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In linear system identification, optimal excitation signals can be determined using the Cramer-Rao bound. This problem has
not been thoroughly studied for the nonlinear case. In this work, the Cramer-Rao bound for a factorisable Volterra model is
derived. The analytical result is supported with simulation examples. The bound is then used to find the optimal excitation
signal out of the class of discrete multitone signals. As the model is nonlinear in the parameters, the bound depends on the
model parameters themselves. On this basis, a three-step identification procedure is proposed. To illustrate the procedure, signal
optimisation is explicitly performed for a third-order nonlinear model. Methods of nonlinear optimisation are applied for the
parameter estimation of the model. As a baseline, the problem of optimal discrete multitone signals for linear FIR filter estimation
is reviewed.
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1. INTRODUCTION

In the design of optimal excitation signals for system iden-
tification, the Cramer-Rao bound plays a central role. For a
given model structure, it gives a lower bound on the vari-
ance of the unbiased model parameter estimates for a given
perturbation scenario [1]. The problem of signal optimisa-
tion for the identification of linear models is considered in
[2]. We focus on a nonlinear model structure proposed in
[3], which is nonlinear in the parameters and can be consid-
ered a generalisation of the classical Wiener model [4, page
143]. For the classical Wiener model, the Cramer-Rao bound
was derived in [5]. The goal of this work is to gain further
insight into the design of optimal excitation signals for the
identification of nonlinear cascade systems. The application
that drove our investigations is adaptive nonlinear filtering

for ADSL data transmission systems. The block diagram in
Figure 1 shows an application of the nonlinear model as a
nonlinear canceler of the hybrid echo for the receive path
of an ADSL transceiver system. System distortion analysis
revealed that the line-driver circuit is themain source of non-
linearity. In the subsequent simulation experiments, a non-
linear Wiener-type model of this line-driver circuit is used as
a reference model. As excitation signal the class of discrete
multitone (DMT) signals as used in ADSL data transmis-
sion is primarily considered. During the startup phase of the
ADSL system, it is possible to send a predetermined DMT
training sequence for the nonlinear echo canceler. Thus, the
goal of the signal optimisation procedure is to find the DMT
training sequence which is optimal in the sense that the most
accuratemodel parameter estimates for the echo canceler can
be obtained. Our focus is on the effects of a finite number of
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Figure 1: Block diagram of the application of a nonlinear canceler of the hybrid echo for an ADSL transceiver system.

tones in the input signal and of a finite number of samples
for the estimation of the model parameters.

The work is organised as follows. In Section 2, the con-
sidered Wiener-type model is derived from the general
Volterra model. The Cramer-Rao bound for this model is
computed in Section 3 while Section 4 deals with the pa-
rameter estimation algorithm. Verification of the derived
Cramer-Rao bound via numerical simulations is performed
in Section 5. A discussion, new algorithms, and simulation
results concerning the design of optimal excitation signals for
the considered model are given in Section 6.

2. VOLTERRAMODEL AND THEWIENER-TYPEMODEL

The multivariate kernel vp[k1, . . . , kp] of the homogeneous
Volterra system of Figure 2 with

y[n] =
Mp−1∑
k1=0

· · ·
Mp−1∑
kp=0

vp
[
k1, . . . , kp

]
u
[
n− k1

] · · ·u[n− kp
]

(1)
is factorisable if it can be written as a product of lower-
dimensional terms

vp
[
k1, . . . , kp

] = rp
[
k1, . . . , kr

]
wp
[
kr+1, . . . , kp

]
(2)

shown in Figure 3. The kernel function is fully factorisable if
its kernel vp[k1, . . . , kp] can be written as

vp
[
k1, . . . , kp

] = p∏
i=1

hpi
[
ki
]
. (3)

The corresponding block diagram is depicted in Figure 4.
If all one-dimensional kernels hpi[ki] are identical, that is,
hp[ki] = hpi[ki] for i = 1, . . . , p with

vp
[
k1, . . . , kp

] = p∏
i=1

hp
[
ki
]
, (4)

one arrives at the cascade structure of Figure 5, which is
recognised as a homogeneous Wiener system. In the case
of a general Volterra system of order N for which condi-
tion (4) holds for all orders p with p = 1, . . . ,N , we ob-
tain the considered simplified factorisable Volterra system.

u[n]
vp[k1, . . . , kp]

y[n]

Figure 2: Homogeneous Volterra system of order p.

u[n]
rp[k1, . . . , kr]

wp[kr+1, . . . , kp]

y[n]

Figure 3: Partially factorisable homogeneous Volterra system of or-
der p.

u[n]
hp1[k1]

hp2[k2]

...

hp(p−1)[kp−1]

hpp[kp]

y[n]

Figure 4: Fully factorisable homogeneous Volterra system of order
p.

This Wiener-type model and the related measurement sce-
nario are depicted in Figure 6. If theN different linear kernels
hp[k] in Figure 6 differ only by a scaling factor, the classical
Wiener model is obtained. The measured output z[n] of the
considered model can be written as z[n] = y[n] + ε[n] with

y[n] =
N∑
p=1

Mp−1∑
k=0

hp[k]u[n− k]

p

, (5)

where u[n] is the input signal and ε[n] is assumed to be an
additive zero-mean Gaussian noise process with covariance
matrix Σ. Subsequently, for the ease of notation and without



Optimal Signals for the Identification of Nonlinear Systems 1819
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Figure 5: Homogeneous Wiener system of order p.
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Figure 6: The considered nonlinear Wiener-type model.

loss of generality, Mp = M for p = 1, . . . ,N is assumed.
For convenience, the following objects are defined. The linear
kernel matrixH ∈ RM×N is defined as

H ≡


h1[0] · · · hN [0]
...

