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When dealing with pattern recognition problems one encounters different types of prior knowledge. It is important to incorporate
such knowledge into the classification method at hand. A common prior knowledge is that many datasets are on some kinds of
manifolds. Distance-based classification methods can make use of this by a modified distance measure called geodesic distance.
We introduce a new kind of kernels for a support vector machine (SVM) which incorporates geodesic distance and therefore is
applicable in cases where such transformation invariance is known. Experiments results show that the performance of our method
is comparable to that of other state-of-the-art methods, such as SVM-based Euclidean distance.
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1. INTRODUCTION

Support vector machine (SVM) is a new promising pattern
classification technique proposed recently by Vapnik and
coworkers [1, 2]. Unlike traditional methods which mini-
mize the empirical training error, SVM aims at minimizing
an upper bound of the generalization error through control-
ling the margin between the separating hyperplane and the
data. This can be regarded as an approximate implemen-
tation of the structure risk minimization principle. What
makes SVM attractive is the property of condensing infor-
mation in the training data and providing a sparse represen-
tation by using a very small number of data points.

SVM is a linear classifier in the parameter space, but it
is easily extended to a nonlinear classifier of the ¢-machine
type by mapping the space S = {x} of the input data into
a high-dimensional feature space F = {¢(x)}. By choos-
ing an appropriate mapping ¢, the data points become lin-
early separable or nearly linearly separable in the high-
dimensional space so that one can easily apply the struc-
ture risk minimization. Instead of computing the mapped
patterns ¢(x) explicitly, we only need the dot products be-
tween the mapped patterns. They are directly available from
the kernel function which integrates ¢(x). By choosing dif-
ferent kinds of kernels, the SVM can realize radial basis func-
tion (RBF) and polynomial and multilayer perceptron clas-
sifiers. Compared with the traditional way of implementing
them, the SVM has an extra advantage of automatic model
selection, in the sense that both the optimal number and the

locations of the basis functions are automatically obtained
during training.

Like neural networks, SVM also uses a distance function
to determine how close an input vector x is to each stored
data [3]. As mentioned in [4], a variety of distance functions
are available for such use, including the Minkowski, Ma-
halanobis, Camberra, Chebychev, and Chi-square distance
metrics. Although there have been many distance functions
proposed, by far the most commonly used is the Minkowski
distance. Euclidean distance is the most special case of the
Minkowski distance. The choice of distance function influ-
ences the bias of a learning algorithm. A bias is a rule or
method that causes an algorithm to choose one generalized
output over another. A learning algorithm must have a bias in
order to generalize, and it has been shown that no learning al-
gorithm can generalize more accurately than any other when
summed over all possible problems [5]. It follows then that
no distance function can be strictly better than any other in
terms of generalization ability, when considering all possible
problems with equal probability. So, an appropriate distance
function should be selected according to datasets. Especially
for those data points which lie in a manifold, Euclidean dis-
tance cannot reflect the real distance between two points.

In 2000, Tenenbaum proposed the geodesic distance [6].
The basic idea is that for a neighborhood of points on a
manifold, the Euclidean distances provide a fair approxima-
tion of geodesic distance. For faraway points, the geodesic
distance is estimated by the length of the shortest path
through neighboring points.


mailto:quanysjtu@hotmail.com
mailto:jieyang@sjtu.edu.cn

2516

EURASIP Journal on Applied Signal Processing

In this paper, we focus on the design of SVM based on
the geodesic distance. We first propose an improved geodesic
distance to eliminate isolated embeddings, then the geodesic
distance is applied to the kernel of SVM. Experiments show
that good generalization can be obtained using the revised
SVM.

2. MINKOWSKI METRIC AND ITS LIMITATIONS

The Minkowski metric [7] is widely used for measuring sim-
ilarity between points. Suppose two points x and y are rep-
resented by two p dimensional vectors (x1,x2,...,x,) and
(¥1> Y25 .. ¥p), respectively. The Minkowski metric d(x,y)is
defined as

p 1/r
d(x,y) = (Z | x; _)’i|r) , (1)

i=1

where 7 is the Minkowski factor for the norm. Particularly,
when r is set as 2, it is the well-known Euclidean distance;
when 7 is 1, it is the Manhattan distance (or L; distance). A
point located a smaller distance from a query point is deemed
more similar to the query point. Measuring similarity by the
Minkowski metric is based on one assumption: the similar
point should be close to the query point in all dimensions.

