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This paper deals with the statistical analysis of the behavior of a blind robust watermarking system based on pseudorandom
signals embedded in the magnitude of the Fourier transform of the host data. The host data that the watermark is embedded into
is one-dimensional and non-white, following a specific probability model. The analysis performed involves theoretical evaluation
of the statistics of the Fourier coefficients and the design of an optimal detector for multiplicative watermark embedding. Finally,
experimental results are presented in order to show the performance of the proposed detector versus that of the correlator detector.
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1. INTRODUCTION

The risk of illegal copying, reproduction, and distribution of
copyrighted multimedia material is becoming more threat-
ening with the all-digital evolving solutions adopted by con-
tent providers, system designers, and users. Thus, copy-
right watermark protection of digital data is an essential re-
quirement for multimedia distribution. Robust watermarks
can offer a copyright protection mechanism for digital me-
dia. The watermark is a signal that contains information
about the copyright owner and it is embedded perma-
nently in the multimedia data. It introduces imperceptible
content changes that can be detected by a detection pro-
gram.

Robustness is a very important property of the water-
marking scheme. The watermarks must be robust to distor-
tions, such as those caused by image processing algorithms
(in the case of image watermarks). Image processing modi-
fies not only the image but also may modify the watermark
as well. Thus, the watermark may become undetectable after
intentional or unintentional image processing attacks. The
watermark must also be imperceptible. The watermark al-
terations should not decrease the perceptual media quality.
A general watermarking framework for copyright protection
has been presented in [1, 2] and it describes all these issues
in detail.

Watermarking methods can be distinguished in two ma-
jor classes, according to the embedding/detection domain. In
the first class, the embedding is performed directly in the
spatial domain [3, 4, 5]. The second class is referred to as
transform domain techniques. In these methods, the water-
mark is embedded in a transform domain, attempting to ex-
ploit the transform properties mainly for watermark imper-
ceptibility and robustness. The watermark can be embedded
in the DCT [6, 7, 8, 9], discrete Fourier transform (DFT)
[10, 11], Fourier-Mellin [12, 13], DWT [7, 14, 15, 16, 17, 18]
or fractal-based coding domains [19, 20]. Many approaches
adopt principles from spread spectrum communications in
their watermarking system model [1, 2, 8, 21].

Correlation detection of watermarked signals is involved
in the majority of watermarking techniques in the literature.
However, the correlator detector is optimal and minimizes
the error probability only in cases when the signal follows
a Gaussian distribution. There are papers in the literature
that propose detectors, different than the correlator, in the
cases when the host data do not follow a Gaussian distribu-
tion [22, 23, 24]. In [22], the embedding domain is DCT.
The DCT coefficient distribution is modelled as a general-
ized Gaussian one. Then, the maximum likelihood (ML) cri-
terion is used in order to derive the optimal detector struc-
ture. In [24, 25], the watermark is embedded in the magni-
tude of the DFT domain. In this case, the authors assume
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that the Fourier magnitude does not follow the generalized
Gaussian distribution. They propose the Weibull one, due
to the facts that its support domain is the set of the posi-
tive real numbers and that it represents a big probability dis-
tribution family. In the present paper, the watermark is also
assumed to be embedded in the magnitude of the DFT do-
main. Moreover, we assume that the signal is not white and
that it follows a specific probability model. The novelty of
the present paper, that is also the main difference from the
papers reported above, is that the DFT magnitude distribu-
tion is analytically calculated and it is proven to be differ-
ent than the Weibull distribution [24]. Finally, we construct
the optimal detector according to the Neyman-Pearson cri-
terion.

The paper is organized as follows. The watermarking sys-
tem model is presented in Section 2. In the next section, the
signal model is presented and the distribution of DFT mag-
nitude coefficients is shown. Then, in Section 4, the con-
struction of the optimal detector is depicted. In Sections 5
and 6, the experimental results and the conclusions are pre-
sented.