...

h1[M − 1] hN [M − 1]

 (6)

and the windowed input matrix U ∈ RNs×M is defined as

U ≡


u[1] u[0] · · · u[−M + 2]
...

...
...

u
[
Ns
]

u
[
Ns − 1

] · · · u
[
Ns −M + 1

]
 , (7)

where u[n] for n < 1 is assumed to be known and Ns is the
considered observation sample length or estimation horizon.
To be precise, to build up an Ns ×M data matrix U, one re-
quires the knowledge ofNs+M−1 samples of the input signal
u[n], which would actually be the estimation horizon. Nev-
ertheless, in the following, we stick to the convention that the
estimation horizon is the number of rows of the data matrix
U, that is,Ns. In addition, the power operator P : Rn×m → Rn

with

(PX)n =
m∑
p=1

(
Xnp

)p
(8)

is defined, where the notation (·)I , denoting one element of
a nonscalar object with I possibly a multi-index, was used.
Making use of the above definitions, the output of the non-
linear model of Figure 6 reads

z = PX + ε, X = UH, (9)

where the elements of this objects correspond to zn ≡ z[n],
εn ≡ ε[n], and Xnp ≡ xp[n]. The parameter vector θ ≡
vec(H) will be needed in the following, where the linear index

j of θj corresponds to the matrix indices [k, p] of Hkp with
j = (p − 1)M + k and k = jmodM, p = � j/M�, where �·�
denotes the ceiling function.

3. THE CRAMER-RAO BOUND FOR
THEWIENER-TYPEMODEL

The Cramer-Rao bound is the theoretical lower bound for
the variance of all unbiased estimators θ̂ for the model pa-
rameters θ and is determined by the diagonal elements of the
inverse of the Fisher information matrix F:

Fi j ≡ E

(
∂ ln l

(
θ|z)

∂θi

∂ ln l
(
θ|z)

∂θj

)
. (10)

Here E(·) denotes the expectation operator with respect to
the random vector z = PX + ε and l(θ|z) is the likelihood
function for the parameter vector θ given the noisy observa-
tion vector z [1]. Thus,

cov
(
θθT

)
i j ≡ E

([
θi − E

(
θi
)][

θj − E
(
θj
)]) ≥ (F−1)i j .

(11)

Under the regularity condition [6, page 26]

E

(
∂ ln l

(
θ|z)

∂θ

)
= 0, (12)

(10) can be written as

F = E(G), (13)

with

Gij ≡ −∂2 ln l
(
θ|z)

∂θi∂θj
, (14)

the Hessian matrix of the objective function − ln l(θ|z) for
the maximum likelihood estimation. For the additive Gaus-
sian noise model of ε, the likelihood function l(H|z) for the
parameter matrix H given the observation vector z reads as
follows:

l
(
H|z)
= [(2π)Ns|Σ|]−1/2 exp{−1

2

(
z−P(UH)

)T
Σ−1

(
z−P(UH)

)}
.

(15)

The entries of the Fisher informationmatrix (10) for the con-
sidered Wiener-type model (5) are calculated as follows. The
log-likelihood function reads as follows:

ln l
(
H|z) = −1

2
Ns log 2π − 1

2
log |Σ|

− 1
2

(
z− P(UH)

)T
Σ−1

(
z− P(UH)

)
.

(16)

The derivative of the log-likelihood function with respect to
the parameter matrixH can be decomposed as
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∂ ln l
(
H|z)

∂Hrs
= ∂ ln l

(
H|z)

∂ε
∂ε
∂xs

∂xs
∂Hrs

, (17)

where the columns xs of the matrix X = [x1, . . . , xN ] have
been introduced. The first two terms of the product give

∂ ln l
(
H|z)

∂ε
= −εTΣ−1, (18)

∂ε
∂xs

≡ X̃s = sdiag
(
x[s−1]s

)
, (19)

where (·)[p] means elementwise operation. The last term
yields

∂xs
∂Hrs

= ur , (20)

with the columns ur of the matrix U = [u1, . . . ,uM]. Thus,

∂ ln l
(
H|z)

∂Hrs

∂ ln l
(
H|z)

∂Hqp
= (X̃sur

)T
Σ−1εεTΣ−1X̃puq. (21)

Applying the expectation operator to the above expression
gives the desired result for the Fisher information matrix,
which reads

F[rs],[qp] =
(
X̃sur

)T
Σ−1X̃puq. (22)

The resulting matrix F ∈ RNM×NM can be thought of as con-
sisting of submatrices F̃sp ∈ RM×M :

F =


F̃11 · · · F̃1N
...

. . .
...

F̃N1 · · · F̃NN

 , (23)

with

F̃sp = UTX̃sΣ
−1X̃pU. (24)

For the special case of a linear FIR filter, that is, N = 1, the
Fisher information matrix reads, using (19),

F = F̃11 = UTΣ−1U, (25)

which, for Σ = σ2I, gives the familiar result [1, page 86]

F−1 = σ2
(
UTU

)−1
(26)

for the Cramer-Rao bound for linear FIR filters.