A variant of the Minkowski function, the weighted
Minkowski distance function, has also been applied to mea-
sure the point similarity. The basic idea is to introduce
weighting to identify important features. By assigning each
feature a weighting coefficient w; (i = 1,..., p), the weighted
Minkowski distance function is defined as

p 1/r
dw(x,y) = (Z wi| x; _}’i|r) : (2)
i=1

By applying a static weighting vector for measuring sim-
ilarity, the weighted Minkowski distance function assumes
that similar points resemble the query points in the same fea-
tures. However, in some cases, Minkowski distance does not
reflect the geodesic distance between two points. Figure 1 il-
lustrates how Euclidean distance exploits the distance for two
points on a manifold.

As Figure 1 shows, for two arbitrary points (circled) on
a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not ac-
curately reflect their geodesic distance, as illustrated by the
solid curve.

3. REVISED GEODESIC DISTANCE

3.1. Constructing the geodesic distance path

Tenenbaum proposed a new algorithm for estimating geo-
desic distances. The basic idea is that for a neighborhood of
points on a manifold, the Euclidean distances provide a fair
approximation of geodesic distance. For faraway points the
geodesic distance is estimated by the length of the shortest
path through neighboring points.

FIGURE 2: Inaccuracy of Euclidean distance compared with geodesic
distance.

Let a, b, and ¢ be given samples from a manifold struc-
ture. One does not assume to know the true manifold which
would be the curve in this example (see Figure2). The
geodesic distances g, and g, would be measured along the
manifold, while d, dp., and d,. denote the Euclidean dis-
tance. When describing relations between the points, the aim
is to take the assumed manifold structure into considera-
tion. Therefore, one tries to estimate the geodesic distance
for a given set of points. As one can see for this example,
the geodesic distance between neighboring points can be ap-
proximated fairly well by their Euclidean distances, so that
Zab = dgp and g = dpe. The geodesic distance between a
and ¢ would be g, = gap + gpc for which g, = dgp + dpc is a
far better approximation than d,.. So, for neighboring points
the geodesic distance is approximated by Euclidean distances
and for distant points one considers the length of the shortest
path through neighboring points.

The geodesic distance algorithm proceeds in two steps
based on this idea. Let X be an (m X n) matrix representing
m samples in n dimensions and it can be assumed that the
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FIGURE 3: Shortest paths on manifold.

points lie on a submanifold of R”. In a first step, the Eu-
clidean distance matrix D;; = d(x;, xj) is computed and for
each x; € X a set of neighboring points Z(x;) is determined
by

Z(xi) = {xj | x; € X is neighbor of x;}. (3)

Several variants for defining neighborhood relations can
be used, for example, k-nearest neighbors, e-ball neighbor-
hood. These relations are used to construct the undirected
neighborhood path, which will be represented by an (m x m)
adjacency matrix G. The adjacency matrix G is initialized
with connections between neighbors, weighted by their Eu-
clidean distance

G - d(xi,xj) ifie Z(x;)orj e Z(xi),
T oo if x; and x; are not neighbored,

(4)

where oo just denotes that two points are not connected. In
this paper, we adopt the k-nearest neighbor algorithm to de-
termine which points are neighbors on the manifold. Since
the graph is undirected, the adjacency matrix has to be sym-
metrized G;; = min(Gjj, Gj;), which clarifies the symmetry
of the neighborhood relation.

In the second step, the geodesic distances for not directly
connected points are estimated by the length of the shortest
path in G between them. Computationally, this is a standard
all-pairs-shortest-path problem for which several algorithms
are available. In this paper, a Floyd-Warshall algorithm will
be used. If we apply the algorithm to G, the resulting value of
Gij is the length of the shortest path and so the approximated
geodesic distance between the vertices representing x; and x;,
if such a path exists.

The accuracy of the estimated intrinsic geometry natu-
rally depends on the density of the samples, errors in the data
relative to the manifold, the smoothness of the manifold, and
the way the neighborhood graph is constructed.

3.2. Connecting subgraphs

Problems arise when the graph is not connected, which can
be a result of noncontinuous sampling, an inadequate con-
struction of neighborhoods or structural breaks in the data.
In that case, the construction of neighborhoods has to be
modified or additional connections have to be made un-
til the all-pairs-shortest-path procedure gives a connected
graph adjacency matrix (Vi, j : Gj; # o), which then is the
matrix of estimated geodesic distance.

