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We construct a class of linear quasi-orthogonal space-time block codes that achieve full diversity over quasistatic fading channels
for any transmit antennas. These codes achieve a normalized rate of one symbol per channel use. Constellation rotation is shown
to be necessary for the full-diversity feature of these codes. When the number of transmit antennas is a power of 2, these codes are
also delay “optimal.” The quasi-orthogonal property of the code makes one half of the symbols orthogonal to the other half, and
we show that this allows each half to be decoded separately without any loss of performance. We give an iterative construction of
these codes with a practical decoding algorithm. Numerical simulations are presented to evaluate the performance of these codes
in terms of capacity as well as probability of error versus SNR curves. For some special cases, we compute the pairwise probability
of error averaged over all the channel states as a single integral that shows the diversity and coding gain more clearly.
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1. INTRODUCTION
Multiple antenna systems have been of great interest in recent
times because of their ability to support higher data rates at
the same bandwidth and noise conditions; see, for example,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and references therein.

For two transmit antennas, Alamouti’s orthogonal de-
sign gave a full-rate space-time block code with full diversity
[6, 12]. More general orthogonal designs were later proposed
by Tarokh et al. and Tirkkonen that had simple single symbol
decoders while offering full diversity [7, 13]. Recently, com-
plex orthogonal designs with maximal rates have been pro-
posed by Liang where the entries are restricted to be the com-
plex modulated symbols or their conjugates with or without
a sign change [14]. The upper bounds of the rates of general-
ized complex orthogonal space-time block codes were given
in [15].

One of the key aspects of orthogonal designs has been to
ensure diversity for any symbol constellation. For more than
two transmit antennas and complex constellations, these
codes offered on the average a rate of less than one symbol
per channel use, where each symbol time period corresponds
to a channel use. The highest theoretical code rate for full-

diversity code when the symbols are constrained to be cho-
sen from the same constellation was shown to be one symbol
per channel use (see [5, Corollary 3.3.1]). (This constraint is
relaxed by using rotated constellations and indeed many of
the recent papers give space-time codes that offer full diver-
sity for more than one symbols per channel use [16, 17]. We
discuss this point further below.)

More recently, a different approach has been attempted
to yield the full diversity where the notion of diversity is
made specific to a constellation, and this is also referred to
as modulation diversity [18]. More specifically, it has been
shown that full-rate and full-modulation diversity is achiev-
able with constellation rotation or linear constellation pre-
coding [18, 19], where the transmitted signal is a multiplica-
tion of a unitary matrix with a diagonal matrix whose diago-
nal elements are a function of linearly precoded (or rotated)
information symbols. This makes the test of full diversity or
the rank criterion trivial by ensuring with proper precoding
or constellation rotation that no element in the diagonal be-
comes zero while taking the difference of two distinct code-
words. A similar idea has been presented before in [20] for
rotated binary phase shift keying (BPSK) modulation.
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The issue of smaller code rate (less than one symbol per
channel use) for complex orthogonal designs has been ad-
dressed in recent times by the design of quasi-orthogonal
codes for achieving higher data rates [21, 22, 23, 24]. The
quasi-orthogonal codes were given for 4 transmit antennas
with rate 1, and 8 transmit antennas with rate 3/4. These
codes sacrificed some orthogonality by making subsets of
symbols orthogonal to each other instead of making every
single symbol orthogonal to any other. Because of this re-
laxation of constraints, these codes achieve higher code rates
that were hitherto not possible with orthogonal codes. It
was shown in [25] that performance of the above quasi-
orthogonal codes can be improved with constellation rota-
tion. Constellation rotation has also been discussed in [26] as
a technique to improve the performance of space-time block
codes.

In this paper, we build on earlier work on orthogonal de-
signs and achieving modulation diversity by constellation ro-
tation to propose a quasi-orthogonal structure to iteratively
construct full-diversity space-time codes for any transmit an-
tennas. These codes have half the symbols orthogonal to the
other half, which allows each orthogonal half to be decoded
separately without any loss of performance. Hence the de-
coding complexity of such a code is considerably smaller. We
show that these codes achieve full diversity with appropriate
constellation rotations. If the transmit antennas are a power
of 2, then these codes are also delay “optimal,” that is, the
length of block code in symbol periods is same as the number
of transmit antennas [27]. We present the numerical results
for these codes in terms of probability of error and we also
provide a Shannon capacity perspective to these codes.

We use the following notation throughout the paper: T
and H denote the transpose and conjugate transpose, re-
spectively, of a matrix or a vector; IM and 0M are M × M
identity and null matrices, respectively; ‖A‖F and Tr(A) de-
note Frobenius norm and trace of matrix A, respectively; Q-
function is given by Q(x) �

∫∞
x e(−u2/2)du/

√
2π; n! denotes

the factorial of n for any nonnegative integer n; C denotes
the complex number field; CP denotes a vector of length P
whose elements are taken from C; CP×Q denotes a P×Qma-
trix whose elements are taken from C; j denotes an integer
index or

√−1, where the actual value will be evident from the
context; Re(x) and Im(x) denote the real and imaginary parts
of a complex number x respectively; CN (0, 1) indicates a
zero mean and circularly symmetric complex Gaussian vari-
able with unit variance; det{A} denotes the determinant of a
square matrix A.

