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This paper deals with the problem of blind equalizations based on effective channel order determination for multiple FIR chan-
nels. Most popular order determination methods use the eigenvalue decomposition (EVD) technique with an overmodeled data
correlation matrix. However, performing the EVD consumes huge computation resources. In this paper, we consider the channel
with infinite small leading and tailing terms which is natural for measured microwave radio channels, and develop a computa-
tionally simple method for effective channel order determination. Based on multiple-shift property of a data correlation matrix,
a new performance index is analyzed. The channel order is determined if the performance index is greater than a threshold. To
select the threshold, we model the performance index as an F-distributed random variable. For a specified confidence level, the
threshold can be found from the table. This proposed method does not require EVD, the computation load is much lower than
that of the EVD-based methods.
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1. INTRODUCTION

Blind adaptive equalization of multiple FIR channels with-
out training data available was studied intensively in the lit-
erature. Several algorithms have been developed by using the
second-order statistics (SOS) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
For the SOS-based algorithms, channel order is a crucial pa-
rameter for computing the equalization parameters. How-
ever, methods for estimating the channel order are quite
limited. The most popular methods for order determina-
tion, for example, AIC and MDL, are developed based on
the information theoretical criteria [11]. However, researches
show the AIC and MDL in the measured microwave ra-
dio channels are very sensitive to variations in the signal
to noise ratio (SNR) and the number of data samples [12].
This prohibits their application for channel order estima-
tion. Due to the nature of practical microwave radio chan-
nels having long small leading and tailing channel terms,
it has been shown that blind channel equalization algo-
rithms should attempt to model only the significant part of
the channel composed of the large impulse response terms
[13]. Small leading and tailing terms being modeled in the

blind equalization algorithms in general lead to poor perfor-
mance and should be avoided [13]. The number of signifi-
cant part of the channel is referred to the “effective” channel
order.

Using numerical analysis arguments and concept of an-
gles of analysis between subspaces and invariant subspace
perturbation results, a detection formula [12] is developed
to provide a maximally stable decomposition (MSD) of the
range space of an overmodeled data correlation into sig-
nal subspace and noise subspace. The MSD method com-
pares two consecutive eigenvalues of a correlation matrix
for order determination. Existence of a gap between two
consecutive eigenvalues makes the channel order being de-
termined. Simulations show that this method provides ro-
bustness to variations in the SNR and the number of sam-
ples. It also provides information to classify the channels
into stable and unstable cases. Like the AIC and MDL
methods, the MSD requires the eigenvalues which are ob-
tained from the eigenvalue decomposition (EVD) of an over-
modeled correlation matrix. For channels with long small
leading and tailing terms, the dimension of the correla-
tion matrix is big in order to ensure enough degrees of
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freedom for eigenvalue comparison. The drawback of us-
ing big dimension is that the required number of sam-
ples will be big too for statistical convergence of the data
correlation matrix. Most EVD-based algorithms also suffer
from huge computational complexity and numerical sen-
sitivity due to the big dimension. Without the EVD, Ger-
stacker and Taylor [14] developed a detection algorithm
based on the examination of an indicator function con-
structed from initial channel estimates containing an addi-
tional common polynomial factor. However, its performance
depends on the accuracy of the channel estimation algo-
rithm.

In this paper, we develop a new detection method with-
out using the EVD. The proposed method is developed based
on using multiple-shift property of the data correlation ma-
trix. In the blind channel equalization, the successive data
vectors are not statistically independent, thus the data corre-
lation matrix built from the vectors exhibits “shift property.”
The shift property was first used in the SOS-based equalizer
proposed by Tong et al. [1]. They proved that the channel pa-
rameters can be estimated from the correlation matrix and a
single-shift correlation matrix if the channel order is known.
Recently, multiple shift correlation information has been no-
ticed in blind equalization algorithms [8].

We analyze a channel model with infinite small leading
and tailing terms and compute two multiple-shift correla-
tion matrices with the shift delay index equal to and greater
than the channel order. On the consideration of the worst
case of the small channel parameters, we find that trace of
the multiple-shift correlation matrix and its complex con-
jugation can be approximately expressed in the worst case
as a comparison of the first and last terms of the signifi-
cant part of the channel with the small leading and tailing
terms. Thus, the performance index can be used as an indi-
cator for the channel order determination. The channel or-
der is determined if the performance index is greater than
a threshold. Utilizing the independent and identically dis-
tributed (i.i.d.) assumption of the signal and white noise, the
performance index is modeled as a random variable with F-
distribution. Proper threshold can be determined from the
table by setting a specified confidence level (CL). Unlike the
EVD-based methods [11, 12], the proposed method does not
restrict the data correlation matrix that should be overmod-
eled. The required computation load mainly comes from
trace operation which is much lower than that of the EVD-
based methods.