4. PARAMETER ESTIMATION

For parameter estimation, the likelihood function l(θ|z) is
maximised with respect to θ using methods of nonlinear
optimisation. The optimisation problem is given as

θ̂ = argmin
θ

J(θ), J(θ) ≡ − ln l
(
θ|z), (27)

and θ̂ ≡ vec(Ĥ). For the FIR Wiener-type model of (5), the
gradient g ≡ ∂θJ(θ) as well as the Hessian G ≡ ∂θθT J(θ) of
(14) can be computed explicitly. Following the matrix nota-
tion for the model parameters, the gradient can be written in
matrix form. Define the gradient matrix ∂H as composed of
the gradient vectors for each order of nonlinearity

∂H ≡
[
∂h1 , . . . , ∂hN

]
, (28)

where H ≡ [h1, . . . ,hN ] and ∂θ = vec(∂H). Applied to the
objective function J(θ), the elements are found to be

∂hs J(H) = −UT X̃sΣ
−1ε. (29)

In correspondence to the matrix structure of the Fisher in-
formation matrix in (24), the “off-diagonal” submatrices of
the Hessian matrix are

Gsp ≡ ∂hshTp J(H) = UT X̃sΣ
−1X̃pU for s �= p. (30)

The diagonal submatrices given in component notation read

G[rs][qs] ≡ ∂HrsHqs J(H)

= uTr X̃sΣ
−1X̃suq

+ s(s− 1)εTΣ−1 diag
((
xs
)[s−2])

diag
(
ur
)
uq.

(31)

Applying (13) to (30) and (31) and acknowledging the fact
that ε is a zero-mean process, the Fisher information ma-
trix (24) is retained. As with (29), (30), and (31), first- and
second-order derivatives are available, and it is possible to
apply a Newton-like optimisation algorithm [7] for the min-
imization of (27). This algorithm uses the quadratic approx-
imation of J(θ) around some estimate θ(k) obtained after k
iterations

J
(
θ(k) + δ

) ≈ J
(
θ(k)

)
+ δTg(k) +

1
2
δTG(k)δ, (32)

with δ = θ − θ(k). For each iteration k, the quadratic ap-
proximation is minimised with respect to δ, where g(k) and
G(k) denote the gradient and Hessian evaluated at θ(k), re-
spectively. For this task, the Matlab routine fminunc.m [8] is
applied. This procedure requires good initialisation to con-
verge to the global minimum of the objective function J(θ)
which is in general multimodal. In this case, the maximum
likelihood estimator (27) yields an unbiased estimate. Fur-
thermore, the maximum likelihood estimator is a minimum
variance estimator [1], thus the variance of this estimator co-
incides with the Cramer-Rao bound.

5. VERIFICATION OF THE THEORETICAL RESULT

The above result (24) for the Fisher informationmatrix of the
Wiener-type model is verified by simulation examples. For
this purpose, a Wiener-type system is defined and will serve
as a reference system for the subsequent simulations. The
verification is done by comparing the theoretical parameter
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Table 1: Model coefficients of the third-order Wiener-type reference model of the line-driver circuit.

Tap k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

h1[k] 4.2299 1.3909 −1.0805 0.7283 −0.3481 0.0931

h3[k] 0.0511 0.1537 −0.2463 0.1418 −0.0314 0.0009
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Figure 7: Absolute value of the linear transfer function H1(e jω) of
the Wiener-type reference model of Table 1.

variance obtained from the Fisher information matrix (24)
with the parameter variance obtained by repeated estima-
tion of the model parameters with the algorithm described
in Section 4. As this estimator is a minimum variance esti-
mator, the two variances are expected to match. This coinci-
dence is checked for DMT input signals as well as for white
Gaussian noise (WGN) input signals over different signal-to-
noise (SNR) levels.

5.1. The referencemodel

For the simulation, a specific reference configuration of the
Wiener-type model is chosen. This reference configuration
is a simple discrete-time model of an ADSL, G.Lite line-
driver circuit [9]. To present reproducible results, the sim-
plest model of the circuit was chosen as the reference model
and explicit values of the model coefficients are given. It is a
third-order model encompassing 12 coefficients θj . Through
the differential design of the circuit, the effects of nonlineari-
ties of even orders are negligible compared to the effects of
the nonlinearities of odd orders. Thus, the model consists
only of a dominating linear part with M1 = 6 and of a small
part of third order with M3 = 6. The explicit values of the
model coefficients are given in Table 1. They were found orig-
inally by identifying the line-driver circuit using a broadband
DMT input signal and the estimation algorithm of Section 4.

The model equation for this case reads

z[n] =
5∑

k=0
h1[k]u[n− k]

+

 5∑
k=0

h3[k]u[n− k]

3

+ ε[n].

(33)
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Figure 8: Absolute value of the cubic transfer function H3(e jω) of
the Wiener-type reference model of Table 1.

Written in the compact notation of Section 3, this gives

z = P
(
UHr

)
+ ε, (34)

with the reference coefficient matrix Hr ∈ R6×2. Frequency
responses for the linear part H1(e jω) = F (h1[k]) and for the
cubic part H3(e jω) = F (h3[k]) of the reference model are
depicted in Figures 7 and 8, respectively. The linear response
shows the typical lowpass characteristic of a power amplifier,
while the third-order response reflects the common observa-
tion that the nonlinear distortion gets higher for higher fre-
quencies. In Figure 9, the power spectrum of the output sig-
nal of the Wiener-type reference model of Table 1 is shown,
for a typical downstream ADSL DMT signal as input. The
magnitude of the intermodulation products indicates that
the nonlinear distortion introduced by the third-order term
is 60 dB below the carrier signal. Thus, we are dealing with an
extremely weak nonlinear system. Subsequently, the Fisher
information matrix of (24) and its inverse are computed for
this reference model. In correspondence to the partitioning
(24) of the Fisher information matrix

F = σ2

 UTU UT X̃3U

UT X̃3U UT X̃3X̃3U

 , (35)

the positive-definite covariance matrix can be decomposed
into four submatrices:

cov
(
θθT

) =
cov (h1hT1 ) cov

(
h1hT2

)
cov

(
h2hT1

)
cov

(
h2hT2

)
 . (36)
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Figure 9: Power spectrum of the output of the Wiener-type refer-
ence model of Table 1 for the line-driver circuit: DMT input sig-
nal with Nc =95 carriers; the perturbation is additive WGN with
σ2 = 1× 10−5.
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Figure 10: Cramer-Rao lower bound on the parameter covariance
matrix cov(θθT)i j with M = 6, first- and third-order nonlinearity,
and Ns = 1000; the pertubation is WGN with σ2 = 1 × 10−5 and
u[n] is a WGN input signal with power σ2

u = 0.64.