2. SYSTEMMODEL

Consider a system ofM transmit andN receive antennas that
we refer to as (M,N) system in this paper. The modulated
information symbols to be transmitted are taken Q at a time
to form a Q × 1 vector denoted by c = (c1, . . . , cQ)T . This
information vector is precoded (i.e., multiplied) by a Q × Q
unitary rotation matrix denoted byRQ. Let s = (s1, . . . , sQ)T

and

s =RQc. (1)

This precoded vector s is then passed on to a linear space-
time block code that generates a T ×M matrix GQ[s] given
by

GQ[s] =
Q∑
q=1

(
Cqsq +Dqs

∗
q

)
, (2)

where C’s and D’s are T ×M complex matrices, which com-
pletely specify the code. This matrix is transmitted in T chan-
nel uses (each channel use is a symbol time period). The aver-
age code rate for this system is hence Q/T symbols per chan-
nel use.

For quasistatic fading channel, the received signal is given
by

X(s) =
√

ρ

M
GQ[s]H +V , (3)

whereX andV are theT×N received and noisematrices, and
H is theM×N complex channel matrix that is assumed to be
constant over T channel uses and varies independently over
the next T channel uses and so on. The entries ofH andV are
assumed to be mutually independent and CN (0, 1), and ρ is
the average SNR per received antenna. We assume that the
channel is perfectly known at the receiver but is unknown at
the transmitter.

2.1. Design criterion

It has been shown in [5] by examining the pairwise proba-
bility of error between two distinct information vectors (say
c, e ∈ CQ) that for full diversity, in quasistatic fading chan-
nels, GH

Q [RQ(c− e)]GQ[RQ(c− e)] should have a rank ofM
(rank criterion). We assume here that T ≥M. If for someM,
T = M, then the rank criterion could be modified to yield
the following: for full diversity, and c �= e,

det
{
GQ
[
RQ(c− e)

]} �= 0. (4)

We will examine this criterion in the context of proposed
codes. In addition, we will examine the coding gain for qua-
sistatic fading channels that is defined to be

min
c,e

( M∏
i=1

λi

)1/r

, (5)

where λi, i = 1, . . . , r, are the nonzero eigenvalues of the
M ×M matrix GH

Q [RQ(c − e)]GQ[RQ(c − e)]. For T = M
and for a full-diversity achieving code, the coding gain can
be simplified as

min
c,e

∣∣det {GQ
[
RQ(c− e)

]}∣∣2/M. (6)

3. LINEAR QUASI-ORTHOGONAL CODES

Partition vector s (defined in Section 2) intoQ/L parts where
L divides Q. These partitions are disjoint and for the pur-
poses of this paper, we will assume that all partitions con-
tain L symbols. We describe these partitions by a set of func-
tions Ai, i = 1, . . . ,Q/L, where Ai(s) is a Q length vec-
tor that has symbols in indices belonging to it and zeros in
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all other indices. For example, if the first partition has the
first two and the last symbols belonging to it, then A1(s) =
(s1, s2, 0, . . . , 0, sQ). If the kth element of the vector denoted
by Ak

i (s) is nonzero, then Ak
j (s) = 0 for all j �= i, j =

{1, . . . ,Q/L}. This follows since the partitions are disjoint.
For disjoint partitions, it follows from linearity that

GQ[s] =
Q/L∑
i=1

GQ
[
Ai(s)

]
. (7)

We define a linear quasi-orthogonal code over partitions
given byAi, i = 1, . . . ,Q/L, to be the one that satisfies

GH
Q [s]GQ[s]

�=
Q/L∑
i=1

GH
Q

[
Ai(s)

]
GQ
[
Ai(s)

] ∀s ∈ CQ. (8)

Hence the partitions are completely decoupled from each
other when we take this product and this is true for any com-
plex vector s. Note that the quasi-orthogonal property is de-
fined for any s ∈ CQ, while the approach we adopt later to
prove full diversity is specific to the choice of modulation
constellation.

3.1. Properties

Proposition 1. A Linear space-time code is a quasi-orthogonal
code if and only if any of the following holds:

GH
Q

[
Ai(s)

]
GQ
[
A j(s)

]
+GH

Q

[
A j(s)

]
GQ
[
Ai(s)

]=0M , i �= j;
(9)

CH
i Cj +DH

j Di = CH
i Dj + CH

j Di = 0M , si, s j �∈Ak(s)∀k;
(10)

GH
Q [s]GQ[c] =

Q/L∑
i=1

GH
Q

[
Ai(s)

]
GQ
[
Ai(c)

] ∀s, c ∈ CQ.

(11)

Proof. Using linearity in (7), the left-hand side of (8) is given
by

Q/L∑
i=1

GH
Q

[
Ai(s)

]
GQ
[
Ai(s)

]

+
Q/L∑
i=1

Q/L∑
j=i+1

GH
Q

[
Ai(s)

]
GQ
[
A j(s)

]

+GH
Q

[
A j(s)

]
GQ
[
Ai(s)

]
.

