iteration of the diffusion process, the image is decimated and a subpixel shifted image set is formed. This allows a multichannel
parallel diffusion iteration, and more importantly, the speckle noise is broken into impulsive or salt-pepper noise, which is easy to
remove by median filtering. The advantage of the proposed technique is clear when it is compared to other diffusion algorithms
and the well-known adaptive weighted median filtering (AWMF) scheme in both simulation and real medical ultrasound images.
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1. INTRODUCTION

In ultrasound, synthetic aperture radar (SAR), and coherent
optical imaging, a major issue that is tackled is speckle. The
presence of the speckle affects both human interpretation of
the images and automated feature detection and extraction
techniques. Much work has been done on speckle modeling
and speckle reduction over the years. Most methods used in
speckle reduction have focused on the use of the local mean,
variance, median, and gradient.

Lee [1, 2] and Frost et al. [3] separately proposed their
speckle reduction filters, which were adaptive to the local
mean and variance. When local data are relatively homoge-
neous, a heavy filtering is applied because the local data only
contain noise plus very slowly varying signal. On the other
hand, when large variations exist in local data, a light filter-
ing or no filtering is applied because this scenario is inter-
preted as an edge or other structural change. The problem
with these filtering schemes is that they allow noisy edges to
persist.

Loupas et al. [4] proposed an adaptive weighted median
filter (AWMF) to reduce the speckle effect. Karaman et al. [5]

proposed a region growth method and used a median filter
within the grown regions to suppress speckle. Both [4, 5] ap-
plied a fixed-size filter window. Since there exists a particular
root (see Section 2.2) for a given-size filter window [6, 7], the
noise reduction ability of these adaptive filters is limited.

Hao et al. [8] used a multiscale nonlinear thresholding
method to suppress speckle. They applied Loupas’s AWMF
to filter the image first, then put the filtered image and the
difference image (obtained by subtracting the filtered im-
age from the original image) into two wavelet decomposi-
tion channels. Each channel applied thresholding procedures
for all decomposition scales. However, their method has only
slightly better detail-preserving results and no significant im-
provement in speckle reduction over AWMF. This is because
they used a global constant threshold in each scale. This
threshold could not separate the speckle noise and the sig-
nal optimally.

Czerwinski et al. [9, 10] derived their approach us-
ing a generalized likelihood ratio test (GLRT). Local data
are extracted along the different directions by a set of di-
rectional line-matched masks. For practical implementa-
tion reasons, they simplified the GLRT with white Gaussian
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noise assumption (if the noise is not white, a prewhiten-
ing procedure is required) and used the local largest direc-
tional mean values to form the processed image. The the-
ory of this method is well founded, but the practical imple-
mentation raises false alarms, such as false lines and edges.
The processed result actually blurred the edges and pro-
duced artificial maximums (which could be misinterpreted
as structures). Based on Czerwinski’s scheme, Yang et al.
[11] modified the directional line-matched masks to a set
of directional line-cancellation masks to simulate the di-
rectional derivative process. After searching the local min-
imum directional derivative, they performed simple filter-
ing (such as sample mean, median, etc.) along the direc-
tion of minimum directional derivative. This scheme took
the coherent features of the structure and the incoherent
features of the noise into account. Since the statistical vari-
ation along the direction is minimum, the processing re-
sult achieved significant structure enhancement while reduc-
ing the speckle. However, this method is weak in delineat-
ing sharp corners and has somewhat high computational
cost.

Abd-Elmoniem et al. [12] proposed an anisotropic dif-
fusion approach to perform speckle reduction and coher-
ence enhancement. They applied an anisotropic diffusiv-
ity tensor into the diffusion equation to make the diffu-
sion process more directionally selective. Although they gen-
erally had good results, the approach used raised the fol-
lowing questions. (1) It used isotropic Gaussian smooth-
ing to regularize the ill-posed anisotropic diffusion equa-
tion. Although this kind of regularization has been proved
to be able to provide existence, regularization, and unique-
ness of a solution [13], it is against the anisotropic fil-
tering principle. (2) The diffusivity tensor provided by a
Gaussian smoothed image may not be effective for spa-
tially correlated and heavy-tail distributed speckle noise.
(3) Each speckle usually occupies several pixels in size.
Without special treatment, there are chances to enhance
the speckles, which is not desirable. Yu and Acton [14]
proved that Lee [1, 2] and Frost’s [3] filter schemes were
closely related to diffusion processes, and adopted Lee’s
adaptive filtering idea into their anisotropic diffusion algo-
rithm. However, the local statistics are actually isotropic,
thus this method could not achieve the desired anisotropic
processing.

