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Abstract

Imaging through hyperspectral technology is a powerful tool that can be used to spectrally identify and spatially
map materials based on their specific absorption characteristics in electromagnetic spectrum. A robust method
called Tetracorder has shown its effectiveness at material identification and mapping, using a set of algorithms
within an expert system decision-making framework. In this study, using some stages of Tetracorder, a technique
called classification by diagnosing all absorption features (CDAF) is introduced. This technique enables one to
assign a class to the most abundant mineral in each pixel with high accuracy. The technique is based on the
derivation of information from reflectance spectra of the image. This can be done through extraction of spectral
absorption features of any minerals from their respected laboratory-measured reflectance spectra, and comparing it
with those extracted from the pixels in the image. The CDAF technique has been executed on the AVIRIS image
where the results show an overall accuracy of better than 96%.
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1. Introduction
The image classifications are based entirely on the spec-
tral signatures of the land cover types. This area of spe-
cialty has attracted the attention of remote sensing
researchers in recent years and as a result, the techni-
ques of classification have been improved considerably.
These techniques have been divided into two general
categories: supervised and unsupervised. In supervised
classification, usually the statistical methods [1] and
training samples are being used, whereas the unsuper-
vised classification is based on the comparison between
spectral signatures of a pixel and those of different
materials collected in spectral libraries [2].
Spectral characteristics is a tool that has been used for

decades to identify, understand, and quantify solid,
liquid, or gaseous materials, especially in the laboratory.
This is usually done through detection of absorption
features due to the presence of specific chemical bonds,
where its depth of absorption represents the abundance
and physical state of the detected absorbing species

[3-5]. Imaging spectroradiometer can acquire data with
suitable spectral range, resolution, and sampling rate at
every pixel in a raster image, so that individual absorp-
tion features can be identified and spatially mapped [6].
One of the most powerful methods in unsupervised

classification is Tetracorder introduced by Clark et al.
[7]. There are five innovations in this method where
two of these are used in this study. The first innova-
tion in Tetracorder method is to identify materials by
comparing a remotely sensed spectrum (here pixels
reflectance spectrum) with a large number of spectra
of well-known materials [2]. Of course it involves
some undesired signals when working with mixed pix-
els but we usually interested only on the portions of
the spectrum that are known to be diagnostic of the
reference materials. Since every spectral feature is due
to an interaction of photons of particular energies with
the atoms and electrons within the chemical under
study, then the nature of the absorption is largely
unique to the specific chemical structure where the
concept of a diagnostic absorption feature is used for
it. These diagnostic absorption features are unique to
particular materials in shape but varies in intensity
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with wavelength over a narrow interval and usually are
concentrated in limited ranges of wavelength by type
of absorption [2]. Of course the width of these absorp-
tion features may vary due to the phenomenon such as
Doppler shift, presence of overtones, effects of mixed
pixels, etc.
The second innovation that Tetracorder presents is

quantitative comparison between an unknown spectrum
(pixel) and the entries from the spectral library reflec-
tance curves seeking for similar diagnostic features.
Then those materials having the highest similarity to the
unknown are the most probable substance that can be
present in the pixel. Thus, Tetracorder not only com-
pares the pixel’s spectral properties to the spectral prop-
erties of each of the entries from the library, but also
quantitatively assesses and judges to identify the mate-
rial present in the pixels.
On the other hand, there might exist materials that

show similar diagnostic features as perceived by our
normalization process, but they are never similar in all
other key absorption wavelengths, or in terms of the
local spectral normalized parameters such as reflectance
local slope and depth of absorption. Although Tetracor-
der is based on five hypotheses but in this study we
only built up a technique partly based on the first two
of them along with some calculations on fitting to
reflectance curves and using their continuum removals
(CR). For this, classification by diagnosing all absorption
features (CDAF) is selected for simplicity and presented
in details below.
Usually the CR is used to identify the spectral features