In Figure 10, the parameter covariance matrix cov(θθT)i j
for the Wiener-type reference model is shown for the case
Ns = 1000 and σ2 = 1 × 10−5 for a WGN input signal with
variance σ2u = 0.64. The figure reveals that there is a high co-
variance between the linear parameters and the third-order
parameters. That corresponds to the known fact that even
in the case of a white input signal, the homogeneous first-
and third-order responses of a multilinear operator, such as
a Volterra model, are correlated [10].

5.2. Parameter estimation and variance comparison

In the following, the derivation of Section 3 is verified us-
ing different excitation signals and different perturbation
scenarios. These investigations of the Wiener-type reference
model of Table 1 are done with an estimation horizon of
Ns = 50. The variance estimates of the estimators are ob-
tained by repeating the identification procedure of Section 4
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Figure 11: Linear dependence of Cramer-Rao bound (dashed) on
the SNR and variance of the estimators (solid) over different SNR
with 95% confidence intervals shown as vertical bars, plotted for
one kernel value for each order p; the two upper curves correspond
to parameter H12 = h3[0]; the two lower curves correspond to pa-
rameter H11 = h1[0]; the input signal is WGN.

for Nr = 100 i.i.d. realisations of the perturbation process
ε[n]. Following the asymptotic results of the normality of the
maximum likelihood estimator [11, page 52], the parameter
estimates pass the Lilliefors test for normality [12]. Thus, the
95% confidence intervals of a normal distribution are indi-
cated in the following figures. To keep these figures simple,
the Cramer-Rao bound diag(F−1) and the variance estimates
var(θ) of only onemodel parameter per order of nonlinearity
p are shown versus different SNR.

5.2.1. WGN input signal

The input signal u[n] to the reference model is taken to be
WGN, u[n] ∼ N (0, σ2u) with σ2u =0.64, while the additive
perturbation of the output y[n] is ε[n] ∼ N (0, σ2). The
Cramer-Rao bound, the variance estimates of the estimators,
and their corresponding confidence regions versus different
SNR levels are given in Figure 11. Good agreement between
simulation and theory can be observed.

5.2.2. DMT input signal

As a second scenario, the input signal u[n] is taken to be a
DMT signal:

u[n] =
Nc−1∑
k=0

ak cos
[(
ks + k

)
ω0n + ϕk

]
, (37)

where ω0 is the normalised grid frequency of the DMT sig-
nal. For further use, we define the vector of amplitudes
a ≡ [a0, . . . , aNc−1]T , the corresponding vector of powers
of the individual tones p, and the vector of normalised fre-
quencies ω ≡ ω0 · [ks, ks + 1, . . . , ks + Nc − 1]T . The phase
set ϕ ≡ [ϕ0, . . . ,ϕNc−1]T for this simulation is initialised
with random numbers drawn from the uniform distribu-
tion U[0, 2π]. The identification of the reference model is



Optimal Signals for the Identification of Nonlinear Systems 1823

30 40 50 60 70 80 90

SNR (dB)

−90

−80

−70

−60

−50

−40

−30
va
r(
θ
)
(d
B
)

Figure 12: Linear dependence of Cramer-Rao bound (dashed) on
the SNR and variance of the estimators (solid) over different SNR
with 95% confidence intervals shown as vertical bars, plotted for
one kernel value for each order p; the two upper curves correspond
to parameter H12 = h3[0]; the two lower curves correspond to pa-
rameterH11 = h1[0]; the input signal is a DMT signal withNc = 12.

performed usingNc = 12 tones and is done for different SNR
levels. The Cramer-Rao bound, the variance estimates of the
estimators, and their corresponding confidence regions ver-
sus different SNR levels are given in Figure 12. Once again,
good agreement between simulation and theory can be ob-
served.

6. DESIGN OF OPTIMAL EXCITATION SIGNALS

Given a model structure with unknown parameters, the ac-
curacy of the parameter estimates of the model depends on
the used identification procedure and on the used excita-
tion signal. If the estimator is a minimum variance estimator,
then its parameter variance achieves the lower bound, that is,
the Cramer-Rao bound. Thus, to even further decrease the
variance of the minimum variance estimator of Section 4,
one can only optimise the excitation signal in such a way
that the corresponding Cramer-Rao bound is decreased. To
have an optimality measure, a scalar objective function Ψ :
RMN×MN → R of F−1 has to be found. In the theory of exper-
iment design [13], different types of this objective function
Ψ(·) are considered. The most popular criterion of optimal-
ity is Ψ(F−1) = |F−1| = |F|−1, where | · | denotes the deter-
minant of a matrix.