In this paper, we will present a new anisotropic diffusion
technique for speckle reduction and structure enhancement,
which overcomes many of the problems mentioned above.
The proposed technique is a compound technique. It uti-
lizes the advantages of median filtering, anisotropic diffu-
sion, and image decimation and reconstruction. The com-
bination accelerates the iteration process and enhances the
calculation efficiency. We applied the new method on arti-
ficial images, speckle-corrupted “peppers” image (this is a
commonly used test image), and ultrasound medical images.
The advantages of the proposed technique are clear when it
is compared to other diffusion methods and the well-known
AWMF method.

2. FOUNDATIONS FOR THE PROPOSED TECHNIQUE

2.1. Specklemodel

The classical speckle model was proposed by Goodman [15,
16] for coherent optical imaging. According to this model,
the signal in a detector element is a superposed result of a
large number of incident subsignals. The magnitude of the
signal usually follows a heavy-tailed distribution, typically
Rayleigh. The speckles are spatially correlated. The correla-
tion length is usually a few pixels (typically 3 to 5 pixels).

2.2. Median filter

The median filter is a well-known “edge preserving” non-
linear filter. It removes the extreme data while producing a
smoothed output. The median filter is not a lowpass filter
in the Fourier spectrum sense. Assuming the input data is
an identical and independently distributed (i.i.d.) sequence,
and the distribution is symmetrical, the median filter gives a
similar result to the linear filter. If the distribution is heavy
tailed, the median filtered result will be superior to the linear
filtered result [6].

After repeated filtering with a given size mask, the me-
dian filtered result will reach a steady “state,” referred to as
the “root” image [6, 7]. Increasing the mask size will result
in a smoother root image. On the other hand, once the root
image has been reached with a larger size mask, decreasing
the mask size will not change the root image. The root im-
age should not be interpreted as noise free. It can contain
larger scale noise. It is desirable to further filter the root im-
age to provide additional cleaning, but it is not possible with
a fixed-size median mask. It is not feasible to reach a new
root image by increasing the mask size because valuable de-
tails can be removed by this approach.

2.3. Anisotropic diffusion

Diffusion is a fundamental physical process. For isotropic
diffusion, the process can be modeled as a Gaussian smooth-
ing with continuously increased variance. For anisotropic
diffusion, the smoothing process becomes more directionally
selective. Let u(x, y, t) represent an image field with coordi-
nates (x, y) at time t while D is the diffusion coefficient. The
diffusion flux ϕ is defined as

ϕ = −D∇u. (1)

With the matter continuity equation, we have

∂u

∂t
= −∇ • ϕ. (2)

Putting (1) and (2) together, we get the diffusion equation

∂u

∂t
= ∇ • (D∇u), (3)

where “•” represents the inner product of two vectors. When
D is a constant, the diffusion process is isotropic. When
D is a function of the directional parameters, the diffusion
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process becomes anisotropic. If a source term f (x, y, t) is
added to the right-hand side of (3), the diffusion equation
can be generalized to a nonhomogeneous partial differential
equation

∂u

∂t
= ∇ • (D∇u) + α f , (4)

where α is a weighting coefficient.
To solve the above partial differential equation, the origi-

nal image u0 is used as the initial condition and the Neumann
boundary condition is applied to the image borders:

u(x, y, t)t=0 = u0,

∂nu = 0.
(5)

The Neumann boundary condition avoids the energy loss in
the image boundary during the diffusion process.

Perona and Malik (PM) [17] suggested two well-known
diffusion coefficients:

D(s) = 1
1 + (s/k)2

, (6)

D(s) = exp

[
−
(
s

k

)2]
, (7)

where s = |∇u|. With these diffusivity functions, the diffu-
sion process will be encouraged when the magnitude of the
local gradient is low, and restrained when the magnitude of
the local gradient is high. The PM diffusion scheme is a non-
linear isotropic diffusionmethod according toWeickert [18].
However, as shown in Section 3.3, with two-dimensional ex-
plicit finite-difference implementation, D is a function of the
direction, thus the diffusion process becomes anisotropic.