through their wavelength position and shapes [8]. Most
of remotely sensed spectra are composed of mixtures
and not necessarily pure materials, and then the spectral
reflectance curves produce a continuum upon which
diagnostic absorptions may be superimposed. The CR
algorithm can remove the effects of these other absorp-
tion features from the spectrum [5,8]. The depth or
strength of an absorption feature in the continuum
depends upon the intrinsic absorption strength, the
grain size, and abundance of the material mixed in the
sample [8]. The absorption feature’s depth is generally
proportional to the abundance of the materials in the
sample (for a fixed value of grain size). On the other
hand, the depth of a feature may increase to a maxi-
mum with larger grain size, but decreases as the absorp-
tion dominates over scattering [5].

2. Region of the study and data
The region of this study is Cuprite mining district in
Nevada, USA. The reason for this selection is the avail-
ability of the field-collected samples and airborne images
of AVIRIS (Figure 1). The region is a mineral research
area containing different minerals such as silicas and

carbonates. The image is acquired by AVIRIS sensor on
1995 with dimensions of 350 × 400 pixels in 50 bands
from 1.99 to 2.48 μm. The spectral resolution of 10 nm,
spatial resolution of 20 m, signal-to-noise ratio of 500,
and the flight height of 20 km are the other characteris-
tics of the image [9]. The image is claimed that has
been corrected for the effects of atmosphere and noises
using ATREM [10] and EFFORT [11], respectively. Also
it is claimed that it has been corrected for the instru-
mental errors [12].

3. Methodology
3.1. Data preparation
Our new technique is developed using the first two
innovations of the Tetracorder, a special analysis. In
what follows, the CDAF technique is introduced
through its eight implementation stages. Here to prepare
the images for implementing CDAF, the following few
calculation steps were carried out first:
Step 1: first the CR procedure was applied to the spec-

tral libraries as well as pixel spectrum. Then a linear
continuum (LC) laid over the material and pixel’s reflec-
tance spectrums. CR normalizes reflectance spectra in
order to allow comparison of individual absorption fea-
tures from a common baseline [13]. The LC is a convex
hull fitted over the top of a spectrum to connect local
spectrum maxima. The first and last spectral data values
are on the hull and therefore the first and last values of
continuum-removed spectrum are equal to 1. The out-
put curves have values between 0 and 1, in which the
absorption pits and dips are enhanced. Figure 2 shows
an illustration of CR and LC for Alunite3.
Step 2: a fit of every absorption features present in the

pixel spectrum with those of spectral libraries can be

Figure 1 A color composite image of the Cuprite mining
district, Nevada (RGB of 183, 193, 207).
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calculated through the standard least square method as
follow [2].

Oc = a + bLc ⇒

⎧⎪⎪⎪⎨
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where a and b are coefficients of linear relationship
between CR of spectral library Lc and CR of Observed
(pixels) Oc and n is the number of bands present in the
absorption region. The reverse of this relationship was
also carried out by fitting the observed values Oc to Lc
as follows:

Lc = a′ + b′Oc ⇒
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Tetracorder defines fitness F between these curves
using b and b’ coefficients as shown in Equation 3 [2]:

F =
(
bb′)1/2 (3)

The fitness coefficient F is assumed to be a measure of
how well the spectral features match each other.
It is worthy to note that, in this study the definition of

diagnostic absorption feature is slightly different from
one that is used in other studies. In this study, we con-
sider the whole region between two consecutive values
of 1 in CR curve as a diagnostic absorption feature;
where it is fully independent of its area, shape, depth,
etc.
Step 3: at this stage, the weighted fitness coefficients

between materials (spectral libraries) and observed

(pixels) are calculated. Note that usually every feature in
the CR covers more than one absorption feature and
those features with greater width contains more absorp-
tion bands and consequently can better represent the
relevant material [2,14]. For this, Tetracorder works on
the basis of the calculated absorption area as a measure
of weighting and calculates the weighting fitness for the
whole spectrum of the material and pixel as:

Fw =
1
A

Na∑
i=1

FiAi (4)

where Ai is the area confined between CR and line
representing reflectance 1 (Figure 2) in ith absorption
region, and A represents the whole area confined
between CR and horizontal line 1, Fi is the fitness coeffi-
cient (Equation 3) for the ith absorption feature and Fw
represents weighted fitness for all Na absorption features
present in the spectrum.
Step 4: Now the mineral corresponding to the highest

weighted fitness is taken as the class of the pixel under
consideration [2].