Figure 3a shows that the resulting graph is unconnected.
In this situation, Tenenbaum chooses only the largest com-
ponent for embedding. This method works only when the
largest component covers most of the training samples. Since
this would imply that the remaining points would be dis-
carded, this alternative will loose part of information. When
the number of points that each subgraph contains is nearly
equal, the largest component cannot substitute for the whole
sample space. So, errors may occur. In this paper, we choose
to link the subgraphs and take all points into consideration.

To link the subgraphs algorithmically, the simplest
method to ensure the connectedness is the “single link-
age” method. Suppose x; and x; are in two unconnected
subgraphs, respectively, which show the smallest Euclidean
distance D;; among all unconnected points, we link the two
points. Their connection can be penalized by enlarging the
corresponding length in G. For example, in this paper, we set
its length L;; in proportion to D;; and the maximal value g
in every subgraph. Then we have to update the distance in
G. Note that this does not require a full run of an all-pairs-
shortest-path procedure, since if two points are newly con-
nected, the shortest path between them must include the new
connection between x; and x;. Thus, for all pairs x,, x; of pre-
viously unconnected points we have to compute

Guy = min (Gm' + Lij + Gjb,Gaj + Lij + Gib)- (5)

If still some G, = oo remain, the procedure has to be
repeated until all points are in one subgraph.
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3.3. Supervised geodesic distance

Until now, geodesic distance has been used as an unsuper-
vised technique. However, we can take the classification in-
formation into consideration. The geodesic distance prob-
lem can easily be rephrased to use class label information,
w; € Q (1Q] = c¢) with each x;, during training. The idea
is to find a mapping separating within-class structure from
between-class structure. The easiest way to do this is to select
the neighbors from just the class that x; itself belongs to.

A slightly more complicated method would be by using
the distance matrix formulation as in (5), but adding dis-
tance between samples in different classes:

G = G+ pmax(G)A, (6)

where Aj,, = 1if w; + w,,, and 0 otherwise. In this formula-
tion, y € [0, 1] controls the amount to which the class infor-
mation should be incorporated. A dataset is created in which
there are ¢ “disconnected” classes, each of which should be
connected fairly by geodesic distance. These added degrees
of freedom are used to separate the classes.

4. TRAINING SVM WITH GEODESIC DISTANCE

SVMs [8] are a general class of learning architecture inspired
from the statistical learning theory that performs structural
risk minimization on a nested set structure of separating hy-
perplanes. Given a training data, the SVM training algorithm
obtains the optimal separating hyperplane in terms of gener-
alization error.

The support vector algorithm

Suppose we are given a set of examples (x1, y1),. .., (x1, y1) €
RN. y; € {—1, +1}. We consider functions of the form
sgn((w - x) + b). In addition, we impose the condition

Ai{lfl|(w-xi)+b|=l. (7)
=150
We would like to find a decision function f,,; with the

properties f,5(x;) = yi; i = 1,..., 1 If this function exists,
condition (7) implies
yillw-x)+b) =1, i=1,..,1L (8)

In many practical situations, a separating hyperplane
does not exist. To allow for possibilities violating equation
(8), slack variables are introduced:

E>0,togetyi((w-x)+b)>=1-§&, i=1,...,1. (9)

The support vector approaches to minimize the general-
ization error consists of the following. Minimize

I
O(w, &) =(w-w)+y> & (10)

i=1

subject to the constraints (9).

It can be shown that minimizing the first term in (10)
amounts to minimizing the VC-dimension, and minimizing
the second term corresponds to minimizing the misclassifi-
cation error [8]. The minimization problem can be posed as a
constrained quadratic programming (QP) problem. The so-
lution gives rise to a decision function of the form

i=1

I
f(x) = sgn [Zy,-ai(x-x,-)-i-b} ) (11)

Only a small fraction of the g; coefficients is nonzero. The
corresponding pairs of x; entries are known as support vec-
tors and fully define the decision function. The support vec-
tors are geometrically the points lying near the class bound-
aries. We use linear kernels for SVM, nonlinear kernels may
also be used.