(12)

Using (9) in the above equation, (8) follows. Suppose that (9)
does not hold, then using equation (12), it follows that

GH
Q [s]GQ[s] �=

Q/L∑
i=1

GH
Q

[
Ai(s)

]
GQ
[
Ai(s)

]
, (13)

which contradicts (8).
Let GQ[Al(s)] =

∑L
k=1 Clk slk + Dlk s

∗
lk
with l = i, j. Then

the left-hand side of (9) is given by

L∑
p,q=1

X1sip s jq +
(
X1siq s jq)

H + X2sip s
∗
jq + (X2sip s

∗
jq

)H
, (14)

where X1 = DH
ip Cjq +DH

jqCip and X2 = CH
jqCip +DH

ip Djq . Using

(10), X1 = X2 = 0M , hence (9) and (8) hold. Conversely,
if (10) does not hold, then X1 �= 0M and X2 �= 0M , which
contradicts (9) and hence also (8).

Define a new vector zwhose ith and jth partitions are the
same as s and c with i �= j. Then using (9), we have

GH
Q

[
Ai(s)

]
GQ
[
A j(c)

]
+GH

Q

[
A j(c)

]
GQ
[
Ai(s)

] = 0M. (15)

We can do this over all i, j with i �= j. Then expanding the
left-hand side of (11) along similar lines as in (12), (11) fol-
lows immediately. Conversely, if (11) is not true, then substi-
tuting s = c contradicts (8).

Proposition 2. Maximum likelihood (ML) decoding of a linear
quasi-orthogonal code with received signal model given by (3)
is equivalent to ML decoding of each partitions individually by
taking the channel model as

X
(
Ai(s)

) =
√

ρ

M
GQ
[
Ai(s)

]
H +V. (16)

Proof. ML decoding is given by

ŝ = argmin
z

∥∥∥∥X(s)−
√

ρ

M
GQ[z]H

∥∥∥∥
2

F

= argmin
z

Tr
{
ρ

M
HHGH

Q [z]GQ[z]H

− 2
√

ρ

M
Re
[
XH(s)GQ[z]H

]}
(17a)

= argmin
z

Tr


 ρ

M

Q/L∑
i=1

HHGH
Q

[
Ai(z)

]
GQ
[
Ai(z)

]
H

− 2
√

ρ

M
Re
(√

ρ

M
HHGH

Q [s]GQ[z]H

+VHGQ[z]H
)


(17b)

= argmin
z

Tr


 ρ

M

Q/L∑
i=1

HHGH
Q

[
Ai(z)

]
GQ
[
Ai(z)

]
H

−2
√

ρ

M
Re


√ ρ

M
HH

Q/L∑
i=1
GH
Q

[
Ai(s)

]
GQ
[
Ai(z)

]
H

+VH
Q/L∑
i=1

GQ
[
Ai(z)

]
H





(17c)

= argmin
z

Q/L∑
i=1

Tr
{
ρ

M
HHGH

Q

[
Ai(z)

]
GQ
[
Ai(z)

]
H

−2
√

ρ

M
Re
[
HHXH

(
Ai(s)

)
GQ
[
Ai(z)

]
H
]}

(17d)

=
Q/L∑
i=1

argmin
Ai(z)

Tr
{
ρ

M
HHGH

Q

[
Ai(z)

]
GQ
[
Ai(z)

]
H

−2
√

ρ

M
Re
[
HHXH

(
Ai(s)

)
GQ
[
Ai(z)

]
H
]}
,

(17e)
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which is similar to (17a) and hence the effective channel
model is given by (16). In (17a), we have used the fact that
‖A‖2F = Tr(AHA); in (17b), we have used (3) and (8); in
(17c), we have used (7) and (11); in (17d), we have used the
definition of XH(Ai(s)) from (16); and in (17e) the fact that
Tr(·) is a linear operation.

3.2. Construction of a class of linear quasi-orthogonal
codes for anyM

We construct a class of quasi-orthogonal codes that achieve
full rate for any transmit antennas. The construction of the
code is iterative that ensures its quasi-orthogonal structure.
We will first consider the case ofM being a power of 2. A case
of otherM is dealt with later in this section.

3.3. M a power of 2

Consider an M ×M code for M transmit antennas that en-
codesM symbols together and transmits the block code inM
channel uses, where M is a power of 2. Hence Q = T = M
and the code rate for this code is 1. We will consider quasi-
orthogonal codes with two disjoint partitions withM/2 sym-
bols in each of them (i.e., L = M/2) that are orthogonal to
each other in the sense of (9). The two partitions forM trans-
mit antennas are denoted by AM,1(s) and AM,2(s), where a
subscript M is added to show that they are for M transmit
antennas.

We first define the code and partitions for a single trans-
mit antenna as

G1[s] � s1 ∀s ∈ C1, (18)

andA1,1(s) = s1 andA1,2(s) = 0, where s ∈ C1.
We assume that the following properties are true for any

M, whereM is a power of 2, and for any s, e ∈ CM :

(P1) GH
M[AM,1(s)] = GM[AM,1(s∗)];

(P2) GH
M[AM,2(s)] = −GM[AM,2(s)];

(P3) GM[AM,1(e)]GM[AM,1(s)]=GM[AM,1(s)]GM[AM,1(e)];
(P4) GM[AM,2(e)]GM[AM,2(s)]=GM[AM,2(s∗)]GM[AM,2(e∗)];
(P5) GH

M[AM,1(s)]GM[AM,2(s)]+GH
M[AM,2(s)]GM[AM,1(s)]

= 0. Note that by using (P1) and (P2), this
can be rewritten as GM[AM,1(s∗)]GM[AM,2(s)] =
GM[AM,2(s)]GM[AM,1(s)].