The parameter k is a threshold that controls when the
diffusion is a forward process (smoothing) and when it is
a backward process (enhancing edges). Both (6) and (7)
give perceptually similar results, but (6) emphasizes noise re-
moval while (7) emphasizes high-contrast preservation.

Catte et al. [13] pointed out that the PM approach
has several serious practical and theoretical difficulties even
though this method has worked very well with ad hoc treat-
ments. These difficulties are centered around the existence,
regularization, and uniqueness of a solution for (3) with
diffusivity (6) or (7). Without special treatment, the PM
method can misinterpret noises as edges and enhance them
to create false edges.

Catte et al. changed s = |∇u| in the PM diffusivity func-
tion to

s = ∣∣∇Gσ ∗ u
∣∣. (8)

Here Gσ is a Gaussian smoothing kernel and “∗” is the con-
volution operator. In this approach, |∇Gσ∗u| is used to bet-
ter estimate the local gradient instead of the noise sensitive
|∇u|. They proved that this modification provides a suf-
ficient condition for solution existence, regularization, and
uniqueness.

However, the use of space-invariant isotropic Gaussian
smoothing is contradictive to the anisotropic filtering prin-
ciple, and Gaussian filtering tends to push the image struc-
tures away from their original locations. In the speckle re-
duction case, the diffusivity function calculated from the
Gaussian smoothed image creates additional problems since
the speckle noise is spatially correlated and heavy-tail dis-
tributed. For comparison purposes, the processing results
with such Gaussian regularized anisotropic diffusion (GRAD)
will be included in Section 4.

3. PROPOSED TECHNIQUE

3.1. Median boosted anisotropic diffusion technique

To perform anisotropic diffusion on speckle-corrupted im-
ages, a natural choice is replacing Gaussian smoothing by
median filtering. The median filter is a smoothing operator,
which is superior to Gaussian smoothing in the heavy-tail
distributed speckle noise situation. Catte’s proof concerning
regularization (8) can still be applied to the median filtered
case because the median filtered result is not worse than the
Gaussian filtered result. Moreover, median filtering tends to
preserve the image structure locations instead of dislocating
them. As a result, the anisotropic diffusion process with me-
dian regularization provides better and more precise results.

We also propose to use a median filtered source term f
in the homogeneous diffusion equation to form an interac-
tive process, which combines both median filtering and nat-
ural diffusion. This technique is defined by the following re-
lations:

∂u

∂t
= ∇ • (D∇u) + α f ,

u(x, y, t)t=0 = u0,

∂nu = 0,

(9)

f = median(u), (10)

where (6) holds and

s = |∇ f |. (11)

Speckle noise is signal-dependent noise. Typically, the
bright regions have stronger noise than the dark regions.
With the boosting term, the bright regions will be modified
more heavily than the dark regions. The source term f pro-
vides two desirable effects. First, it provides a boosting force
to guide (or normalize) the diffusion evolution. Like a “smart
oven,” it heats the image pixels with a progressively preset
temperature field that is in favor of retaining image struc-
tures. Second, the source term will also accelerate the conver-
gence rate compared to natural diffusion. On the other hand,
since the diffusion process has different filtering mechanisms
from the median filter, it will help to break the root barriers.
The median filtered result will be progressively brought to a
new root during the iterations. This interactive process will
produce an image with less noise and enhanced structure.
The constant α governs the interaction ratio. The use of α
will be discussed more in Section 3.3.
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Figure 1: Illustration of the image decimation, multichannel median-diffusion, and full-image reconstruction. The decimation rate here is√
p = 2.

3.2. Image decimation andmultichannel processing

There are two apparent advantages to decimation of a
speckle-corrupted image before further processing. First,
decimation will break the speckles into quasi-impulsive or
salt and pepper noise. The median filter has a well-known
ability to deal with this type of noise. Second, decimation
generates a set of subpixel shifted images. The size of these
images is much smaller than the original image. The pro-
cessing efficiency can be further improved by square of the
decimation rate if parallel processing is applied.