2. WATERMARKING SYSTEMMODEL

Let s(i), i = 1, 2, . . . ,N , be the samples of a host signal s with
length N . Let also S(k), k = 1, 2, . . . ,N , be the DFT coeffi-
cients of s(i) and M(k), P(k) the magnitude of the Fourier
transform (M(k) = |S(k)|) and its phase, P(k) = arg(S(k)),
respectively. Suppose that SR(k) and SI(k) denote the real and
the imaginary part of S(k), respectively. As mentioned in the
introduction, the watermark embedding is performed in the
Fourier domain andmore specifically in its magnitude. Thus,
starting from the magnitude of the Fourier transformM, we
produce the watermarked transform magnitude. We assume
thatM′ is the watermarked magnitude generated by the wa-
termark embedding function f ,

M′ = f (M,W , p). (1)

In the previous formula, vector W contains the samples of
the watermark sequence. This sequence is produced by a ran-
dom generator. We assume that W(k), k = 1, 2, . . . ,N , is a
random signal that consists solely of 1’s and−1’s and that it is
uniformly distributed in its domain {1,−1}. Thus, the mean
of the watermark sequence samples W(k) is equal to zero.
In the case that f is of a linear form, it can be easily proven
that the mean of the watermarked magnitude remains un-
altered. This property increases both the watermarked sig-
nal imperceptibility as well as its robustness. The parameter
p that is employed in (1) is a real number that determines
the watermark strength. An increase in the value of p re-
sults in a more robust (and more easily perceptible) water-
mark.

If the embedding function is multiplicative, the water-
marked magnitude is given by

M′ =M +MWp =M(1 +Wp). (2)

In order to compute the final watermarked signal s′ (in
the spatial domain), the inverse discrete Fourier transform
(IDFT) is applied to the watermarked magnitudeM′ and the
initial DFT coefficient phase P,

s′ = IDFT(M′,P). (3)

Given a possibly watermarked signal y, the watermark detec-
tor aims at deciding whether y hosts a certain watermarkW .
Watermark detection can be expressed as a hypothesis test
where two hypotheses are possible:

(H0) signal y does not host watermarkW ,

(H1) signal y hosts watermarkW .

It should be noted that hypothesis (H0) can occur ei-
ther in the case that the signal y is not watermarked (hy-
pothesis (H0a)) or in the case that the signal y is wa-
termarked by another watermark W ′, where W �= W ′

(hypothesis (H0b)). The events (H0a), (H0b) are mutu-
ally exclusive and their union produces the hypothesis
(H0).

The performance of a watermarking method depends
mainly on the selection of the watermark detector d. The
correlator detector is the most commonly used watermark
detector. It has been employed in many watermarking meth-
ods which perform not only spatial domain watermarking
but also watermarking in transform domains. Its test statis-
tic is the correlation between the watermark and the possibly
watermarked signal y,

d = 1
N

N∑
i=1

y(i)W(i). (4)

In order to decide on the valid hypothesis, the detector out-
put d is compared against a suitably selected thresholdT . The
evaluation of the watermarking method can be measured by
the false alarm Pf a and the false rejection Pf r probabilities.
False alarm probability is the type I error which is the prob-
ability of rejecting hypothesis (H0), even though it is true. In
our case, it is the probability of detecting a watermark W in
a signal that is not watermarked by the watermark W . Cor-
respondingly, false rejection is the type II error, whose prob-
ability is that of not detecting a watermarkW in a signal that
is actually watermarked by the watermark W (accept (H0)
even if it is false).

In most of the watermarking methods, hypothesis (H0) is
accepted when the detector output is greater than a threshold
T . Thus, false alarm and false rejection probabilities can be
expressed as

Pf a = P
{
d > T|H0

}
, Pf r = P

{
d < T|H1

}
. (5)

The calculation of the above probabilities can be performed
if the detector distribution for both hypotheses is known.
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Figure 1: p values (output of Kolmogorov-Smirnov test) for each coefficient of the real part of the Fourier transform of a signal (a) a = 0,
(b) a = 0.995.