Iterative construction

We construct a code for 2M transmit antennas that takes a
2M×1 precoded vector s as input. For simplicity of notation,
we will denote the first M elements of s by sM,1 and the last
M by sM,2. Then the quasi-orthogonal code for 2M antennas
is constructed as

A2M,1(s) =AM,1
(
sM,1

)
+AM,2

(
sM,2

)
, (19)

A2M,2(s) =AM,2
(
sM,1

)
+AM,1

(
sM,2

)
, (20)

Table 1: Indices of the first partition of the code for variousM.

M Indices of first partition, IM,1

2 1

4 I2,1, 4

8 I4,1, 6, 7

16 I8,1, 10, 11, 13, 16

32 I16,1, 18, 19, 21, 24, 25, 28, 30, 31

and the code for each partition is written as

G2M
[
A2M,1(s)

]=
[
GM

[
AM,1

(
sM,1

)]
GM

[
AM,2

(
sM,2

)]
−GM

[
AM,2

(
s∗M,2

)]
GM

[
AM,1

(
s∗M,1

)
]

]
,

G2M
[
A2M,2(s)

]=
[
GM

[
AM,2

(
sM,1

)]
GM

[
AM,1

(
sM,2

)]
−GM

[
AM,1

(
s∗M,2

)]
GM

[
AM,2

(
s∗M,1

)]
]
.

(21)

By using the linearity equation (7), we have

G2M[s] = G2M
[
A2M,1(s)

]
+G2M

[
A2M,2(s)

]
=
[
GM

[
sM,1

]
GM

[
sM,2

]
−GM

[
s∗M,2

]
GM

[
s∗M,1

]
]
.

(22)

For M = 1, this gives the Alamouti’s code [6]. For M = 2
case, this iterative structure along with some similar ones
were presented in [23]. Table 1 gives the indices of the first
partition denoted by IM,1 for M = 2, 4, 8, 16, and 32. Sym-
bols with the same indices as those given in the table form
the first partition for the code. These indices come from the
construction above. Note that from (19), IM,1 is a subset of
I2M,1. The second partition can be obtained by excluding the
indices from the first partition.

Proposition 3. The constructed code for 2M transmit anten-
nas in (19) and (20) satisfies properties (P1)–(P5) for any M,
whereM is a power of 2.

Proof. Omitted.

Note that (P1)–(P5) are true for M = 1. If we assume
that they hold for any M with M a power of 2, then using
Proposition 3, it holds for 2M. It follows from induction that
the constructed code satisfies (P1)–(P5) for anyM, whereM
is a power of 2.

3.3.1. Properties

Proposition 4. For any 2M × 1 vector z, a transformation de-
noted by ẑ is defined that interchanges the two halves of z with
a sign change for the second half, that is, ẑ = [−z(M + 1 :
2M)z(1 :M)]. Then for any 4M × 1 vector s,

det
{
G4M

[
A4M,1(s)

]} = det
{
G2M

[
A2M,1(s2M,1 − ŝ2M,2)]

}
× det

{
G2M[A2M,1(s2M,1 + ŝ2M,2)]

}
,

(23)

where s2M,1 = s(1 : 2M) and s2M,2 = s(2M + 1 : 4M).



1250 EURASIP Journal on Applied Signal Processing

Proof. See the appendix.

It can similarly be shown that

det
{
G4M

[
A4M,2(s)

]} = det
{
G2M

[
A2M,1

(
s2M,2 − ŝ2M,1

)]}
× det

{
G2M

[
A2M,1

(
s2M,2 + ŝ2M,1

)]}
.

(24)

We omit the proof because of similarity with Proposition 4.
We will use Proposition 4 to prove the full diversity. For
M = 2, we obtain by calculation det{G2[A2,1(s)]} = |s1|2.
For 4M = 4, we use (23) to get det{G4[A4,1(s1)]} = |s1 −
s4|2|s1 + s4|2 and for 4M = 8, we get

det
{
G8
[
A8,1(s1)

]} = ∣∣s1 − s7 + s4 + s6
∣∣2∣∣s1 − s7 − s4 − s6

∣∣2
× ∣∣s1+s7 + s4 − s6

∣∣2∣∣s1+s7 − s4 + s6
∣∣2.

(25)

Proposition 5. LetA2M,1(s) = {sk1 , . . . , skM} and define a con-
stellation C = {∑M

j=1 skj}. Let dM,min(C) denote the minimum
distance of this constellation. Then to ensure that the code sat-
isfies the rank criterion with a modulation constellation that
is invariant under multiplication with ±1, it suffices to show
that there exists a pre-coding RM (defined in (1)) that makes
dM,min(C) > 0. Further, the coding gain of such a system is
d2M,min(C).

Proof. Firstly, we note that due to quasi-orthogonal structure
of the code, we need to prove rank criterion for the partitions
instead of the full code. Because of the iterative structure in
(23), it is clear that for any M ≥ 2 and M a power of 2,
det{G2M[A2M,1(s)]} is the product of M terms of the form

∣∣∣∣∣∣
M∑
j=1

(−1)bj skj

∣∣∣∣∣∣
2

, (26)

where bj = {0, 1}. If the modulation constellation used for
modulated information symbols in c in (1) is invariant under
the multiplication with ±1, then modulation constellations
for precoded symbols s are also invariant under the multi-
plication with ±1, and hence constellation {∑M

j=1(−1)bj sk, j}
is the same as the constellation C for any choice of bj , j =
1, . . . ,M. If dM,min(C) > 0, then for any difference between
two distinct precoded vectors s and e, det{G2M[A2M,1(s −
e)]} �= 0, which ensures full rank.