The decimation process can produce aliasing in the dec-
imated images, but the aliasing will not hurt the final recon-
struction of the full-size image. Since we know exact sub-
pixel shifts between the decimated images, the reconstruction
process will be a well-posed super-resolution reconstruction
process. The whole decimation and reconstruction processes
can be formulated in the following manner:

y1 = H1x,

y2 = H2x,

...

yi = Hix,

...

yp = Hpx

(12)

or

Y = Hx, (13)

and

Y =


y1
y2
...
yp

 , H =


H1

H2
...
Hp

 , (14)

where x is the original image denoted as a vector with length
N2, and y1, y2, . . . , yp are the decimated images with differ-
ent subpixel shifts. Each yi is also denoted as a vector with
length M2, and N = √

p × M. Here,
√
p is the decimation

rate. H1,H2, . . . ,Hp are the mapping matrices from x to dif-
ferent yi’s. They areM2 ×N2 sparse matrices.

Figure 1 illustrates the concept of the proposed decima-
tion and multichannel processing technique. Assuming y1,
y2, . . . , yp are the processed results of y1, y2, . . . , yp, there
are many ways to estimate the full-size image [19]. In our
approach, we used a direct interpolation method. Since a
speckle usually occupies several pixels, the recommended
decimation rate should typically be 2 or 3. We chose 2 for all
examples in Section 4. High decimation rate can cause dis-
tortion or loss of image structures.

3.3. Explicit finite-difference approach

Following the PM explicit finite-difference approach, the
proposed technique can be derived and numerically imple-
mented using the following relations:

∂u

∂t
= ∇ • (D∇u) + α f ,

un+1i, j − uni, j
τ

= DN
(∇Nu

n
i, j /h

)
+DS

(∇Su
n
i, j /h

)
h

+
DE
(∇Eu

n
i, j /h

)
+DW

(∇Wuni, j /h
)

h
+ α f ni, j ,

(15)

where

∇Nu
n
i, j = uni−1, j − uni, j , ∇Su

n
i, j = uni+1, j − uni, j ,

∇Eu
n
i, j = uni, j+1 − uni, j , ∇Wuni, j = uni, j−1 − uni, j .

(16)

τ is the time interval between the consecutive iterations and h
is the spatial distance of two neighboring pixels. uni, j refers to

present pixel value at location (i, j) and un+1i, j is the next-time
pixel value at the same location. N , S, E, W refer to north,
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south, east, and west, respectively. The diffusion coefficients
DN , DS, DE, DW are calculated from formulas (10), (6) with
entries listed in (16), but replace the u’s by themedian filtered
f ’s.

Parameter k in formula (6) is also calculated as kN , kS,
kE, kW : they are set to the standard deviations of the cor-
responding difference value fields, represented by ∇Nu

n
i, j ,

∇Su
n
i, j , ∇Eu

n
i, j , ∇Wuni, j . If a difference value at a particu-

lar location is smaller than the corresponding standard de-
viation, the difference value is considered to be induced
by noise. If it is larger than the standard deviation, it
is considered as an edge point or actual structural point,
which should be preserved or enhanced during the pro-
cess.

With the diffusion coefficients DN , DS, DE, DW , the dif-
fusion process encourages smoothing along the direction
where the pixel values are less changed and restrains smooth-
ing in the direction where the pixel values are dramatically
changed. Due to the discrete finite-difference implementa-
tion proposed above, the nonlinear diffusion process be-
comes anisotropic.

Let h = 1, then (15) becomes

un+1i, j = uni, j+τ
(
DN∇Nu

n
i, j+DS∇Su

n
i, j

+DE∇Eu
n
i, j+DW∇Wuni, j

)
+ τα f ni, j .

(17)

To assure the stability of the above iterative equation, τ
should satisfy 0 ≤ τ ≤ h2/4. Here, τ is set to 1/4. As a re-
sult,

un+1i, j =uni, j+
DN∇Nu

n
i, j+DS∇Su

n
i, j+DE∇Eu

n
i, j+DW∇Wuni, j

4

+
α

4
f ni, j .