6.1. Signal design for linear FIR filters

In this section, the well-known problem of optimising the
amplitude distribution of a DMT signal subject to a total
power constraint so as to achieve minimal variance estimates
of the parameters of a linear FIR filter is reviewed. For aWGN
perturbation, the Fisher information matrix for the linear
FIR filter case is given by (26). As mentioned earlier, one way
to minimize the Cramer-Rao bound is to maximize the de-
terminant of F. We apply the inequality log x ≤ αx−1− logα
for every α > 0 to the M eigenvalues λk of the positive-

semidefinite matrix F:

M∑
k=1

log λk ≤ α
M∑
k=1

λk −M(1 + logα). (38)

Inequality (38) is equivalent to

log |F| ≤ αTr(F)−M(1 + logα), (39)

with Tr(·) denoting the trace of amatrix. The quantity log |F|
reaches its upper bound at λk = λ = 1/α for k = 1, . . . ,M.
The consequences of this relation for signal optimisation are
outlined in the following example. Consider the case Ns is
the period of the DMT signal (37). The diagonal elements of
F are all equal and correspond to the constrained total power
of the DMT signal, that is, Tr(F) = σ−2MNs

∑
pk. Thus, for

a given power of the DMT signal, the right-hand side of (39)
is fixed and gives the upper bound for log |F|. It reaches its
upper bound if the eigenvalues are all equal to λ = 1/α with
α = σ2/(Ns

∑
pk).

Furthermore, if we assume that M is even and M = Ns,
with (7) and (26), the matrix F turns out to be a circulant.
Thus, the similarity transformation which diagonalises F is
the discrete Fourier transform (DFT) T ∈ CM×M and the
eigenvalues of F are the diagonal elements of S = TFT−1 [14,
page 379]. If the frequency spacing of the DMT signal (37)
is chosen to be ω0 = 2π/M and ks = 0, the eigenvalues of F
correspond to the discrete power spectrum of the DMT sig-
nal. The matrix F is nonsingular for k = 0, . . . ,M/2, which
corresponds to Nc = M/2 + 1 tones of the DMT signal. The
tones at k = 0 and k = M/2 contribute one spectral com-
ponent to the discrete power spectrum each, while all other
tones contribute two spectral components each. Thus, the
eigenvalues of F are all equal and log |F| reaches its upper
bound if the M/2 + 1 element amplitude vector of the DMT
signal has the form a = [a/2, a, . . . , a, a/2]T . This is in accor-
dance with the engineering intuition that for a finite number
of tones and a predetermined power of the DMT signal, the
most accurate parameter estimation is possible if the power
is equally distributed over all spectral components. Note that
the above example is constructed in such a way that the fre-
quency grid of the DMT signal spans the full bandwidth, that
is,ω = 2π/M·[0, 1, . . . ,M/2]T . In general, the circularity of F
is preserved ifNs = mNp andM = Np, whereNp is the period
of the DMT signal and m ∈ N. In such situations, every mth
spectral component of the DMT signal (37) with ω0 = 2π/M
and Nc = M/2 + 1 is nonzero and corresponds to an eigen-
value of the matrix F. From above considerations, it is clear
that for a frequency spacing ω0 = 2π/M and Nc < M/2 + 1,
at least one eigenvalue of F is exactly zero. Thus, the corre-
sponding estimation problem is an ill-posed one. As soon as
the constraints Ns/M ∈ N and ω0 = 2π/M do not hold, the
one-to-one correspondence between an eigenvalue of F and a
nonzero spectral component of the DMT signal is lost. Thus,
in the general case, one tone of the DMT signal impacts more
than one eigenvalue of F. In this case, the amplitude distribu-
tion of the DMT signal thatmaximises log |F| has to be found
through numerical optimisation methods.
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Figure 13: Optimal amplitude distribution of a DMT signal over
the full bandwidth [0,π] encompassing Nc = 4 tones for the esti-
mation of anM = 6 FIR filter.

In [15], it is shown that, for linear FIR filters, the max-
imization of log |F| subject to the signal power constraint∑

pk ≤ 1 leads to a semidefinite programming problem
which can be solved efficiently [16]. More explicitly, the
semidefinite program takes the form

max
p

log
∣∣F(p)∣∣, subject to F(p) ≥ 0, p̃ ≥ 0, (40)

with p̃ ≡ [1 − ∑ pk, p0, . . . , pNc−1]T . The key observation
that allows this elegant formulation is that the Fisher infor-
mation matrix for a period of a DMT signal is the weighted
sum of partial Fisher information matrices corresponding to
each tone of the DMT signal. The weights turn out to be the
powers pk of the individual tones. Following this approach,
the optimal excitation signals for a linear FIR filter are found
subsequently. From (25), it is clear that the amplitude distri-
bution of the optimal DMT signal does not depend on the
model parameters. In correspondence to the linear part of
the reference model of Table 1, the optimal amplitude distri-
bution for anM = 6 linear FIR filter is computed.

6.1.1. DMT signal with bandwidth [0,π]

To guarantee that the matrix F is nonsingular, above consid-
erations suggest that at least Nc = M/2 + 1 = 4 tones are
required if tones at ω = 0 and ω = π are included. The
optimised amplitude distribution found by semidefinite pro-
gramming is given in Figure 13. This amplitude distribution
corresponds to a flat signal spectrum because the spectral
components for ωk = 0 and ωk = π scale differently (by
a factor of 2) than the other components. Thus for a finite
number of tones and finite sample length Ns equal to the pe-
riod of the signal and for full bandwidth, the spectrum of
the optimal DMT signal turns out to be flat. For many ap-
plications, the number of tones of the excitation signal is not
exactly Nc = M/2 + 1, but higher. Also for such a case with
Nc > M/2+1, the optimal amplitude distribution over the full
bandwidth [0,π] is found to be spectrally flat. More interest-
ing observations can be made for a bandpass DMT signal in
the next section.
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Figure 14: Optimal amplitude distribution for a bandpass DMT
signal encompassing Nc = 3 tones for the estimation of an M = 6
FIR filter.
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Figure 15: Amplitude distribution of a bandpass DMT signal en-
compassingNc = 12 tones for the estimation of anM = 6 FIR filter:
optimised signal (circles) and, for reference, the spectrally flat signal
(crosses).