3.2. Implementation of CDAF technique
The CDAF technique is based on the first two innova-
tions of Tetracorder method plus some manipulations
on the pixel and material reflectance spectrum in spec-
tral libraries and their CRs. This means that the CDAF
technique takes all of these curves into its calculations.
The main hypothesis of this technique is based on the
fact that the minerals may continuously be present in
small regions such as 20 × 20 m [15], i.e., the surface
distribution of a particular material does not change
abruptly and this distribution could be assumed more or
less similar from one region to its neighboring regions.
Then, if the majority of pixels certify the presence of a

Continuum 
Removed Diagnostic Absorption

Features of Alunite3
Linear Continuum

Reflectance

Figure 2 Continuum removed (dash-dot curve), LC (dotted line), reflectance spectrum (solid curve), and diagnostic absorption features
of Alunite3.
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particular material, it would imply that this material
could be present dominantly in the contiguous pixels
too. This assumption could enable us to reduce the
chance of misclassification.
In CDAF technique, two thresholds “Fitness Thresh-

old“ and “Frequency Threshold“ are used where each
one of these could be determined either analytically or
through some experimental procedures (if the ground
truths are available). This can be done for different
images of different sensors and for different conditions.
In this study, these thresholds have been found to be
around 80 and 70%, respectively. The procedure of
implementation of this technique is presented in eight
stages as follows:
Stage 1: selecting a small region (5 × 5 pixels) on the

AVIRIS image. It is true that we have used 5 × 5 pixels
windows in the classification procedure but this does
not necessarily mean that we have lowered the spatial
resolution down to 100 m. The reason for selecting this
window was to expedite the calculation (reduce calcula-
tion time), for example by using this window we could
find 10 materials out of 481 different materials in the
spectral library having more chance to be present in the
pixels. These ten materials are used for second round of
classification, and in this round the classification is run
for each and every pixel. It is possible for a pixel to be
assigned a class different from its neighbors in 5 × 5
windows in the second run.
Stage 2: applying first and second steps of Tetracorder

on each pixel on the selected region using all materials
present in the spectral library.
Stage 3: selecting those materials having fitness above

fitness threshold (i.e, 80%) and dismiss the rest.
Stage 4: Using results of stage 3 for selection of mate-

rials having frequency of more than its threshold value
(here 70%).
After this stage, the number of materials suspected to

be present in image is decreased dramatically and this
will expedite the remaining calculations. It is worth to
consider that the number of materials with highest fre-
quencies determined in stage 3 is not necessarily equal
to that of stage 4. So, before moving to the next stage, a
criterion will be imposed in order to optimize the
results. This criterion consists of an “if condition” as:
“if the ratio of the highest frequency to the total num-

ber of pixels in the selected region is greater than the fre-
quency threshold“
then the reflectance curves of these selected pixels

would be used in the next stages (instead of their CRs),
because the main hypothesis of the CDAF (i.e., the
minerals may present as continuous in small regions) is
fulfilled. In case the condition is not met, then CR
curves of both material and pixels will be used in the
next stages. Since usually this condition is always met,

then in what follows the term reflectance spectrum will
be used (instead of CR).
Stage 5: at this stage, a weight will be assigned to each

and every spectral band of pixels and materials. It is
obvious that those bands with higher depth play more
important roles in detection of the main material (the
one that determines the class) and vice versa. Then, a
weight proportional to the depth of each band in the
CR can be given. These weights can be calculated using
the following equations:

w(i)
bd =

BDi

Nb∑
j=1

BDj
(5)