2. PROBLEM FORMULATION

Let x(t) = [x1(t) x2(t) · · · xp(t)]T be the received data
vector of an array with p sensor elements, where “T” rep-
resents the transpose. For digitized data format, x(t) is sam-
pled with the sampling rate which is not less than the symbol
rate. Consider the measuredmicrowave radio channels, there
are long small leading or tailing impulse responses. To model
the natural channel, this paper considers the channel with
infinite long impulse responses. Therefore, the digitized data

vector can be written in matrix form

x(n)

=
[
· · · eq eq−1 · · · e0 h0 h1 · · · hq z0 z1 · · · zq · · ·

]
× s(n) +w(n)

=
[
E H Z

]
s(n) +w(n),

(1)

where x(n) = x(t = n∆T) = [x1(n) x2(n) · · · xp(n)]T

is a p × 1 vector and ∆T is the sampling interval.
s(n) = [· · · s(n + 1) s(n) s(n− 1) s(n− 2) · · ·]T and
s(n − i) is the input signal symbol sequence, w(n) =
[w1(n) w2(n) · · · wp(n)]T represents the additive white
Gaussian noise vector with dimension p × 1. In (1), H =
[h0 h1 · · · hq] with size p × (q + 1) represents the signif-
icant part of the channel, E = [· · · eq eq−1 · · · e0] and
Z = [z0 z1 · · · zq · · ·] represent the small leading and
tailing terms, respectively. We assume that s(n) is an i.i.d.
zero-mean Gaussian sequence with E{s(i)s∗( j)} = δ(i − j),
where E{·} is the expectation operation. wi(n) is assumed
to be the white noise with mean zero and variance σ2w, and
wi(n) is independent of s(n). The channel order is equal to q
if there are q + 1 significant terms of H. It is noted that the
channel order may be greater than the number of channels
p. The problem in this paper is to find a method to detect the
channel order q effectively and efficiently.

Several popular order determination methods have been
proposed, such as AIC and MDL [11]. Recently, Liavas et
al. developed a new detection method based on MSD of
the signal and noise subspaces. These methods are based
on EVD technique. In order to obtain enough degrees
of freedom for eigenvalue comparison, m data samples of
x(n) are stacked to form a (pm) × 1 vector written by
y(n) = [xT(n) xT(n− 1) · · · xT(n−m + 1)]T . Using (1),
y(n) can be expressed as follows:

y(n) = A(h)s(n) + v(n), (2)

where

A(h) =



E H Z · · · · · · · · ·
...

. . .
. . .

. . .
. . .

...
... E H Z

. . .
...

...
. . .

. . .
. . .

. . .
...

· · · · · · · · · E H Z


(3)

and v(n)=[wT(n) wT(n− 1) · · · wT(n−m + 1)]T . Here,
we assume the block Toeplitz matrix A(h) is of full rank.
Let the ensemble correlation matrix of y(n) be denoted as
Ry = E{y(n)yH(n)}. The ensemble correlation matrix can
be replaced by the sample averaged correlation matrix given
by

R̂y(N) = 1
N

N∑
n=1

y(n)yH(n), (4)
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where N is the number of samples. It is noted that R̂y(N) is
the maximum likelihood (ML) estimate of Ry in the presence
of N number of samples [15]. Performing the EVD, we have

R̂y(N) =
mp∑
i=1

λiυiυ
H
i , (5)

where λi is the eigenvalue with its corresponding eigenvector
vi. Here, λi ≥ λj for i < j. The detection formulas for the AIC
and MDL are given by

AIC(k) = −2N(mp − k)G(k) + 2k(2mp − k),

MDL(k) = −N(mp − k)G(k) +
1
2
k(2mp − k) log(N),

(6)

respectively, where

G(k) =
(

1
mp − k

mp∑
i=k+1

log λi

)
− log

(
1

mp − k

mp∑
i=k+1

λi

)
. (7)