(18)

Let β = α/4. To avoid processing bias, (18) can be modified
to

un+1i, j = (1− β)uni, j

+
DN∇Nu

n
i, j +DS∇Su

n
i, j +DE∇Eu

n
i, j +DW∇Wuni, j

4

+ β f ni, j .

(19)

When β = 0, the above equation becomes a homogeneous
median-regularized anisotropic diffusion (MRAD); when
β = 1, the ongoing diffusion process is initialized to the me-
dian filtered result of the current image state (un). Choosing
β too big results in heavy median filtering, which can smooth
out the fine structures, while choosing β too small, the pro-
cess would not realize the benefits of the median filtering. We
chose β = 0.2 in our experiments. One thing should be men-
tioned here: the β = 1 case is similar to the median-diffusion
method of Ling and Bovik [20] except they also used a me-
dian filtered un to calculate the difference values in (19).

Next, we want to talk about the stopping criteria for the
iterations. Practically, the number of iterations can be de-
cided by the mean square difference between the result of the
previous iteration and the current iteration. When the value
is less than a preset stopping criterion, the program stops it-
eration and produces a result. However, in the next section,
the above stopping criterion was not used because to fairly
compare different processing methods, one should use the
same number of iterations in each case.

4. EXPERIMENTAL RESULTS

We generated an artificial image with the approximate spec-
kle model

ω = ω0n, (20)

where ω0 is the noise-free image with gray level = 90 in
bright regions and gray level = 50 in dark regions and n
is the noise-only image, which is constructed by a running
average of an i.i.d. Rayleigh distributed noise image with a
5 × 5 Gaussian mask with σ = 2. This simulates the corre-
lation property of the speckle noise. ω is the observed sig-
nal. The image size is 380 × 318. Figure 2 shows the results
of different filtering schemes on the artificial image. Specific
information about the processing algorithms in Figure 2 is
given in Table 1. Since the processing time for the image dec-
imation (0.02 second) and the full-size image reconstruction
(0.01 second) is negligible compared to the one-channel dif-
fusion time (1.342 seconds), we only give the one-channel
processing time in Tables 1, 3, 4, 5. Here, we use the short no-
tation MGAD to represent the median boosted (or guided)
and median regularized anisotropic diffusion and DMAD to
represent the decimated median boosted and median regu-
larized anisotropic diffusion.

Visually, the result processed by the new method is much
sharper in terms of edge preservation and smoother in terms
of speckle noise reduction than the other two filtered re-
sults. The execution time is also much shorter than the other
twomethods. For quantitative quality evaluation, we provide
three metrics.

First, in terms of edge preserving or edge enhancement,
we applied Pratt’s figure of merit (FOM) to give a quantita-
tive evaluation [21]. The FOM is defined by

FOM = 1

max
{
N̂ ,Nideal

} N̂∑
i=1

1
1 + d2i λ

, (21)

where N̂ and Nideal are the numbers of detected and ideal
edge pixels, respectively. di is the Euclidean distance between
the ith detected edge pixel and the nearest ideal edge pixel. λ
is a constant typically set to 1/9. The dynamic range of FOM
is between [0, 1]. Higher value indicates better edge match-
ing between processed image and the ideal image. We used
the Laplacian of Gaussian (LOG) edge detector to find the
edges in all processed results.
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(a) (b)

(c) (d)

Figure 2: (a) Artificial speckle image. (b) Processing result of the adaptive weighted median filter. (c) Processing result of the Gaussian
regularized anisotropic diffusion. (d) Processing result of the decimated median boosted and median regularized anisotropic diffusion.

Table 1: Specific information about Figure 2.

Figure 2b Figure 2c Figure 2d

Filter type AWMF GRAD DMAD

No. of iterations 1 15 15

Mask size 3×3 Gaussian 3× 3
σ = 1

Median
3× 3

Execution time (s) 66.716 6.369
One channel

1.342

β — — 0.2

Second, the peak signal-to-noise ratio (PSNR) metric is
also applied. PSNR evaluates the similarity between the pro-
cessed image y and the ideal image x in terms of mean square
error (MSE):

PSNR = 10× log10

(
g2max

‖x − y‖22

)
, (22)

where gmax is the upper-bound gray level of the image x or

Table 2: Processing result assessment for Figure 2.