Thus, assuming that the f0(x), f1(x) are the probability den-
sity functions (pdfs) for the hypotheses (H0) and (H1), re-
spectively, the error probabilities are given by

Pf a =
∫∞
T

f1(x)dx, Pf r =
∫ T

∞
f0(x)dx. (6)

According to the above equations, Pf a and Pf r depend on the
threshold T . A possible change of T increases one probabil-
ity and decreases the other. Thus, apart from the detector, an
appropriate threshold should be selected. In many cases, the
detector is expressed as a sum or a product of almost inde-
pendent terms that obey the same distribution. According to
the central limit theorem, the detector (or the detector loga-
rithm in case of multiplicative embedding) obey a Gaussian
distribution. Thus, in this case, the error probabilities can be
written as

Pf a = f
(
T − µ1
σ1

)
,

Pf r = 1− f
(
T − µ0
σ0

)
,

f (x) =
∫∞
x

1√
2π

exp
(−x2

2

)
,

(7)

where µ0, µ1 are the mean values and σ0, σ1 the standard de-
viations of the distributions f0, f1, respectively.

3. SIGNALMODEL ANDDISTRIBUTION OF DFT
MAGNITUDE COEFFICIENTS

A basic step for the optimal detector construction is the com-
putation of the transform coefficient distribution. Thus, in
this section, the distribution of the DFT magnitude coef-
ficients of a signal will be computed, whose model is er-
godic and wide-sense stationary stochastic process. The sig-

nal statistics are modeled as

E
(
s(i)
) = µs, ∀i = 0, . . . ,N − 1, (8)

E
(
s(i)s(i +D)

) = Fs,s(D), ∀i = 0, . . . ,N − 1, (9)

σ2s = E
(
s(i)2

)− µ2s , (10)

where E(·) denotes the expected value.
A first-order separable autocorrelation function model

will be assumed [26]:

Fs,s(D) = µ2s + σ2s a
|D|, (11)

where a is a real-valued constant. Typically, a is in the range
[a = 0.9, . . . , 0.99] for several classes of 1D signals (e.g., au-
dio). It should be noted that if a tends to zero, the autocorre-
lation approaches a Dirac distribution.

It is obvious from (8) and (11) that the signal correlation
Fs,s(D) depends only on the absolute difference D of the sig-
nal indices. The DFT transform of signal s(i), i = 1, . . . ,N is
given by the following equation:

S(k) =
N−1∑
i=0

s(i)e− j2πik/N

=
N−1∑
i=0

s(i) cos
(−2πik

N

)

+ js(i) sin
(−2πik

N

)
, k = 1, . . . ,N.

(12)

We can assume that the DFT (12) of the signal fol-
lows a Gaussian distribution due the central limit theo-
rem for random variables with small dependency [27]. This
assumption is valid at least for small values of parame-
ter a. In order to show this experimentally, we have per-
formed the Kolmogorov-Smirnov test for all the coefficients.



Watermark Detector Embedded in the DFT of Non-White Signal 2525

102

101

100

10−1

10−2

10−3

10−4
0 100 200 300 400 500 600 700 800 900 1000

Experimental variance
Theoretical variance

(a)

102

101

100

10−1

10−2

10−3

10−4
0 100 200 300 400 500 600 700 800 900 1000

Experimental variance
Theoretical variance

(b)

Figure 2: Theoretical and experimental variances of (a) real and (b) imaginary parts of each discrete Fourier coefficient of 100 signals of
length 1000, having a = 0.99.

In Figure 1, the p values for each coefficient for the case of
a = 0 (Figure 1a) and a = 0.995 (Figure 1b) are illustrated.
The statistic parameters used in the Kolmogorov-Smirnov
test (expected value and variance) were theoretically derived
from (16), (17), and (A.7). It is shown that the p values are
very low, which means that all the coefficients follow the
Gaussian distribution.

Thus, it is proved that the mean of S(k) is given by

µS(k) = E[S(k)] = E

[ N−1∑
i=0

s(i)e− j2πik/N

]

=
0, k �= 0,

µsN , k = 0.