6.1.2. DMT signal with bandwidth (0,π/2)

In the case of a bandpass signal, where neither the frequency
ω = 0 nor ω = π is included, each tone contributes two spec-
tral components and thus the minimum number of tones
required for the estimation of the linear FIR filter is Nc =
�M/2�. The optimal amplitude distribution for an Nc = 3
bandpass signal using semidefinite programming is depicted
in Figure 14. Thus, for the bandpass signal with Nc = �M/2�,
the optimal spectral distribution is flat over the given band-
width (0,π/2). But, if more than �M/2� tones are contained
in the DMT signal, the optimal amplitude distribution is
no longer spectrally flat. This is exemplified for the case
Nc = 12 in Figure 15. The figure shows, in addition to the
optimal amplitude distribution, the spectrally flat amplitude
distribution as a reference. Thus, for general bandpass DMT
signals, it turns out that the optimal spectral distribution is
not flat over the given bandwidth (0,π/2). In the next sec-
tion, this result is verified through estimation runs using the
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Figure 16: Mean and 95% confidence region of the estimated stan-
dard deviation of the linear FIR filter parameter estimates for a
bandpass input signal with Nc = 12 tones: spectrally flat amplitude
distribution (crosses), optimised amplitude distribution (circles);
the perturbation is WGN with σ2 = 1 × 10−5 and the estimation
horizon is Ns = 56.

optimal Nc = 12 DMT signal and the spectrally flat Nc = 12
DMT signal.

6.1.3. Comparison of the estimation performance of
bandpass DMT signals

Now that the optimal bandpass input signal for a linear FIR
filter is found, the signal can be applied to the identification
of a given linear FIR filter. The result is then compared with
the identification result obtained by applying the bandpass
signal with a flat spectral distribution for the given band-
width (0,π/2). For this, the linear part of the Wiener-type
model of Table 1 is used as the reference linear FIR filter
and input-output data, that is, {u[n], z[n]}, are measured.
For identification the unbiased minimum variance estimator
(UMVE) [1, page 87] for the linear FIR filter case,

θ̂ = (UTU
)−1

UTz (41)

is applied both for the optimal bandpass sequence and for
the spectrally flat bandpass sequence. The variance of the es-
timate θ̂ is computed by performing the estimation (41) over
Nr = 1000 i.i.d. noise realisations of the perturbation pro-
cess ε[n] ∼ N (0, σ2) with σ2 = 1 × 10−5 and Ns = 56.
The estimated standard deviations of each FIR filter param-
eter are shown for these signals in Figure 16. In addition,
the Cramer-Rao bounds for both signals and each parame-
ter are computed. All bounds lie in the indicated 95% con-
fidence region. To keep the figure simple, the bounds are
not shown in Figure 16. The result shows clearly that the
optimised DMT signal which is not spectrally flat outper-
forms the spectrally flat reference DMT signal. The relative
reduction of the parameter variance averaged over all FIR fil-
ter parameters comes out to be 26.01% or 1.45 dB. The fol-
lowing remarks can be made.

(1) To be able to apply semidefinite programming, the
estimation horizon Ns has to match multiples of the period
of the DMT signal. In this case, the phase distribution ϕ falls
out of the optimisation problem.

(2) The characteristic shape of the variance as a func-
tion of the parameter index as plotted in Figure 16 can be
explained by the spectral decomposition of the matrix F.
Due to the band limitation, the eigenvalue spread of the ma-
trix F is of the order 1 × 103. Therefore, F−1 is governed by
the smallest eigenvalue λk of F and can be approximated by
F−1 ≈ λ−1k vkvTk , where vk is the corresponding eigenvector
of F. Thus, the characteristic shape in Figure 16 is primarily
determined by the shape of the eigenvector corresponding to
the smallest eigenvalue of F.

6.2. DMT signal design for theWiener-typemodel

As the Wiener-type model of (5) is a nonlinear-in-the-
parameters model, its Fisher information matrix (24) de-
pends on the model parameters. In contrast to the FIR fil-
ter case, for each model parameter set, an optimal excitation
signal can be defined. Furthermore, the entries of the Fisher
information matrix correspond to higher-order moments of
the input signal. Therefore, the optimal DMT signal is not
only determined by its amplitude distribution but also by
its phase distribution ϕ. This implies that, even in the case
where the estimation horizon Ns is the period of the DMT
signal, the entire Fisher information matrix cannot be writ-
ten as a weighted sum of the partial Fisher information ma-
trices for each tone of the DMT signal. Due to this, the for-
mulation of the signal optimisation problem by a semidefi-
nite program is not possible for the case of the Wiener-type
model. The optimisation problem reads

max
p,ϕ

log
∣∣F(p,ϕ)∣∣, subject to F(p,ϕ) ≥ 0, p̃ ≥ 0, (42)

where the objective function log |F(p,ϕ)| and the constraint
for the positive semidefiniteness F(p,ϕ) ≥ 0 are now non-
linear functions of the optimisation variables p and ϕ. To
the best of the authors’ knowledge, no optimisation algo-
rithm is available that combines a nonlinear objective func-
tion with a nonlinear semidefinite matrix constraint. Fur-
thermore, for the above optimisation problem and for the
rest of Section 6.2, it is assumed that the reference model co-
efficients of Table 1 are known, where as in reality they are
not. In Section 6.3, a practical solution to circumvent this
unrealistic assumption is presented.