Metrics
Filters

AWMF GRAD DMAD

FOM 0.3160 0.4806 0.8497

PSNR (dB) 21.8124 22.4398 22.9059

Q 0.1212 0.1266 0.1320

y (the images used throughout this paper are based on the
scale of [0, 255], so gmax is set to 255). ‖ • ‖2 is an l2-norm
operator. Higher PSNR means a better match between the
ideal and processed images.

PSNR cannot distinguish the bias errors and random er-
rors. In most cases, the bias errors are not as harmful as the
random errors to the images, so we applied a third metric,
the universal image quality index (Q), to evaluate the over-
all processing quality. This idea was proposed by Wang and
Bovik [22]. The formula of the universal image quality index
is

Q = mean
{
Q1Q2Q3

}
, (23)
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(a) (b)

(c) (d)

Figure 3: (a) Speckle-corrupted peppers image. (b) Processing result of the adaptive weighted median filter. (c) Processing result of the
Gaussian regularized anisotropic diffusion. (d) Processing result of the decimated median boosted and regularized anisotropic diffusion.

Table 3: Specific information about Figure 3.

Figure 3b Figure 3c Figure 3d

Filter type AWMF GRAD DMAD

No. of iterations 1 4 4

Mask size 5×5 Gaussian 5× 5
σ = 2

Median
5× 5

Execution time (s) 257.491 4.687
One channel

1.502

β — — 0.2

PSNR (dB) 16.9141 16.8820 17.3466

Q 0.4300 0.4299 0.4947

where

Q1 =
σxy
σxσy

, Q2 = 2 · xy
x2 + y2

, Q3 =
2 · σxσy
σ2x + σ2y

. (24)

Q1 measures the local correlation (similarity) between im-
ages x and y, Q2 measures the local processing bias, and Q3

measures the local contrast distortion. The average value of
Q1Q2Q3 over the whole image gives the universal image qual-
ity index Q. The local measurement of each component of Q
is based on an 8 × 8 sliding window throughout the whole
image. HigherQmeans a better match between the ideal and
processed images.

Table 2 shows the evaluation results for the processed
images in Figure 2. The FOM value indicates that the new
method is better than other two methods in terms of edge
preserving ability. PSNR and Q values indicate that the new
method gives a better processing result in terms of MSE and
the overall processing quality.

We also tested the proposed method on the peppers
image (http : //vision.ece.ucsb.edu /data hiding / ETpeppers.
html) (see Figure 3). The original image (512 × 512) is ar-
tificially corrupted by the speckle noise of model (20). The
noisy image is shown in Figure 3a and the processed results
of different filtering schemes are shown in Figures 3b, 3c, 3d.
In this set of data, 5×5 filtering masks were used (this change
will reduce the number of iterations; however, some finer de-
tails are lost compared to the 3 × 3 mask). In the example
shown here, we obtained a rather good result with the new
technique at the 4th iteration (with the least execution time;
see Table 3).

http://vision.ece.ucsb.edu/data_hiding/ETpeppers.html
http://vision.ece.ucsb.edu/data_hiding/ETpeppers.html


Speckle Reduction by Multichannel Anisotropic Diffusion 2499

(a) (b)

(c) (d)

Figure 4: (a) Processing result of the Gaussian regularized anisotropic diffusion. (b) Processing result of the median regularized anisotropic
diffusion. (c) Processing result of the median guided and regularized anisotropic diffusion. (d) Processing result of the decimated median
guided and regularized anisotropic diffusion.

Table 4: Specific information about Figure 4.

Figure 4a Figure 4b Figure 4c Figure 4d

Filter type GRAD MRAD MGAD DMAD

No. of iterations 15 15 15 15

Mask size 3× 3 3× 3 3× 3 3× 3

Execution time (s) 6.299 7.180 7.451
One channel

1.332

FOM 0.4896 0.5099 0.5559 0.8428

FOM improvement — 4.13% 9.02% 51.61%

PSNR (dB) 22.4098 22.4409 22.5404 22.8881

PSNR improvement (dB) — 0.0311 0.0995 0.3477

Q 0.1267 0.1279 0.1290 0.1323

Q improvement — 0.95% 0.86% 2.56%

We did not perform the FOM evaluation for the pep-
pers image since we did not have the ideal edge data. From
Table 3, it is clear that the proposed method gives the best
result, which is better than the AWMF by 0.4325 dB and the
GRAD by 0.4646 dB in the PSNR and 15% in the Qmetric.