(13)

The proof of µS(k) is given in the appendices. The variance of
S(k) will be computed separately for its real part, SR(k), and

imaginary, part, SI(k), according to the following formula:

σ2SR(k) = E
[
SR(k)2

]− E
[
SR(k)

]2
=

N−1∑
i=0

N−1∑
l=0

cos
(−2πik

N

)
cos
(−2πlk

N

)
× E

[
s(i)s(l)

]− µ2SR(k).

(14)

By substituting (8) in (14), we get

σ2SR(k) =
N−1∑
i=0

N−1∑
l=0

cos
(−2πik

N

)
cos
(−2πlk

N

)
× (m2 + s2a| j−m|

)− µ2SR(k).

(15)

The final results for the variances of SR(k) and SI(k) are
given below:

σ2SR(k) = −
1
2
s2
−2a cos (2(πk/N)

)(
2aN

(
1 + a2

)
+ a2(N − 2)−N − 2

)−N + a4N − 6a2 + 6a2aN + 2a2 cos
(
4(πk/N)

)(
aN − 1

)
2a2 cos

(
4(πk/N)

)
+ 4a2 − 4a cos(2(πk/N))

(
1 + a2

)
+ 1 + a4

,

(16)

σ2SI (k) = −
1
2
s2
(−2a2 cos (4(πk/N)

)(
aN − 1

)− 2aN cos
(
2(πk/N)

)(
a2 − 1

)
+N

(
a4 − 1

)
+ 2a2

(
aN − 1

))
2a2 cos

(
4(πk/N)

)
+ 4a2 − 4a cos

(
2(πk/N)

)(
1 + a2

)
+ 1 + a4

. (17)

The proof of the above equations is given in the appendices.
In Figure 2, the theoretical variances and experimental of real
and imaginary parts of the DFT coefficients are shown. In

this example, 100 signals of length 1000 obeying the model
(11) were used for a = 0.99.

The next step is to calculate the distribution of the
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Fourier magnitude |S(k)|. By observing (14), we conclude
that all but the DC term have zero mean. If the variances of
SR(k) and SI(k) were equal, then we could conclude that the
distribution of |S(k)| = √SR(k)2 + SI(k)2 is the Rayleigh one
[28]:

∣∣S(k)∣∣ ∼ fs(s) = s

σ2
exp

(
− s2

2σ2

)
, x > 0. (18)

However, the variances of the real and the imaginary parts
of S(k) are equal only in the case of signals whose samples
can be modeled as independent identically distributed (i.i.d)
random variables (a = 0). Thus, for any other case we have
to use the pdf of a signal

z =
√
x2 + y2, (19)

where x ∼ N(0, σ21 ), y ∼ N(0, σ22 ), and σ1 �= σ2. It is proved
in the appendices that the pdf of such a random variable z is
given by

fz(z) = z

σ1σ2
exp

(
−σ21 + σ22

4σ21σ
2
2
z2
)
I0

(
0,
σ22 − σ21
4σ21σ

2
2
z2
)
, (20)

where I0 denotes the modified Bessel function and σ1, σ2 are
the standard deviations of the real and imaginary parts of
S(k). Thus, the discrete Fourier magnitude distribution is
given by

∣∣S(k)∣∣ ∼ fz(z)

= z

2σSR(k)σSI(k)
exp

(
−σ

2
SR(k) + σ2SI(k)
4σ2SR(k)σ

2
SI(k)

z2
)
I0

(
0,
σ2SI(k) − σ2SR(k)
4σ2SR(k)σ

2
SI(k)

z2
)
.

(21)

For ease of notation, σSR(k) and σSI(k) will be replaced by σ1 and
σ2, respectively, for the remainder of the paper.