BDi = 1 − CR(i)
pixel

(6)

where w(i)
bd
, BDi, and CR(i)

pixel
are the calculated weights,

band depth, and CR in the ith band of the pixel, respec-
tively, and Nb is the number of bands used in the image
spectrum. Applying these weights to the pixel and mate-

rial’s reflectance curves (S(i)t andS(i)r ) may produce new

weighted-spectral reflectance for both pixels and materi-

als ( S̄(i)t and S̄(i)r )

S̄(i)r = S(i)r × w(i)
bd

(7)

S̄(i)t = S(i)t × w(i)
bd

(8)

where r and t stand for the reference (material) and
target (pixel), respectively. It is clear that these new
curves are totally different with the original reflectance
curves.
Stage 6: at this stage, a new weight for each material

according to the area confined between curves of refer-
ence material and target pixels calculated in stage 5 was
defined using the following equation:

w(i)
a =

| A(i)
r − At |−1

NS∑
j=1

| A(j)
r − At |−1 (9)

where w(i)
a is the weight for the ith material, A(i)

r and

At are the area under the curves of the ith reference
material and target, respectively, and Ns is the number
of materials selected in stage 4. It is obvious that as the
area confined between material and pixel’s new reflec-
tance curves (calculated in stage 5) decreases, the simi-
larity between two curves increases. So, the weighting
coefficients must be designed in such a way to show
this as in Equation 9. Applying these weights to the
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output of stage 5, the curves of stage 6 namely S̃(i)r is

produced.

S̃(i)r = S̄(i)r × w(i)
a (10)

Figure 3 shows a sample output reflectance curve for
Alunite and a pixel of the same class.
Stage 7: As shown in Figure 3b, c, applying weights in

stages 5 and 6 makes the new reflectance curves of
material and pixels to look similar. Naturally for those
materials being principle component in the pixels (class
of pixels) this similarity increases. So, a line fit between
material reflectance spectrum and pixel’s spectrum does
not have a width from the origin and only has a coeffi-
cient of proportionality as follows:

S̃r = aS̄t ⇒ a =
(
S̄Tt S̄t

)−1
(
S̄Tt S̃r

)
(11)

where a is linear relationship coefficient and S̄Tt is the

transpose of S̄t (Figure 3c).
Stage 8: At this stage, using coefficient of proportion-

ality (found in previous stage) “a“, the material new

spectrum S̃′
r will be estimated from pixel new spectrum

S̄t (Figure 3c). Then, the root mean square error
(RMSE) between pixel and material new spectrum can
be calculated.

S̃′
r = aS̄t ⇒ RMSEr =

√√√√√
Nb∑
i=1

(
S̃′(i)

r − S̃(i)r
)2

Nb − 1

(12)

Now the material that minimizes these RMSEs is
taken to be the class of that pixel. Here, Nb is the num-
ber of bands being used.

4. Results and analysis
To test the suggested technique and to analyze the
results, the following data have been used:

a AVIRIS images explained in Section 2.
b Field collected data for five classes of materials
(Table 1).
c Reflectance curves for 481 different materials
collected by USGS available in ENVI software. The
spectral library of the minerals can also be found in
the USGS website http://speclab.cr.usgs.gov/spectral-
lib.html.

4.1. Technique evaluation
Here CDAF technique has been programmed in
MATLAB and executed on the AVIRIS image and the
results are shown in Table 2. The overall accuracy
achieved in this technique was 96.9% (126 out of 130).
The map produced by this technique is shown in
Figure 4.