In the new technique, there are three innovative com-
ponents: median regularization, median boosting term (re-
action term), and decimation. It is interesting to quanti-
tatively assess to what degree each component contributes
to the overall merit. The artificial image shown in Figure 2
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(a) (b)

(c) (d)

Figure 5: (a) Ultrasound medical image. (b) Processing result of the adaptive weighted median filter. (c) Processing result of the Gaussian
regularized anisotropic diffusion. (d) Processing result of the decimated median guided and regularized anisotropic diffusion.

Table 5: Specific information about Figure 5.

Figure 5b Figure 5c Figure 5d

Filter type AWMF GRAD DMAD

No. of iterations 1 6 6

Mask size 3×3 Gaussian 3× 3
σ = 1

Median
3× 3

Execution time (s) 66.946 2.574
One channel

0.610

β — — 0.2

was used again to conduct the task because we have perfect
knowledge about it. All the visual FOM, PSNR, andQ assess-
ments can be performed. Figure 4 shows the results from the
GRAD (Figure 4a) and the anisotropic diffusions while pro-
gressively adding the three components (Figure 4b—MRAD;
Figure 4c—MGAD; Figure 4d—DMAD). There is no ob-
servable difference between Figures 4a and 4b, but heavy iter-
ative test has shown that the result from GRAD starts to blur
much earlier than the MRAD. Figure 4c appears smoother
than Figures 4a, 4b. Figure 4d is the most enhanced result

compared to the other three results in terms of background
smoothness and edge sharpness. Table 4 provides the de-
tailed filtering information and the quantitative assessing re-
sults. In terms of FOM criterion, the MRAD improves by
about 4% over the GRAD, the MGAD improves by 9% over
theMRAD, and the DMAD improves by almost 52% over the
MGAD. In terms of PSNR criterion, the MRAD improves by
0.0311 dB over the GRAD, theMGAD improves by 0.0995 dB
over the MRAD, and the DMAD improves by 0.3477 dB over
the MGAD. In terms of Q criteria, the MRAD improves
0.95% over the GRAD, the MGAD improves 0.86% over the
MRAD, and DMAD improves 2.56% over the MGAD. Al-
though some improvements are small, they are consistent in
all the experiments. From these numbers, we conclude that
the decimation and parallel processing contribute the major
gain. This test also verified that the median source term ac-
celerated the convergence rate because with the same itera-
tion numbers, the MGAD produced a better result than both
GRAD and MRAD.

The proposed method was also tested on ultrasound
medical images. Figure 5 shows the processing result com-
pared with both the AWMF and GRAD methods. The size
of the image is 380 × 318. Since we do not have the ideal
image to perform the quantitative assessment, a subjective
assessment has to be conducted. From Figure 5, it can be
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seen that the proposed technique delineates the structures of
the image better and suppresses the speckle most effectively.
Table 5 provides the detailed filtering information.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed some important innovations
to enhance the anisotropic diffusion technique. First, median
regularization overcomes the shortcomings of Gaussian reg-
ularization. The modification provides optimal performance
for the images corrupted by heavy-tail distributed speckle
noise. Unlike the Gaussian regularization that tends to aver-
age the errors to every pixel in the filter window, the median
filter drops the extreme data and preserves the most reason-
able. Median filtering also preserves the edge locations. These
desirable properties provide better diffusion coefficient esti-
mation than Gaussian regularization. Second, although the
median regularization is introduced to anisotropic diffusion
and makes the diffusion more directionally selective, the dif-
fusion process is still an average filter fundamentally. Adding
median boosting term allows the process to take full ad-
vantage of the median filter. The interaction between the
median boosting term and the anisotropic diffusion gener-
ates more desirable results than the single anisotropic dif-
fusion filtering or median filtering. Third, and most impor-
tantly, the image decimation is used to break down speckle
noise to quasi-impulse-type noise, which is easily removed
by the median filter. Multichannel processing increases the
processing speed greatly. Experimental results show that the
new compound technique gives significant improvement in
speckle reduction and image enhancement over previous
techniques.
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