The coding gain denoted by δ2M is given by (using (6) for
2M transmit antennas)

δ2M = min
s,e

∣∣det {G2M
[
A2M,1(s− e)

]}∣∣1/M
= d2M,min(C).

(27)

The proof for G2M[A2M,2(s)] follows along similar lines.
The existence of a precoding to guarantee that dM,min(C) �= 0
is shown in [18, 19, 28, 29, 30] and references therein.

We note here that for 2M transmit antennas, M sym-
bols are precoded together due to quasi-orthogonal struc-
ture, while in [18, 19], all 2M are precoded together. Since
minimum distance typically decreases asM increases, we ex-
pect the coding gain to be higher than [18, 19]. From [18,
equation (6)], the minimum distance for a class of real con-
stellation rotations is dependent onM as d2M,min ∼ (M)−M .

3.3.2. M not a power of 2

Until now we have dealt with only those number of transmit
antennas that are a power of 2. To address this issue, we have
the following proposition.

Proposition 6. A full-diversity quasi-orthogonal code for M
transmit antennas, whereM is not a power of 2, can be obtained
by deleting any P −M columns of GP , where P = 2�log2(M)�.

Proof. We first prove that this code is quasi-orthogonal. As-
sume that the last P − M columns of GP are deleted. Then
modified received signal model for this code can be rewrit-
ten, without any loss of performance using (3), as

X(s) =
√

ρ

M
GP[s]Ĥ +V , (28)

where Ĥ is a P × N matrix whose first M rows are the same
as that M × N matrix H , and the last P −M rows are null
vectors; X and V are M × N matrices. Since GP is quasi-
orthogonal allowing the partitions to be separately decoded
for any channel realization, then decoding for anyM can also
be accomplished by decoding each partition separately.

It follows from linearity thatGM[AM,i(s)] (i = 1, 2) is ob-
tained from GP[AM,i(s)] by deleting its last P −M columns.
SinceGP[AP,1(s)] is full rank, that is, with rank P, then delet-
ing P −M columns makes its rank asM, which is a full-rank
P ×M matrix and hence has full diversity. This proof is valid
if any other P −M columns of GP are deleted instead of the
last ones.

We note here that ifM is not a power of 2, then the quasi-
orthogonal code formed above will require P = 2�log2(M)�

channel uses for transmission of one code block. Since P >
M, the code is not delay optimal in this case.

3.4. Decoding

While (16) implies that performance of a ML decoder will be
the same as that of ML decoding of each partition separately
by assuming that only one partition is transmitted, it does
not give a practical way of decoding these codes when all the
partitions are indeed sent together. We provide a practical
way of achieving a low complexity ML decoding done over
a single partition. We will do this for M being a power of 2.
If M is not a power of 2, then one can form a new channel
whose rows are a power of 2 as in (28).

We note first that any row of the constructed code ei-
ther contains the symbols or its conjugates (with possible
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sign change). This can be seen from the iterative construc-
tion in (22) where this property is preserved. It is trivially
true forM = 1 in (18). For any h ∈ CM×1, define a transfor-
mation denoted by T that takes conjugates of those elements
ofM × 1 vector GM[s]h that contains conjugates of elements
of s. Hence we can write

T
(
GM

[
AMi(s)

]
h
) = EM,i(h)vM,i(s), (29)

where EM,i’s are M × (M/2) matrices dependent only on h,
and vM,i’s are (M/2) × 1 vectors that contain symbols from
partition i, with i = 1, 2.

Proposition 7. For any h ∈ CM×1, EH
M,1(h)EM,2(h) = 0.

Proof. It follows from (P5) for any h that

0M = {GM
[
AM,1(s)

]
h
}H{

GM
[
AM,2(s)

]
h
}

+
{
GM

[
AM,2(s)

]
h
}H{

GM
[
AM,1(s)

]
h
} (30a)

= (T {GM
[
AM,1(s)

]
h
})H(

T
{
GM

[
AM,2(s)]h

})
+
(
T
{
GM

[
AM,2(s)

]
h
})H(

T
{
GM

[
AM,1(s)

]
h
}) (30b)

= vHM,1(s)E
H
M,1(h)EM,2(h)vM,2(s)

+ vHM,2(s)E
H
M,2(h)EM,1(h)vM,1(s),

(30c)

where (30a) follows from (P5), and (30b) follows by noting
that taking conjugates of elements at the same indices of any
vectors M × 1 g1 and g2 leaves the product gH1 g2 + gH2 g2 un-
changed. Note that since the partitions are disjoint, (30c) can
be true only if EH

M,1(h)EM,2(h) = 0 for any h ∈ CM .