4. OPTIMALWATERMARK DETECTOR

In the next section, the optimal watermark detector for mul-
tiplicative watermarks will be evaluated by using the like-
lihood ratio test (LRT). According to the Neyman-Pearson
theorem, in order to maximize the probability of detection
PD for a given Pf a = e, we decide for (H1) if

L(M′) = p
(
M′;H1

)
p
(
M′;H0

) > T , (22)

where the threshold T can be found from

Pf a =
∫
M′:L(M′)>T

p
(
M′;H0

)
dM′ = e. (23)

The test of (22) is called LRT. In the sequel, the pdfs of
the watermarked signal P(M′;H0), P(M′;H1) will be com-
puted for watermarked signals with a known and an un-
known (random) watermark. For P(M′;H0), we assume that
the watermark is a random one whose pdf is modeled by

fw(w) =


0.5, w = 1,

0.5, w = −1,
0, otherwise.

(24)

According to the embedding formula (2), it can be easily
proved that the pdf of the watermarked signal is equal to

fM′(x) = 1
2

[
1

1 + p
fM

(
x

1 + p

)
+

1
1− p

fM

(
x

1− p

)]
. (25)

By substituting f ′M with the pdf of the distribution in
(20), we find

P
(
M′(k);H0

)=M′(k)
4σ1σ2

·
[

1
(1 + p)2

exp
(
−σ21 + σ22

4σ21σ
2
2

M′(k)2

(1 + p)2

)

× I0

(
0,
σ22 − σ21
4σ21σ

2
2

M′(k)2

(1 + p)2

)

+
1

(1−p)2
exp
(
−σ21 + σ22

4σ21σ
2
2

M′(k)2

(1−p)2

)

× I0

(
0,
σ22 − σ21
4σ21σ

2
2

M′(k)2

(1− p)2

)]
.

(26)

In the case of hypothesis (H1), the signal is watermarked by
the known watermark W . Thus, the probability is given by
(20),

p
(
M′(k);H1

)
= M′(k)

2σ1σ2
(
1 +W(k)p

)2 exp
(
−σ21 + σ22

4σ21σ
2
2

M′(k)2(
1 +W(k)p

)2
)

× I0

(
0,
σ22 − σ21
4σ21σ

2
2

M′(k)2(
1 +W(k)p

)2
)
.

(27)

Assuming independence between the transform coeffi-
cients of S, we conclude that

p
(
M′;Hj

) = N−1∏
k=0

p
(
M′(k);Hj

)
, j = 0, 1. (28)

By combining (20), (27), and (22) we get the optimal de-
tector scheme
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L(M′) =
N−1∏
k=1

2(
1 +W(k)p

)2 I0
(
0,
σ22 − σ21
4σ21σ

2
2

M′(k)2(
1 +W(k)p

)2
)

×
(

1
(1 + p)2

exp

(
−σ21 + σ22

4σ21σ
2
2

2p
(
W(k)− 1

)
M′(k)2(

1 +W(k)p
)2
(1 + p)2

)
I0

(
0,
σ22 − σ21
4σ21σ

2
2

M′(k)2

(1 + p)2

)

+
1

(1− p)2
exp

(
−σ21 + σ22

4σ21σ
2
2

2p
(
W(k) + 1

)
M′(k)2(

1 +W(k)p
)2
(1− p)2

)
I0

(
0,
σ22 − σ21
4σ21σ

2
2

M′(k)2

(1− p)2

))−1
> T.

(29)

4.1. Threshold estimation

The threshold is selected in such a way so that a predefined
false alarm error probability can be achieved. In order to
calculate the false alarm error probability, we firstly have to
know the detector distribution in the case of erroneous wa-
termark detection. We assume that the distribution is Gaus-
sian. Then, we estimate the distribution parameters from the
statistics of the empirical distribution. The latter is calculated
by detecting erroneous watermarks from the (possibly) wa-
termarked signal.