The Liavas’ MSD method [12] is given by

MSD(k) =


λk+1
λk − 2λk+1

, if λk+1 ≤ 1
3
λk,

1, otherwise.
(8)

If q′ = min(AIC(k)) (ormin(MDL(k)) ormin(MSD(k)), the
channel order is detected by q = q′ −m. The basic principle
of the EVD-based methods is to separate the correlation ma-
trix into the signal subspace and noise subspace by checking
the magnitude of the eigenvalues. In order to obtain better
discrimination between the signal and noise subspaces, the
dimension is selected to be big. As a result, these methods
require much data samples to construct a converged corre-
lation matrix and consume huge computation resources due
to the EVD.

3. ANALYSIS OF THEMULTIPLE-SHIFT
CORRELATIONMATRIX

In this section, we analyze a multiple-shift correlation ma-
trix of a channel model with infinite small leading and tailing
terms.

3.1. Multiple-shift correlation

Instead of using stacked data vector y(n), we deal with x(n)
directly. We consider the shift correlation of the x(n) vector
defined by Rx(k) = E{x(n)xH(n + k)}. Using (1) and simple
calculation, we have

Rx(q + k + 1) = eq+khH0 + eq+k−1hH1 + · · · + ekhHq

+ h0zHk + h1zHk+1 + · · · + hqzHq+k

+ ε(E,Z),

(9)

where ε(E,Z) comprises both the small leading and tailing
terms of the channel. Comparing with the first and second
terms, ε(E,Z) will be a significantly small value and can be
ignored. Therefore, Rx(q + k + 1) can be reduced to

Rx(q + k + 1) ≈
[
Ek H

][HH

ZH
k

]
, (10)

where

Ek =
[
eq+k eq+k−1 · · · ek

]
,

Zk =
[
zk zk+1 · · · zq+k

]
.

(11)

Both have the same size of p × (q + 1). Consider a new pa-
rameter defined as

F(q + k + 1) = trace
(
RH
x (q + k + 1)Rx(q + k + 1)

)
. (12)

Using (10), F(q + k + 1) can be written as

F(q+k+1) ≈ trace

([
H Zk

][EHk
HH

][
Ek H

][HH

ZH
k

])
. (13)

Using the matrix property that trace(AB) = trace(BA) for
matrices A and B, and after simple straightforward compu-
tations, we have

F(q + k + 1) ≈ trace
(
HHH

(
EHk Ek + ZH

k Zk
))

+ trace
(
HHEkHHZk + EHk HZH

k H
)
,

(14)

where

trace
(
HHH

(
EHk Ek + ZH

k Zk
))

≤ trace
(
HHH

)(
trace

(
EHk Ek

)
+ trace

(
ZH
k Zk

))
,

trace
(
HHEkHHZk + EHk HZH

k H
)

≤ trace
(
HHEk

)
trace

(
HHZk

)
+ trace

(
EHk H

)
trace

(
ZH
k H
)
.

(15)

It is noted that equality of (15) holds if and only if Ek and Zk

are scalar multiples of H [15], that is,

Ek = ηEH, Zk = ηZH, (16)

where ηE and ηZ are two complex constants and can be
found as 0 ≤ |ηE|, |ηZ| ≤ 1 due to small leading and tail-
ing terms with respect to the significant part H. Using the
same arguments above and employing trace(AHBBHA) ≤
trace(AHA) trace(BHB) [15], we have

trace
(
HHH

(
EHk Ek + ZH

k Zk
))

≤ trace
(
HHHHHH

)(∣∣ηE∣∣2 + ∣∣ηZ∣∣2)
≤ trace

(
HHH

)2(∣∣ηE∣∣2 + ∣∣ηZ∣∣2),
trace

(
HHEkHHZk + EHk HZH

k H
)

≤ (ηEη∗Z + η∗E ηZ) trace
(
HHH

)2
.