6.2.1. Design of optimal QAM-DMT signals

To still be able to illustrate the role of optimal signal design
for the Wiener-type model, we restrict the considered sig-
nal class to a subclass of DMT signals with a finite number of
members. The determination of the optimal excitation signal
from this subclass can now be tackled by a complete search
over all members of the subclass. A realistic subclass is the
class of DMT signals that are modulated according to a spe-
cific QAM (quadrature amplitude modulation) scheme. The
amplitudes and phases of the tones can now vary only on
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Figure 17: Eight-point QAM signal constellation.
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Figure 18: Optimal amplitude distribution of the bandpass eight-
point QAM-DMT signal encompassingNc = 6 tones for the estima-
tion of the Wiener-type model of Table 1.

the quantised levels of the QAM constellation. In the follow-
ing simulation experiments, an eight-point QAM for each of
the Nc tones is applied. The amplitude quantisation is done
in such a way that if all Nc tones occupy the outer ring of
the QAM constellation, the signal power is

∑
pk = 0.64. In

Figure 17, the used QAM constellation is depicted schemati-
cally. The optimal amplitude distribution for an eight-point
QAM-DMT bandpass signal with ω ∈ (0,π/2), Nc = 6,
which maximises log |F(p,ϕ)|, found through a complete
search for the nonlinear reference model of Table 1, is shown
in Figure 18. For the 12-parameter Wiener-type reference
model, a DMT signal with at least Nc = 6 tones has to be
applied to prevent an ill-posedness of the estimation prob-
lem. From the insight gained through the simulation experi-
ments, the following remarks can be made.

(1) Due to the experiment setup, it comes at no surprise
that the amplitude distribution of the optimal excitation sig-
nal for the Wiener-type model is spectrally flat. The reason
for that is that, roughly speaking, the Cramer-Rao bound can
be seen as a noise-to-signal power ratio and thus the bound
gets lowered if more signal power is applied to the corre-
sponding system. Therefore, for the optimal signal, all of the
Nc = 6 tones occupy the outer QAM constellation points of
Figure 17.
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Figure 19: One period Ns = 28 of two discrete-time input signals
for the Wiener-type model: signal with optimal QAM constellation
(circles) and suboptimal signal (crosses) with the same amplitude
but different phase distribution than the optimal signal.

(2) In contrast to the linear FIR filter case, the phase con-
stellation turns out to be of crucial importance even for Ns

being the signal period. It is observed that even input signals
with the same amplitude distribution but different phase sets
ϕ than the optimal input signal can lead not only to very high
Cramer-Rao bounds but even to biased estimates. These bi-
ased estimates are caused by the practical problem that, for
these special phase sets ϕ, the Hessian matrix of the estima-
tor of Section 4 gets near to a singular matrix and thus the
optimisation algorithm fails to converge.

Note that these observations have severe implications for
the methodology of nonlinear system identification. An im-
proper choice of the phase set of the DMT excitation signal
can lead to an extremely ill-posed estimation problem.

6.2.2. Comparison of the estimation performance
for QAM-DMT signals

As a consequence of the above remarks, we present an esti-
mation performance comparison between the optimal input
signal (determined by its phase and amplitude distribution)
and an input signal with the same amplitude but different
phase distribution, which still allows an unbiased estimation,
that is, allows convergence of the optimisation algorithm.
The two discrete-time signals which are compared in the es-
timation performance are shown in Figure 19. The perfor-
mance is evaluated by repeated identification of the refer-
ence Wiener-type model of Table 1 over Nr = 500 i.i.d. re-
alisations of the perturbation process ε[n] ∼ N (0, σ2) with
σ2 = 1 × 10−5. The resulting standard deviations of the es-
timates for the two excitation signals are shown in Figures
20 and 21 for the linear and cubic part of the Wiener-type
model, respectively. In addition, the Cramer-Rao bounds for
both signals and each model parameter are computed. All
bounds lie in the indicated 95% confidence region. To keep
the figures simple, they are not shown in Figures 20 and 21.
The mean parameter variance and the variance gain for the
two signals of Figure 19 are given in Table 2.
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Figure 20: Mean and 95% confidence region of estimated standard
deviation of the estimators for the linear part of the Wiener-type
model for a bandpass QAM-DMT signal with Nc = 6: optimal in-
put signal (circles) and suboptimal input signal (crosses); the per-
turbation is WGN with σ2 = 1× 10−5 and the estimation horizon is
Ns = 28.
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Figure 21: Mean and 95% confidence region of estimated stan-
dard deviation of the estimates for the cubic part of the Wiener-
type model for a bandpass QAM-DMT signal with Nc = 6: optimal
input signal (circles) and suboptimal input signal (crosses); the per-
turbation is WGN with σ2 = 1× 10−5 and the estimation horizon is
Ns = 28.

Table 2: Result of the estimation comparison for optimal and
suboptimal input signals of Figure 19 for the identification of the
Wiener-type model of Table 1.

Mean variance for optimal signal 6.46× 10−5

Mean variance for suboptimal signal 2.68× 10−4

Mean variance gain 6.18 dB

One can draw the important conclusion that, for a signal
with optimal amplitude distribution but suboptimal phase
distribution, the variances of the parameter estimates can be
an order of magnitude larger than for the optimal signal.

6.3. Three-step identification procedure

For nonlinear-in-the-parameters models, the Fisher infor-
mation matrix is a function of the model parameters. How-
ever, to find optimal excitation signals, the unknown model
parametersH cannot be assumed to be known. But, if there is
some a priori knowledge concerning the values of the model
parameters in form of a probability density function p(H)
[11, page 127], then one could optimise the criterion

logEH
(
Ψ
(
F(H)

))
, (43)

where EH(·) denotes the expectation with respect to H. In
the proposed three-step identification procedure, the expec-
tation operator over H is replaced with a point estimate Ĥ.
Thus, the new criterion reads

logΨ
(
F(Ĥ)

)
. (44)

The point estimate is generated by a first parameter estima-
tion run with the algorithm of Section 4, applying an admis-
sible excitation signal u1[n]. It was shown in the previous sec-
tion that, in contrast to the linear FIR filter case, an admis-
sible signal is not only determined by its amplitude distri-
bution. For the Wiener-type model, a heuristic to find such
admissible input signals without knowledge of the parame-
ter values has not been found and remains an open research
issue.