From the empirical distribution statistics and the desired
false alarm error probability, we calculate the threshold ac-
cording to the equation

Pf a =
∫ +∞

T

1
σ̂
√
2
exp

(
− (x − µ̂)2

2σ̂2

)
dx, (30)

where µ̂ and σ̂ are the expected value and the standard devia-
tion of the detector output set, respectively. Thus, according
to the equation above, the threshold T is given by

T = µ̂− σ̂
√
2erf−1(2Pf a − 0.5). (31)

The total number of such detections needed is not prede-
fined but should be sufficiently large if we want to accurately
approximate this distribution. The minimal number of ex-
periments required in order to sufficiently approximate the
distribution is found through the following procedure. We
estimate the distribution parameters, µ̂, σ̂ , using the empir-
ical distribution produced from L detector outputs, for an
increasing L in a certain range of L, [Lmin,Lmax]. Then, ac-
cording to these statistics, we calculate the threshold in or-
der to achieve a false alarm probability, for example, equal to
10−10. We stop for an L∗ that leads a rather stable estimation
of T .

This procedure is illustrated in Figure 3 for Lmin = 5 and
Lmax = 1000. According to this figure, the threshold value is
stabilized when the number of experiments becomes greater
than L∗ = 100. Of course, L∗ depends on the watermark
embedding power, the signal length, and the signal charac-
teristics. For this reason, we propose to execute the above
procedure for representative signal sets and for the chosen
embedding power in a particular application.
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Figure 3: Threshold estimation versus number of experiments.

5. EXPERIMENTAL RESULTS

In this section, experiments are performed in order to verify
the superiority of the proposed detector against the classi-
cal correlator one. The experiments are performed on one-
dimensional digital signals.

In order to construct signals with the desired autocor-
relation properties (11), we filter a random white normally
distributed signal S of zero mean value with an IIR filter,

H(z) = 1− a

1− az−1
. (32)

This filtering creates a signal having an autocorrelation
function of the form

RSS(k) = 1− b

1 + b
σ2s a

k (33)

that is identical to (11) for µ2s = 0. The variance of the fil-
tered signal equals to (1 − a)/(1 + a)σ2s . Watermark embed-
ding is performed according to (2). Then, the watermarked
signal is fed to both the correlator (4) and the proposed de-
tectors (29). In order to estimate false alarm and false rejec-
tion probabilities, both correct and erroneous keys have been
used during detection.
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Figure 4: Empirical detector output distribution: (a) erroneous key and (b) correct key.

The above procedure is executed for a large number of
different keys. Due to the central limit theorem for products
[29], the distribution of L(x) is lognormal. Consequently, the
distribution of ln(L(x)) is normal, where ln(x) is the natu-
ral logarithm of x. In order to show the very good approxi-
mation of the detector output by the Gaussian distribution,
we depict its empirical distribution in Figure 4. In Figures 4a
and 4b, the detector distribution for detection using an er-
roneous and correct key, respectively, is shown. The fitting
is very good since the Kolmogorov-Smirnov null hypoth-
esis has not been rejected for a level of significance equal
to 0.01. In the following, the proposed detector will be the
ln(L(x)) instead of L(x). Let dr(x) and de(x) be the distri-
butions of the detector outputs for detecting correct and er-
roneous watermarks, respectively. The calculation of the em-
pirical mean and standard deviation, by approximating the
empirical pdf with a normal one, can be used to produce re-
ceiver operator characteristic (ROC) curves for both detec-
tor outputs. ROC curves will be used for comparing detector
performance.

The above procedure is performed for several values of
parameter a. The detection was performed using the follow-
ing:

(i) the correlator detector,
(ii) the proposed detector considering the parameter a

known,
(iii) the proposed detector by estimating the (unknown)

parameter a from the watermark sequence,
(iv) the normalized correlator.

In Figures 5, 6, 7, and 8, the performance of the proposed
detector against the correlator one is shown for several values
of parameter a in the range [0, 1].

In Figure 5, the value of the parameter a is zero. This is a
special case for white signals, that is, no filtering is performed
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Proposed detector using a = 0
Proposed detector using estimated a = 0.014146

Figure 5: ROC curves of the normalized correlator, the proposed
detector by using the known parameter a, and the proposed detec-
tor after estimating the parameter a, a = 0.

by (33). In the subsequent figures, the parameter a increases,
reaching the value a = 0.995 in the last figure (Figure 8). By
observing figures 5, 6, 7, and 8, we can conclude the follow-
ing.