By taking conjugates appropriately, we can derive a mod-
ified signal model from (3) for receive antenna n (n =
1, . . . ,N) as

X̂n(s) =
√

ρ

M

[
EM,1

(
Hn
)
vM,1(s)+EM,2(H)vM,2(s)

]
+V̂n, (31)

where Hn is the nth column of H and X̂n and V̂n are de-
rived from the nth column ofX andV , respectively, by taking
the conjugates of some or all their elements. Let the singu-
lar value decomposition (SVD) [31] of EM,i(Hn) be given by
EM,i(Hn) = UiSiW

H
i , whereUi andWi are unitary and Si is an

M× (M/2) diagonal matrix. Let Ŝi be anM× (M/2) diagonal
matrix whose diagonal elements are the inverse of diagonal
elements of Si and hence

ŜiS
H
i =


IM/2 0M/2

0M/2 0M/2


 (32)

and ŜiS
H
i Si = Si. Multiplying both sides of (31) by

UiŜiW
H
i E

H
M,i(Hn) = UiŜiS

H
i U

H
i , we get after simplification

UiŜiS
H
i U

H
i X̂n(s) =

√
ρ

M
EM,i

(
Hn
)
vM,i(s) +UiŜiS

H
i U

H
i Vn,

(33)

where we have used (29) to cancel the contribution of
the other partition. Note that using (32), it follows that
UiŜiS

H
i U

H
i Vn has the same statistics as Vn. Using (21), one

can iteratively generate the equivalent channels for each par-
titions as

E2M,1(h) =
[
EM,1

(
hM,1

)
EM,2

(
hM,2

)
E∗M,1

(
hM,2

) −EM,2
(
hM,1

)
]
,

E2M,2(h) =
[
EM,2

(
hM,1

)
EM,1

(
hM,2

)
E∗M,2

(
hM,2

) −EM,1
(
hM,1

)
]
,

(34)

where hM,1 = h(1 :M) and hM,2 = h(M + 1 : 2M).

4. NUMERICAL RESULTS

In this section, we provide the numerical results for the con-
structed codes. We provide both the Shannon capacity per-
spective of these codes along with the probability of error
curves for modulated symbols.

4.1. Capacity of quasi-orthogonal codes

The capacity of quasi-orthogonal codes is computed by using
(33) to get the equivalent channel for the nth receive antenna.
One can write the overall channel matrix taken over all the
receive antennas by stacking them as

HM,i =



EM,i

(
H1
)

...

EM,i
(
HN

)


 , (35)

which is an MN × (M/2) matrix. The channel model in this
case is given by

X =
√

ρ

M
HM,i +V. (36)

Note that elements of V are CN (0, 1).
By using the abovemodel, we compute the ergodic capac-

ity of quasi-orthogonal codes and plot this along with open-
loop Shannon capacity in Figure 1 for an (8, 1) system. We
also plot the capacity of a rate 1/2 complex orthogonal code
[7]. As shown in the figure, the proposed quasi-orthogonal
codes are quite close to the Shannon capacity. Note that the
Shannon capacity is achievable by an ideal rate 1 complex or-
thogonal code though such a code is known to exist only for
M = 2. In Figure 2, we plot the capacities for an (8, 2) system.
The quasi-orthogonal code is not as close to the Shannon ca-
pacity in this case though it still performs much better than
the orthogonal code.



1252 EURASIP Journal on Applied Signal Processing

7

6

5

4

3

2

1

0

R
at
e
(b
ps
/H

z)

0 2 4 6 8 10 12 14 16 18 20

SNR (dB)

Logdet
QO
Orthogonal

Figure 1: Ergodic capacity of quasi-orthogonal codes along with
open loop Shannon capacity and that of a rate 1/2 orthogonal code
for (8, 1).

4.2. Probability of error

We plot the symbol error rate (SER) versus the average SNR
per receive antenna in Figure 3 with QPSK modulation for
M = 4, 8, 16, 32 and N = 1. The elements of H are assumed
to be i.i.d. and CN (0, 1). For M = 4, we use the rotations
described in [25] that were obtained by maximizing the min-
imum distance of constellation C defined in Proposition 5
and the precoding matrix is given by diag[1, exp(0.52 j)]. For
higher M, instead of exhaustive search to find the best pre-
coding matrix, we rotate the ith symbol, i = 1, . . . ,M/2, with
a phase of (i− 1)π/M. A better choice is also possible. Hard-
decision sphere decoding was done for each partition sepa-
rately by using (33). For comparison, we also plot the per-
formance of an ideal full-rate orthogonal code (though un-
available) that has equivalent channel SNR as ‖H‖2F ρ/M and
of uncoded QPSK over a channel with only additive white
Gaussian noise and no fading forM = N = 1.

Note that the performance is better than that given in
[18] and [19, Figure 11]. Also note that because of the or-
thogonality built into the proposed codes, our codes have
lower decoding complexity. For a constellation of size q, the
decoding complexity after the preprocessing to separate the
two partitions is ∼ qM/2 for the proposed codes, while the
decoding complexity is ∼ qM for both [18, 19] under ML de-
coding. Under sphere decoding [32, 33], the decoding com-
plexity is approximately cubic with the number of symbols
that are jointly decoded: the decoding complexity for the
proposed codes is 2O(M3/8), and for the codes in [18, 19],
the decoding complexity is O(M3). Hence there is a signif-
icant saving in decoding complexity while there is perfor-
mance improvement by using the proposed codes.

For higherM, note that the performance of the proposed
codes is very close to the ideal codes. Hence any other full-
rate code will offer very marginal gains over the proposed
codes for higher transmit antennas.
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Figure 2: Ergodic capacity of quasi-orthogonal codes along with
open loop Shannon capacity and that of a rate 1/2 orthogonal code
for (8, 2).
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Figure 3: Simulated SER versus SNR for variousM and N = 1, and
M = 1 with no fading, for QPSK modulation.