4.1. Geodesic distance for kernel functions

Kernel functions are used in SVM. A possible interpretation
of their effects is that they represent dot products in some
feature space F, that is,

k(xi,xj) = gb(xi) . ¢(xj), (12)

where ¢ is a map from input (data) space X into F. Another
interpretation is to connect ¢ with the regularization prop-
erties of the corresponding learning algorithm. These expen-
sive calculations can be reduced significantly by using a suit-
able function k, leading to decision functions of the form

]
f(x) = sgn {z yiai - k(x,x;) + b] . (13)

i=1
Most popular kernels are translation invariant kernels

k(xi,xj) :k(xi—x]-). (14)

Usually, the translation invariant kernels can be ex-
pressed as k(x;, x;) = f(d(x;,x;)). Then the distances D can
be used to compute a feature space Gram matrix by Kj; =
f(Dij). Compared with Euclidean distance, the geodesic dis-
tance reflects the true distance. In this paper, we use the
geodesic distance to measure similarity. Thus, kernel func-
tion becomes Ki; = f(Gj;). In the experiments, RBF kernel
is taken. So,

g(xiaxj)>_

k(xi, xj) = exp (— 557 (15)

4.2. Computing geodesic distance
for new observations

When the geodesic distance is used as a data processing func-
tion in a classification task, the ability to compute geodesic
distance is essential for classifying previously unseen in-
stances. Let X; be the training set. The task is to find geodesic
distance of an additional instance x; € R™ relative to the
points in Xj.
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Let G be the matrix of estimated geodesic distances com-
puted from Xj. The geodesic distances of the instance x; to-
wards all points in X; can be estimated as follows. First, the
(m x 1) vector d; of Euclidean distances between the rest ob-
servation x; and the points in the training set X; is calculated.
Then, the neighborhood Z(x;) of x; is determined using the
same neighborhood rule as was used for the initialization of
GJ. So, the geodesic distance between x; and x; can be esti-
mated by

g(xx;) = Jr)r;lenz (Gij +d(xj,x1)). (16)

4.3. Computational complexity

What makes geodesic distance algorithm more practical in
terms of processing time is that it can be optimized us-
ing Dijkstra’s algorithm for computation of shortest paths
in a graph. Compared to Euclidean distance, the standard
geodesic distance algorithm tends to have more computa-
tional complexity. One has to calculate the I X I shortest-
path distance matrix G;. The simplest way is Floyd’s algo-
rithm with complexity O(1*). Dijkstra’s algorithm is very sig-
nificant, because this optimization reduces the processing
time from the order of hours to the order of minutes, even
to seconds. Such a reduction in time is explainable by ob-
serving that the time complexity for Dijkstra’s algorithm is
O(llogl + E), where [ is the number of vertices and E is
the number of edges. For meshes with O(10°) vertices, ex-
act geodesics can be computed in about 25 seconds on a
633 MHz Celeron II PC.

Moreover, training an SVM requires the solution of a very
large QP optimization problem. For datasets of O(10%) sam-
ples, it will take nearly 163 seconds to solve the QP problem.
So, the computational time of geodesic distance has a small
part in the whole training time of SVM. Once the training
process is finished, the SVM can be used in online classifica-
tion tasks. One will have to compute the geodesic distances
of a testing sample to all of the training samples. Instead of
recomputing the geodesic distance matrix, Section 4.2 intro-
duces a new method to solve this problem and speeds the
computation greatly.

5. NUMERICAL RESULTS AND COMPARISONS

Experiment 1 (a two-spiral problem). The two-spiral prob-
lem [9] is a well-known benchmark problem for testing
the quality of neural network classifiers. In this experiment
(Figure 4), we illustrate an using modified geodesic distance
on a two-spiral problem. The training data are shown on
Figure 4 with two classes indicated by “0” and “x” (100
points with 50 for each class) in a two dimensional input
space. Points in between the training data located on the two
spirals are often considered as test data for this problem, but
are not shown on the figure. The excellent generalization per-
formance is clear from the decision boundaries shown on the
figure. In this case, § = 1 and y = 10 were chosen as param-
eters. This experiment shows that the SVM using modified
geodesic distance can work well on complex datasets.

FIGURE 4: A two-spiral classification problem with the two classes
indicated by “O” and “x.”

Experiment 2 (iris dataset problem). In the second exper-
iment, we compare the feature of the SVM using modi-
fied geodesic distance proposed in this paper with the SVM
using unmodified geodesic distance. Here, the unmodified
geodesic distance means the geodesic distance implemented
by Tenenbaum. The iris dataset problem [10] is also a well-
known benchmark problem for testing the quality of neural
network classifiers. In this experiment (Figure 5), we illus-
trate the results of SVMs using modified geodesic distance
(Figure 5a), unmodified geodesic distance (Figure 5b) and
Euclidean distance (Figure 5¢) on iris dataset problem. The
training data are showing on Figure 5 with two classes indi-
cated by “0” and “*” in a two-dimensional input space. Like
Experiment 1, we take points in between the training data lo-
cated on the plane as test data for this problem. In this case,
& = 0.5and y = 20 were chosen as parameters.