(i) The proposed detector performance is by far better
that the correlator detector one.

(ii) The performance of the proposed detector using the
estimated parameter a is almost the same with that us-
ing the known parameter a, since their ROC curves are
very close to each other.
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Figure 6: ROC curves of correlator, the normalized correlator, the
proposed detector by using the known parameter a, and the pro-
posed detector after estimating the parameter a, a = 0.9.
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Figure 7: ROC curves of correlator, the normalized correlator, the
proposed detector by using the known parameter a, and the pro-
posed detector after estimating the parameter a, a = 0.97.

(iii) The ROC curves that correspond to the proposed de-
tector are not affected significantly by the value param-
eter a contrary to the correlator detector ROC curves
that show very decreased detection performance for
highly correlated signals, that is, as parameter a tends
to one.

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16

10−18

10−100 10−80 10−60 10−40 10−20 100

Correlator
Proposed detector using a = 0.995
Proposed detector using estimated a = 0.9954
Proposed detector using normalized correlation

Figure 8: ROC curves of correlator, the normalized correlator, the
proposed detector by using the known parameter a, and the pro-
posed detector after estimating the parameter a, a = 0.995.

6. CONCLUSIONS AND FUTUREWORK

This paper deals with the statistical analysis of the behav-
ior of a blind robust watermarking system based on one-
dimensional pseudorandom signals embedded in the mag-
nitude of the Fourier transform of the data and the design of
an optimum detector. A multiplicative embedding method is
examined and experiments are performed in order to show
the proposed detector’s improved efficiency against the cor-
relator one.

APPENDICES

A. CALCULATIONOF DISCRETE FOURIER
COEFFICIENTMEAN

The mean of S(k) is given by

E
[
S(k)

] = E

[ N−1∑
i=0

s(i) cos
(−2πik

N

)
+ js(i) sin

(−2πik
N

)]

=E
[
s(i)
]N−1∑
i=0

cos
(−2πik

N

)
+ jE

(
s(i)
)N−1∑
i=0

sin
(−2πik

N

)
.

(A.1)

Replacing na by 2πk j/N in the following equation [30]:

N∑
n=1

cos(na) =


sin
[(
N + 1/2

)
a
]

2 sin(a/2)
− 1

2
, a �= 2lπ,

N , a = 2lπ,
(A.2)
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results in

N−1∑
j=0

cos
(
2πk j
N

)

= 1 +
N−1∑
j=1

cos
(
2πk j
N

)

= 1 +


sin
[
(N − 1 + 1/2

)
(2πk/N)

]
2 sin(πk/N)

− 1
2
, k �= 0,

N − 1, k = 0.
(A.3)

Taking into account that 0 ≤ k < N the inequality of the
constraint a �= 2lπ can be written as 2πk/N �= 2lπ ⇒ k �= 0.

Finally,

N−1∑
j=0

cos
(
2πk j
N

)
=
0, k �= 0,

N , k = 0.
(A.4)

Using the equation

N∑
n=1

sin(na) =


sin
[
1/2(N + 1)a

]
sin[Na/2]

sin(a/2)
, a �= 2lπ,

0, a = 2lπ,

(A.5)

and following the same procedure, we end up in the follow-
ing equation:

N−1∑
j=0

sin
(
2πk j
N

)
= 0. (A.6)

Thus, the mean is equal to

µS(x) = E
[
S(x)

] =
0, k �= 0,

E
[
s(i)
]
N , k = 0.

(A.7)

B. CALCULATIONOF DISCRETE FOURIER
COEFFICIENT VARIANCE

S(k) is a complex signal, thus the variances of the real and
imaginary parts will be calculated separately.

B.1. Variance of the real part

The variance of the real part of S(k) is given by

var
(
SR(k)

) = E
(
S2R(k)

)− E
(
SR(k)

)2
= E

[( N−1∑
i=0

s(i) cos
(−2πik

N

))2]

− E

[ N−1∑
i=0

s(i) cos
(−2πik

N

)]2

.