5. PERFORMANCE ANALYSIS FOR
SELECTED CODES

ForM = 4, the constructed code is the same as given in [23].
The equivalent channel model for the first partition can be
written using (29) as

E4,1(h) =



h1 h4
h∗2 −h∗3
h∗3 −h∗2
h4 h1


 . (37)

By taking SVD of E4,1(h) and discarding the last two rows, we
get a simpler 2×2 receive signal model by discarding the null
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rows as

ri1 =
√

ρ

M

√
γi + αi

2

(
z1 + exp( jθ)z2

)
+ ni1,

ri2 =
√

ρ

M

√
γi − αi

2

(
z1 − exp( jθ)z2

)
+ ni2,

(38)

where

γi =
4∑

k=1

∣∣hk,i∣∣2,
αi = 2Re

(
h∗1,ih4,i − h∗3,ih2,i

)
,

(39)

and θ is the rotation applied to increase the minimum dis-
tance of constellation C = z1 + exp( jθ)z2 as in Proposition 5
(see also [25] for more details). The symbols z1 and z2 are the
symbols in the first partition, where the indices are chosen as
1, 2 for convenience.

In addition to this code, it was shown in [25] that the rate
3/4 quasi-orthogonal code for 8 transmit antennas given in
[23] has also two interfering signals and its equivalent chan-
nel model can also be written like (38) with

γi =
8∑

k=1

∣∣hk,i∣∣2,
αi = 2Re

(
h∗1,ih5,i − h2,ih

∗
6,i − h3,ih

∗
7,i − h∗4,ih8,i

)
.

(40)

While this code does not belong to the class of proposed
codes (it is not a full-rate code and the interfering symbols
for the proposed code for 8 transmit antennas are 4), we in-
clude it here since its analysis is similar to the 4-transmit-
antenna code.

We now determine the pairwise probability of error for
these two codes by assuming that the transmitted pair (z1, z2)
is mistaken as (e1, e2). The pairwise probability of error for a
given H is given by

Pe
[(
z1, z2

) −→ (
e1, e2

)∣∣H] = Q

(√
ρ

4M
D

)
, (41)

where

D =
N∑
i=1

[(
γi + αi

)∣∣δ1∣∣2 + (γi − αi
)∣∣δ2∣∣2]

=
(∣∣δ1∣∣2 + ∣∣δ2∣∣2)

N∑
i=1

γi +
(∣∣δ1∣∣2 − ∣∣δ2∣∣2)

N∑
i=1

αi,

(42)

where δ1 = ((z1−e1)+ j exp( jθ)(z2−e2)) and δ2 = ((z1−e1)−
j exp( jθ)(z2 − e2)). We now invoke the clever representation
of the Q-function given in [34] to have

Pe
[(
z1, z2

) −→ (
e1, e2

)∣∣H]

= 1
π

∫ π/2

0
exp

(
− ρD

8M sin2(θ)

)
dφ.

(43)

We nowwish to average this integral over the channelH . This
may appear to be a formidable exercise, but it can be simpli-
fied easily by noting that for some constants a1 and a2 with
a1 > 0 and (1 + a1) > a2, and for two independent real Gaus-
sian random variables x1 and x2, each of variance 0.5, we have

Ex1,x2
{
exp

(− a1
(
x21 + x22

)
+ 2a2x1x2

)} = 1√
(1 + a1)2 − a22

,

(44)

where E{·} denotes the expectation. Note that the integrand
in the right-hand side of (43) can be decomposed (by us-
ing expressions for γi and αi) into MN/2 terms of the form
a1(|hi,k|2+|hi,l|2)+2a2 Re(h∗i,khi,l), that in turn can be written
in two independent terms of the form a1(x21 + x22) + 2a2x1x2,
where a1 = ρ(|δ1|2 + |δ2|2)/[8M sin2(φ)] and a2 = ρ(|δ1|2 −
|δ2|2)/[8M sin2(φ)], and x1, x2 are real random variables
with the statistics defined above. Hence, we can write (43)
averaged over the channel as

Pe
[(
z1, z2

) −→ (
e1, e2

)]
= 1
π

∫ π/2

0

dφ


1+ρ

(∣∣δ1∣∣2+∣∣δ2∣∣2)
8M sin2(φ)



2

−

ρ
(∣∣δ1∣∣2−∣∣δ2∣∣2)
8M sin2(φ)



2


MN/2

= 1
π

∫ π/2

0

dφ
1 + ρ

(∣∣δ1∣∣2 + ∣∣δ2∣∣2)
4M sin2(φ)

+

(
ρ
∣∣δ1δ2∣∣

4M sin2(φ)

)2


MN/2 .

(45)

This is a much simpler expression to handle being a single in-
tegral.We note that this expression holds true for bothM = 4
andM = 8. Note that we have thus far made no assumptions
about the constellations used for z1 and z2. We now consider
the following cases.