(17)
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In (17),

trace
(
HHH

) = q∑
i=0

∥∥hi∥∥2 (18)

is sum of the square norm of all significant part, where ‖hi‖
represents 2-norm of hi. Using (17), (14) can be rewritten as

F(q + k + 1) ≤ ∣∣ηE + ηZ
∣∣2 trace (HHH

)2
. (19)

In general, the parameters of the small leading and tailing
terms are unknown. The above analysis shows that F(q+k+1)
reaches maximum value when the small leading coefficient
matrix Ek and the small tailing coefficient matrix Zk are
scalar multiples of H. Next, consider the case of k = −1. Us-
ing (1), we have

Rx(q) = h0hHq + eq−1hH0 + eq−2hH1 + · · · + e0hHq−1
+ h1zH0 + h2zH1 + · · · + hqzHq−1 + ε′(E,Z),

(20)

where ε′(E,Z) is a term attributed to both the small leading
and tailing terms. It can be found that

F(q) = trace
(
RH
x (q)Rx(q)

)
≥ trace

(
hqhH0 h0h

H
q

)
= ∥∥h0∥∥2∥∥hq∥∥2.

(21)

3.2. A new performance index for channel
order detection

From (9), Rx(q + k + 1) is mainly composed of the product
of the channel significant part and the small leading and tail-
ing terms. As shown in (19), F(q + k + 1) is small and not
greater than |ηE + ηZ|2 trace(HHH)2. On the contrary, Rx(q)
is mainly composed of a product of the channel significant
parts h0 and hq. For order determination, the significancy of
either h0 or hq should be compared with the small leading
and tailing terms of Ek and Zk. From (19) and (21), it is ob-
served that if both norm values of h0 and hq are big enough,
F(q) should be significantly larger than F(q + k + 1). There-
fore,

MSC(q, k) = F(q)
F(q + k + 1)

(22)

should be a significantly large value if both h0 and hq are truly
of the significant parts. Using (19) and (21), we find that

MSC(q, k) ≥
∥∥h0∥∥2∥∥hq∥∥2(∣∣ηE + ηZ
∣∣ trace (HHH

))2 . (23)

Let |η0|2=‖h0‖2/ trace(HHH) and |ηq|2=‖hq‖2/ trace(HHH),
(23) can be rewritten as

MSC(q, k) ≥
( ∣∣η0ηq∣∣∣∣ηE + ηZ

∣∣
)2

. (24)

Because the distribution of the small leading and tailing
terms is in general unknown, we consider the worst situa-
tion for analysis. The worst situation is to make MSC(q, k)
minimal when Ek = ηEH and Zk = ηZH. As shown in the
equation above, theMSC(q, k) is equal to the comparison ra-
tio of the norms of the h0 and hq with the norms of all the
related small leading and tailing terms. If h0 and hq are big
enough compared with Ek and Zk, MSC(q, k) should be sig-
nificantly large. On the contrary, neither h0 nor hq is not big
enough compared with Ek and Zk, MSC(q, k) will not be a
large enough value. That implies that either h0 or hq or both
can not be classified into the significant part of the channel.
Thus, MSC(q, k) can be used as a performance index for de-
termining the channel order q if the value of MSC(q, k) is
greater than a threshold.

In this paper, the small leading and tailing terms of Ek
and Zk are seen random. The F(q + k + 1) for k > 0 will be a
random sequence. Consequently, the variation of MSC(q, k)
for k > 0 depends on the values of Ek and Zk of F(q + k + 1).
To smooth out the influence of the individual terms of Ek
and Zk and to facilitate the utilization of the information, we
modify (22) and define the following performance index for
channel order determination:

MSC(q) = F(q)((
1/(L− q)

)∑L−q−1
k=0 F(q + k + 1)

) , (25)

where L is a sufficiently large value.
There is no rule of thumb for selecting L. On the con-

sideration of computation load and the performance, L is
suggested to be selected, for example, triple the true chan-
nel order or more. In the literature, we observe that the true
channel order is almost within 6 or 8 for most cases. There-
fore, L is suggested to be within 24.

If h0 or hq are big enough, it can be recognized that F(q)
is the hypothesis termedH1 and F(q′) for q′ > q can be seen
as another hypothesis termed H0. Therefore, the detection
formula is given by

MSC(q)

≥ η for F(q) inH1,

< η for F(q) inH0,
(26)

where η is a detection threshold.

3.3. Threshold selection

The above analysis is based on the ensemble correlation ma-
trix. In practice, the correlation matrix is calculated from fi-
nite samples. For finite sample averages, F(q + k + 1) can be
expressed as

F̂(q + k + 1) = trace
(
R̂H
x (q + k + 1)R̂x(q + k + 1)

)
. (27)

The performance index is thus given by

MSC(q)

= F̂(q)((
1/(L−q))∑L−q−1

k=0 F̂(q+k+1)
) for q=1, 2, . . . ,L−2.