From Figure 5b we can see that many points are misclas-
sified by the SVM using unmodified geodesic distance. For
the iris dataset, there are two subgraphs when constructing
geodesic distance path. The unmodified geodesic distance,
implemented by Tenenbaum, is to choose only the largest
subgraph for learning. So, only part of training examples is
used, that is the reason why some important information
contained in training examples may be lost. That leads to a
disappointing result.

In our modified geodesic distance algorithm, we connect
the subgraphs ex-post. As a result, we take all training ex-
amples into consideration when using SVM. From Figure 5a
we can see that the SVM using modified geodesic distance
can correctly classify the examples that is misclassified in
Figure 5b. This experiment shows that the SVM based on
modified geodesic distance can take full advantage of all
training examples and gain better classification results than
that of the SVM based on unmodified geodesic distance.

From Figures 5a and 5c, we can see that when the
structure of the training samples is simple, the SVM using
modified geodesic distance can gain comparable results as
that of the SVM using Euclidean distance. But when train-
ing samples are in high-dimensional space, the structure is
usually very complicated and the results are very different.
Experiment 3 shows this situation.
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FiGure 5: Iris dataset classification problem with the two classes indicated by “O” and “x.”

Experiment 3 (real datasets). In order to compare the classifi-
cation accuracy of the SVM using modified geodesic distance
proposed in this paper, the SVM using Euclidean distance on
massive datasets, and the SVM using unmodified geodesic
distance, we test this algorithm on three real-world datasets.
Here, the proposed SVM means the SVM using modified
geodesic distance proposed in this paper, the classical SVM
means the SVM using Euclidean distance, and the geodesic
SVM means the SVM using unmodified geodesic distance.

In this experiment, we adopt the same datasets used
in [11], that is, we choose the Boston housing and the
Abalone dataset from the UCI repository [Blake et al.,
1998] and the USPS database of handwritten digits. The
first data are of size 506 (350 training, 156 testing), the
Abalone dataset of size 4177 (3000 training and 1177 test-
ing). In the first two cases, the data were rescaled to
zero mean and unit variance, coordinate-wise, while the
USPS dataset remained unchanged. Its data size is 40337
(29463 training and 10874 testing). Finally, the gender en-
coding in Abalone (male/female/infant) was mapped into
{(1,0,0),(0,1,0),(0,0,1)}.

Table 1 illustrates testing error rate, training set size, and
the number of support vectors for classical SVM and the pro-

posed SVM algorithms. Here, we can see that in almost every
dataset, the new proposed SVM can gain lower testing er-
ror rate than the classical SVM and the geodesic SVM. When
a dataset contains nonlinear structure, the geodesic distance
reflects intrinsic relations in the data and contains proper-
ties of the curvature of the manifold. Therefore, more prior
knowledge about the training data is considered. Especially
in large amount of datasets as shown in Table 1, the new pro-
posed SVM can gain higher classification accuracy than that
of the other two methods.

6. CONCLUSIONS

We successfully demonstrate the generation of a new SVM-
kernel by substituting distance measures in distance-based
kernels. We define modifications of geodesic distance, which
reflects the true distance on a manifold relative to Euclidean
distance. We present a new algorithm for support vector ma-
chines based on geodesic distance. The applications to a dif-
ficult two-spiral classification problem, iris dataset classifica-
tion problem, and real datasets problem show that excellent
generalization performance can be obtained using geometric
distance-based SVM.
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TasLE 1: Comparison on various datasets.

Classification

Training

SVM parameters

Dataset SVM accuracy (%) et size Number of SVs Training time (s) 5 ,
Boston Classical SVM 92.74 + 0.86 350 167 =6 5.8+0.3 150 0.5
housing Geodesic SVM 93.26 + 0.47 350 153 +4 6.3+0.2 150 0.5
Revised SVM 94.42 + 0.08 350 143 =10 6.7+0.4 150 0.5

Classical SVM 87.44 + 1.01 3000 1317 £ 15 378.8 = 13.1 500 20.0

Abalone Geodesic SVM 82.17 +2.13 3000 932 =26 307 £21.6 500 20.0
Revised SVM 93.37 + 1.24 3000 1277 £ 11 462.3 + 24.3 500 20.0

Classical SVM 91.1 £ 0.64 29463 11533 =5 8221.9 + 147.8 700 5.0

USPS Geodesic SVM 83.6 + 0.81 29463 9677 =19 7994 +152.4 700 5.0
Revised SVM 96.5 + 0.31 29463 9874 £ 5 9186.3 = 276.4 700 5.0
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