Following the above considerations, a three-step identifi-
cation procedure is introduced.

(1) Given a fixed estimation horizon, determine a prelim-
inary estimate Ĥ of the model parameters using an ad-
missible DMT input signal u1[n].

(2) Use the estimate Ĥ to find the optimal DMT input sig-
nal u2[n], using an optimality criterion on the Fisher
information matrix, which in this work is

max
p,ϕ

log
∣∣F(p,ϕ, Ĥ)

∣∣. (45)

(3) Perform a second estimation of the model parameters
using the concatenation of the admissible DMT sig-
nal of step (1) u1[n] and the optimal DMT signal from
step (2) u2[n].

An illustration of this procedure is given in Figure 22. From
this block diagram, it becomes clear that one could iterate
this procedure of preliminary estimation and signal optimi-
sation several times such that the signal found using the in-
termediate parameter estimate converges to the optimal sig-
nal found using the true parameters.

This general procedure is subsequently exemplified with
the same problem as in Section 6.2.2. We assume that the
data transmission application allows an estimation horizon
of Ns = 56, that is, two periods of the considered Nc = 6
bandpass QAM-DMT signals in Figure 19. To get the pa-
rameter estimates for the Wiener-type model of Table 1, one
can either apply two periods of the admissible, suboptimal
signal in Figure 19 to the Wiener-type model or one could
use the introduced three-step identification procedure. The
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ŷ[n]
Model Ĥ
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Figure 22: Block diagram of the three-step identification proce-
dure.
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Figure 23: The Ns = 56 QAM-DMT input signals for the iden-
tification of the Wiener-type model, obtained via the three-step
procedure (circles) and two periods of the suboptimal input signal
(crosses).

Ns = 56 discrete-time input signal obtained by the three-
step identification procedure is depicted in Figure 23. In ad-
dition, the two periods of the suboptimal input signal are also
shown. When looking at the second period of the signals in
Figure 23, one recognises that the optimal input signal found
using the preliminary parameter estimates coincides with the
optimal input signal of Section 6.2.2 found using the true pa-
rameters (cf. Figure 19).

The performance is once again evaluated by repeated
identification of the reference Wiener-type model of Table 1
over Nr = 500 i.i.d. realisations of the perturbation process
ε[n] ∼ N (0, σ2) with σ2 = 1 × 10−5 with Ns = 56. The
resulting standard deviations of the estimates for the two ex-
citation signals are shown in Figures 24 and 25 for the linear
and cubic parts of the Wiener-type model, respectively.

The estimated variances for the two signals averaged over
all parameters are given in Table 3. The following remarks
can be made.

(1) One observes that the variance gain in Table 3 is larger
than the gain in Table 2 obtained by the exact method of
Section 6.2.2. An explanation of this counterintuitive effect
is that the concatenation of two periods of one signal is just
a scaling of the Cramer-Rao bound for one period by 1/2,
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Figure 24: Mean and 95% confidence region of estimated standard
deviations of the estimators for the linear part of the Wiener-type
model for a bandpass QAM-DMT signal withNc = 6: optimal input
signal via the three-step procedure (circles) and suboptimal input
signal (crosses); the perturbation is WGN with σ2 = 1 × 10−5 and
the estimation horizon is Ns = 56.
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Figure 25: Mean and 95% confidence region of estimated standard
deviations of the estimates for the cubic part of the Wiener-type
model for a bandpass QAM-DMT signal withNc = 6: optimal input
signal via the three-step procedure (circles) and suboptimal input
signal (crosses); the perturbation is WGN with σ2 = 1 × 10−5 and
the estimation horizon is Ns = 56.

while the concatenation of two periods of two distinct signals
impacts the Cramer-Rao bound in a more complicated way.
Thus, even if one applies two periods of the optimal input
signal of Section 6.2.2, the obtained mean variance turns out
to be 3.16×10−5, which is still higher than the mean variance
obtained via the three-step procedure of Table 3.

(2) For weakly nonlinear analog circuits, such as the con-
sidered line-driver circuit, reasonably accuratemodel param-
eter estimates Ĥ can already be obtained when the circuit is
simulated using an analog circuit simulator such as Spice. In
such situations, the signal optimisation applying the prelim-
inary parameter estimates of the three-step procedure is not
required to run online, but can be precomputed offline.
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Table 3: Result of the estimation comparison for the three-step in-
put signal and for the suboptimal input signal of Figure 23 for the
identification of the Wiener-type model of Table 1.

Mean variance, three-step 2.06× 10−5

Mean variance, suboptimal 1.58× 10−4

Mean variance gain 8.85 dB

7. CONCLUSION

The Cramer-Rao bound for a Wiener-type nonlinear model
has been derived. The parameter estimation algorithm max-
imises the likelihood function using a standard Newton-like
algorithm. Signal optimisation based on the Fisher informa-
tion matrix is introduced for the Wiener-type model and the
selection of optimal DMT signals for linear FIR filter estima-
tion using a finite number of tones is reviewed.

For the Wiener-type model, it turned out that in contrast
to the linear FIR filter case, the amplitude as well as the phase
distribution of the DMT excitation signal are of vital impor-
tance. A three-step procedure to obtain parameter estimates
with the lowest possible variance is outlined, even for mod-
els which are nonlinear in the parameters. Good agreement
between theory and simulation is shown.
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