(28)
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For any l, let

F̂(l) = trace
(
R̂H
x (l)R̂x(l)

) = p∑
i=1

ĝl(i), (29)

where ĝl(i) = P̂H
i P̂i with P̂i the ith column of R̂x(l). Let Pi be

the ith column ofRx(l). It is known from the previous section
that R̂y(N) is the ML estimate of Rx. Each element of R̂y(N)
can be seen as a Gaussian random variable with mean equals
to the corresponding element of Ry for sufficient large num-

ber of N . Since R̂x(l) is an off-diagonal submatrix of R̂y(N)
of (4), it is theML estimate of the correlationmatrix of Rx(l),
P̂i can be seen as the Gaussian random vector with mean
Pi. From [16], it is known that ĝl(i) will be a noncentral χ2

random variable. The F̂(l), sum of all ĝl(i), has the noncen-
tral χ2 distribution. According to the probability theory [17],
MSC(q) has the F-distribution with 1 and L − q degrees of
freedom, denoted by F(1,L− q). Since F̂(l) for l > q is of the
hypothesis H0, we have confidence that 0 ≤ MSC(l) < η at
a specified CL for l > q. It is noted that η is a function of l
and can be written as η = η(L − l). Next, consider the case
of l = q. Since F̂(q) is the hypothesisH1, MSC(q) should vi-
olate the rule of MSC(q) < η(L − q). Therefore, the channel
order q can be detected if q satisfies MSC(q) ≥ η(L− q) and
MSC(q + 1) < η(L− q − 1).

We summarize the proposed channel order detection
procedure as follows.

Step 1. Specify a CL and find the threshold η from the table.
Step 2. Compute F̂(q) by (27) for q = 1, 2, . . . ,L− 1.
Step 3. Calculate MSC(q) by (28) for q = 1, 2, . . . ,L−1; set

q = 1.
Step 4. If MSC(q+1) < η(L−q−1) andMSC(q) ≥ η(L−q),

then go to Step (5), else set q = q + 1 and go back to
the comparison of Step (4).

Step 5. Stop the procedure.

3.4. Discussions

The EVD-based methods [11, 12] detect the channel or-
der from the correlation matrix of R̂y , which is with size
(mp)×(mp).m is in general not small to obtainmore degrees
of freedom for better detection performance [12]. The re-
quired computation loads of the EVD-based methods are as
high as O(m3p3). Instead, the proposed MSC method deals
with R̂x directly and the required computation is the trace
operation. The computation load is of O(Lp2), where L can
be of the same scale of m. Therefore, the proposed method
consumesmuch lower computation resources than the EVD-
based methods.

Recently, a novel method [14] was proposed without the
EVD. The method is based on an indicator function con-
structed from initial channel estimates. But its performance
strongly depends on the accuracy of the channel estimation
algorithm. It is noted by [14] that the channel estimation al-
gorithm may yield a highly biased solution that degrades the
performance. The method also requires initial guess of the
channel order for computing the channel parameters. The
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Figure 1: The magnitude of the four subchannels.

proposed MSC method detects the channel order from the
received data, no channel estimation algorithm is required.

4. SIMULATION EXAMPLES

In this section, computer simulations are performed to eval-
uate the proposed channel order detectionmethod. The AIC,
MDL, andMSD are also performed for comparison. We con-
sider the natural channel responses. We have totally 4 sub-
channels, thus p = 4 in the simulation. Figure 1 shows the
magnitude of the four subchannels. It is noted that the chan-
nels have long tailing terms. The i.i.d. QPSK signal is used as
the input signal.

In the following simulations, we choose L = 20 for the
MSC method. The detection thresholds with 90% and 95%
confidence levels are used for illustration. The threshold val-
ues are listed in Table 1. For the AIC, MDL, and MSD meth-
ods, the array multiplicity m = 20 is used, the channel order
is determined by q = k − m, where k is the number mak-
ing AIC(k) or MDL(k) or MSD(k)) minimal. Figure 2 shows
the value of the performance index in comparison with the
threshold value. The input SNR is 40 dB and the number of
samples used is 500. Here, the SNR is defined in this paper as
SNR = 20 log(1/σ2w).