(B.1)

The second sum has been calculated in (A.7). The first sum
equals to

E

[( N−1∑
i=0

s(i) cos
(−2πik

N

))2]

=
N−1∑
i=0

N−1∑
m=0
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(
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N

)
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(
2πmk

N

)
E
[
s(i)s(m)

]

=
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i=0

N−1∑
m=0

cos
(
2πik
N

)
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(
2πmk

N

)(
µ2s + σ2s a

|i−m|).
(B.2)

Using [31, 1.353]

n−1∑
k=0

pk cos(ks)

= 1− p cos(s)− pn cos(ns) + pn+1 cos(n− 1)s
1− 2p cos(s) + p2

(B.3)

and splitting the sum
∑N−1

m=0 cos(2πik/N) cos(2πmk/N)(µ2s +
σ2s a

|i−m|) in two sums,
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)
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)(
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)(
µ2s + σ2s a
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(B.4)

we derive (16).

B.2. Variance of the imaginary part

The variance of the imaginary part of S(k) is given by

var
(
SI(k)

) = E
(
S2I (k)

)− E
(
SI(k)

)2
= E

[( N−1∑
i=0

s(i) sin
(−2πik

N

))2]

− E

[ N−1∑
i=0

s(i) sin
(−2πik

N

)]2

.

(B.5)

By splitting the above equation as in (B.4) and using [31,
1.353] that has the form

n−1∑
k=1

pk sin(kx) = p sin(x)− pn sin(nx) + pn+1 sin(n− 1)x
1− 2p sin(x) + p2

,

(B.6)

we conclude in (17).
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C. CALCULATIONOF THE fz(z)DISTRIBUTION

In this section, the distribution of fz(z) =
√
x2 + y2, where

x ∼ N(0, σ21 ), y ∼ N(0, σ22 ), and σ1 �= σ2, will the calculated.
By substituting x by z cos(t) and y by z sin(t) the above dis-
tribution equals

f (z) =
∫ 2π

0

z

2πσ1σ2
exp

[
−
(
z2 cos2(t)

2σ21
+
z2 sin2(t)
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)]
dt

=
∫ 2π

0
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)2
z2 sin2(t)
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+

[
1− (σ2/σ1)2]z2 sin2(t)
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)]
dt

=
∫ 2π
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z
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(
− z2
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)

× exp

[
−
[
1− (σ2/σ1)2]z2 sin2(t)

2σ22

]
dt.

(C.1)

By substituting the quantity −[1− (σ2/σ1)2]/2σ22 = (σ22 −
σ21 )/2σ

2
1σ

2
2 by the parameter q (C.1) has the form

f (z) = z

2πσ1σ2
exp

(
− z2

2σ21

)∫ 2π

0
exp

[
qz2 sin2(t)

]
dt. (C.2)

After taking into account the periodicity of the
sin function and its symmetry in the integral [0, 2π]
(
∫ 2π
0 exp(a sin2(t))dt = 2

∫ π
0 exp(a((1 − cos(2t))/2))dt =

exp(a/2)
∫ 2π
0 exp((−a/2) cos(t))dt = 2 exp(a/2)

∫ π
0 exp((−a/

2) cos(t))dt), the integral in (C.2) can be written as∫ 2π

0
exp

[
qz2 sin2(t)
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dt

= 2 exp
(
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2
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0
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2
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(C.3)

Using [31, 3.339]∫ π

0
exp

[
z cos(x)

]
dx = πI0(z), (C.4)

where I0(z) is the modified Bessel function of z, the integral
in (C.3) equals∫ 2π

0
exp

[
−qz2

2
cos(t)

]
dt = 2π exp

(
qz2

2

)
I0

(
− qz2

2

)
.

(C.5)

Finally, substituting q and using (C.5), (C.2) has the form

f (z) = z

σ1σ2
exp

(
−z2

(
σ21 + σ22

)
4σ21σ

2
2

)
I0

(
z2
(
σ21 − σ22

)
4σ21σ

2
2

)
. (C.6)

In the special case that σ1 = σ2, the pdf f (z) is the Rayleigh
function.
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