Suboptimal constellations

We define the chosen constellations as suboptimal if for any
two distinct pairs, that is, (z1, z2) �= (e1, e2), we have at least
one among δ1 or δ2 to be zero. A simple example for such
a case would be for θ = 0 and z1, z2 chosen from the same
constellation that is invariant under a rotation of π such as
QPSK, 16-QAM, and so forth. We say for the chosen pair,
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δ2 = 0 and δ1 �= 0; then

Pe
[(
z1, z2

)−→(e1, e2)] = 1
π

∫ π/2

0

(4M)MN/2 sinMN (φ)dφ[
4M sin2(φ) + ρ

∣∣δ1∣∣2]MN/2

>
(4M)MN/2Γ((1 +MN)/2)

2
√
πΓ(1+MN/2)

(
4M+ρ

∣∣δ1∣∣2)MN/2 ,

(46)

where Γ(·) denotes the Gamma function and we have used
the integral that

∫ π/2
0 sinn(x)dx = √πΓ((1+n)/2)/2Γ(1+n/2).

The diversity of this system is clearlyMN/2.

Diversity ensuring constellations

We define the chosen constellations to be diversity ensuring if
for any two distinct pairs, neither δ1 or δ2 is zero. The design
of such constellations by rotation for the considered cases can
be found [25]. In this case, the pairwise probability of error
is upper bounded by

Pe
[(
z1, z2

) −→ (
e1, e2

)]
<

1
π

∫ π/2

0

(4M)MN sin2MN (φ)dφ(
ρ
∣∣δ1δ2∣∣)MN

=
(

4M
ρ
∣∣δ1δ2∣∣

)MN
Γ
(
(1 + 2MN)/2

)
2
√
πΓ(1 +MN)

,

(47)

where the inequality follows by taking an upper bound of the
integrand in (45). This proves the full diversity of the chosen
quasi-orthogonal codes for appropriately designed constella-
tions.

6. CONCLUSIONS

A class of linear quasi-orthogonal codes have been con-
structed that offer full-rate and full diversity with constella-
tion rotation for any transmit antennas. Due to orthogonal
structure in the code, two disjoint partitions containing one
half of symbols constituting the code can be decoded sepa-
rately. A practical decoding algorithm is described to utilize
the orthogonality. These codes are closer to the Shannon ca-
pacity curves for (M, 1) systems than to the orthogonal codes
except for M = 2 in which case the constructed code is the
same as an orthogonal code that achieves the Shannon ca-
pacity. It may be possible to construct more classes of quasi-
orthogonal codes in an iterative fashion as described in this
paper.

APPENDIX

PROOF OF PROPOSITION 4

We first prove the following Lemma.

Lemma 1. For any 2M × 1 vector x,

G2M
[
A2M,2(x̂)

]
G2M

[
A2M,2

(
x∗
)] = −G2

2M

[
A2M,1(x)

]
.
(A.1)

Proof.

left hand side =
[
−GM

[
AM,2

(
x2
)]

GM
[
AM,1(x1)

]
−GM

[
AM,1

(
x∗1
)] −GM

[
AM,2

(
x∗2
)]
]

×
[
−GM

[
AM,2

(
x∗2
)]

GM
[
AM,1

(
x∗1
)]

−GM
[
AM,1

(
x1
)] −GM

[
AM,2

(
x2
)]
]

=
[

GM
[
AM,1

(
x1
)
] GM

[
AM,2

(
x2
)]

−GM
[
AM,2

(
x∗2
)
] GM

[
AM,1

(
x∗1
)]
]

×
[
−GM

[
AM,1

(
x1
)] −GM

[
AM,2

(
x2
)]

GM
[
AM,2

(
x∗2
)] −GM

[
AM,1

(
x∗1
)]
]

= −G2
2M

[
AM,1(x)

]
,

(A.2)

where the second equality follows by interchanging the last
M columns and changing the sign with the first M columns
of the first matrix, and by interchanging the firstM rows and
changing the sign with the lastM rows of the second matrix,
that leaves the product unchanged.

Now we have

det
{
G4M

[
A4M,1(s)

]}

= det

{[
G2M

[
A2M,1

(
s1
)]

G2M
[
A2M,2

(
s2
)]

−G2M
[
A2M,2

(
s∗2
)
] G2M

[
A2M,1

(
s∗1
)]
]}

(A.3)

= det
{
G2M

[
A2M,1

(
s∗1
)]}

×det {G2M
[
A2M,1

(
s1
)]

+G2M
[
A2M,2

(
s2
)]
G−12M

[
A2M,1

(
s∗1
)]
G2M

[
A2M,2

(
s∗2
)]}

(A.4)

= det
{
G2
2M

[
A2M,1

(
s1
)]

+G2M
[
A2M,2

(
s2
)]
G2M

[
A2M,2

(
s∗2
)]} (A.5)

= det
{
G2
2M

[
A2M,1

(
s1
)]−G2

2M

[
A2M,1

(
ŝ2
)]}

(A.6)

= det
{
G2M

[
A2M,1

(
s1
)]−G2M

[
A2M,1

(
ŝ2
)]}

×det
{
G2M

[
A2M,1

(
s1
)]

+G2M
[
A2M,1

(
ŝ2
)]} (A.7)

= RHS of (23), (A.8)

where (A.4) follows from the relation of the determinant of a
block matrix to that of its constituent matrices, (A.5) follows
by applying (P5) (which is valid for different vectors since
partitions are disjoint) and simplifying, (A.6) follows using
(A.1), (A.7) follows by applying (P3), and (A.8) follows from
linearity of the code.
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