The proposed MSC detects the channel order q = 2 by
both 90% and 95% confidence levels. In this example, the
AIC and MDL detect the channel order q = 23 and 21, re-
spectively, which are much overestimated. The MSD detects
q = 1. Figure 3 shows the output signal to interference plus
noise ratio (SINR) of the Tong subspace equalization algo-
rithm at different number of channel order. The results are
averaged by 100 independent runs. It is shown that the sub-
space equalizer reaches the best performance as the channel
order is q = 2. If the channel order is overestimated, the
performance gradually degrades. The Tong subspace equal-
ization algorithm could still obtain a certain output SINR
level in a certain range of channel order. For example, the
averaged output SINR has about 15 dB even the estimated
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Table 1: The threshold for the MSC.

L− q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

90% CL 39.90 8.53 5.54 4.54 4.06 3.78 3.59 3.46 3.36 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03 3.01 2.99 2.97

95% CL 161.4 18.51 10.13 7.71 6.61 5.99 5.59 5.32 5.12 4.96 4.84 4.75 4.67 4.60 4.54 4.49 4.45 4.41 4.38 4.35
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Figure 2: The values of the performance index and the threshold
under different CL. The solid curve with stars is MSC(q), the solid
line is the threshold value of 90% CL, and the dashed line is the
threshold of 95% CL.
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Figure 3: The equalization performance of the Tong subspace-
based method.

channel order is 17. Constellation plots of the equalization
outputs in one of the simulations are shown in Figures 4 and
5 for q = 1 and q = 2, respectively.

For the sensitivity of the proposed MSC method due to
variations of the SNR, we test the proposed MSC method in
the input SNR range from 10 dB up to 100 dB, which covers
almost all the possible value for successful equalization. The
number of independent runs is 100 and the number of sam-
ples used is 500. The statistical results are shown in Table 2.
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Figure 4: Constellation of the output signals using the Tong
subspace-based equalizer with estimated channel order q = 1.
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Figure 5: Constellation of the output signals using the Tong
subspace-based equalizer with estimated channel order q = 2.

For example, in Table 2(a), 98 runs detect the channel order
q = 2 and 2 runs detect the channel order q = 3 with 90%
CL in the 100 independent runs. In this example, the MSD
detects the channel order q = 1 for all cases. From this table,
we find that the MSC method is not sensitive to variations of
the input SNR.

To study the effect of a finite number of samples, Table 3
shows the detection results of the MSC method in different
number of samples. The number of independent runs is 100
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Table 2: The statistical results of the proposed MSC method with
different values of SNR.

SNR (dB) q 1 2 3 4

10
90% CL 0 98 2 0

95% CL 0 100 0 0

50
90% CL 0 90 10 0

95% CL 0 100 0 0

100
90% CL 0 88 12 0

95% CL 0 99 1 0

(a) The statistical results of the proposed MSC method with SNR = 10 dB.

Table 3: The statistical results of the proposed MSC method with
different N values.

N q 1 2 3 4

300
90% CL 0 98 2 0

95% CL 14 86 0 0

500
90% CL 0 88 12 0

95% CL 0 100 0 0

1000
90% CL 0 54 46 0

95% CL 0 97 3 0

and the input SNR is 40 dB. In this example, theMSD is quite
stable and detects q = 1 for all cases. It is found that the pro-
posed MSC method has the trend to overestimate the chan-
nel order, that is, q = 3. However, from Figure 3, q = 3 is still
a reasonably good estimate of the channel order for the Tong
subspace equalization algorithm.

5. CONCLUSION

An effective channel order detection method for blind chan-
nel equalization has been presented. The order detection
method use the multiple-shift correlation property of the
data. A new performance index has been provided for better
understanding of channel order determination. The channel
order is detected if the performance index is greater than a
threshold. Based on the i.i.d. assumption of the signal and
noise, an F-distribution-based hypothesis testing criterion is
used for threshold selection. Unlike the EVD-basedmethods,
the proposed method does not require the EVD which con-
sumes huge computation load for a big-dimension correla-
tion matrix. Simulations show that the proposed method is
not sensitive to variation of the input SNR in the test range of
10 dB up to 100 dB and could obtain stable detection prob-
ability if the number of samples is not less than 300 for the
proposed method with CL.
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