5. Discussion
Results of the CDAF technique shown in Table 2 prove
its ability in classification of Alunite, Buddingtonite,
Kaolinite, and silica perfectly, meaning that the imposed
conditions and performed calculations in CDAF techni-
que have proven its robustness. As shown in Table 2,
the classification precision in the class of calcite is lower
compared to the other classes although the results are
still acceptable. This situation comes from the fact that
there might exist some material in the spectral library
having reflectance more similar to the reflectance of the
pixel rather to that of calcite (Figure 5). On the other
hand, regarding discussion in Section 2, we only used
the spectral region confined between 2 and 2.5 μm. This

(b) 

(c) (a) 

Alunite 

Pixel 

Figure 3 Sample output reflectance curve for Alunite and a pixel of the same class. (a) Lower: actual reflectance curves of Alunite (dashed
curve) and pixel (solid curve). Upper: CR of Alunite (dashed curve) and pixel (solid curve). (b) Output of stage 6 for Alunite. (c) Output of stage 5
for pixel containing Alunite as its principle component.
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renders discrimination of the group of materials (in the
same family) having similar absorption signature very
difficult. For instance, calcite and siderite both are from
carbonate family and their reflectance curves in 2 to 2.5
μm have similar absorption region (Figure 5) and conse-
quently the chance of their discrimination with the
spectral-based techniques are very low. Also as can be
seen from Figure 5, the reflectance curve of siderite
(FeCO3) and one of the calcite (CaCO3) class pixels are
very similar to each other while this similarity for the
pair of calcite-pixel is much lower. Then to discriminate
calcite from siderite, we need more spectral information
(e.g., 0.4-2.5 mm) whereas this would be a restriction
with the current data.
The robustness of the CDAF is more profound in

some special circumstances. One of these cases is the
class of silica. There are varieties of silicas different in
names but more or less with high similarity in the
absorption features in their reflectance curves. Adding

to this, the soils reflectance with special characteristics
due to their physical and chemical particulars while
their main constituents are minerals, organic materials,
air, and water [10,16]. These pixels were classified with
100% accuracy using CDAF technique. The reason for
this is the analytical procedure introduced in the techni-
que. Table 2 shows that by removing calcite from the
list of classes, the classification precision raises from
96.92 to 100% where this itself is a great step in the
classification of hyperspectral images [8].
Finally, it is worth noting that we have run our tech-

nique based on the field collected data by other people
in the Cuperite field campaign where we ourselves did
not play any role in that. As can be seen from Table 2,
the CDAF technique could detect four of the classes
with 100% accuracy and only has weakness in detec-
tion of calcite class (73.33%). However, it is possible
that the field work done by the other people on the
class of calcite was not accurate enough and had some
misinterpretations involved. For example, it is possible
in some region, the siderite abundance was more than
calcite but the people collected the samples gave the
calcite class. On the other hand, the accuracy of 100%
does not necessarily means that there are no other
material present in the pixel but it could be concluded
that the combination of abundance and absorption
features of on material has influenced the pixel reflec-
tance to render the shape to look like a particular
class.

Table 1 Characteristics of 5 materials in 130 samples
used in method testing and analysis

Class Material number in the list of
ENVI spectral library

Number of
labeled samples

Alunite 23-28 27

Kaolinite 233-240 43

Buddingtonite 67 and 68 13

Calcite 72-74 15

Silica 88, 91, 380-383, 345-346 32

Table 2 Results of classification and overall accuracy of CDAF method

Class name Calcite Buddingtonite Kaolinite Alunite Silica

Number of Class Samples 15 13 43 27 32

Number of pixels classified correctly 11 13 43 27 32

Classification accuracy for each class (%) 73.33 100 100 100 100

Overall accuracy: 96.92% (126/130)

Pixel (Calcite class) 

Calcite 

Siderite 

Figure 4 Map of classification for Cuprite mining district, Nevada using CDAF.
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6. Conclusion
In this study, based on the first two stages of Tetracor-
der method, a new technique called CDAF is developed.
This technique enables one to classify the minerals with
high precision. The technique is based on the derivation
of information from the image reflectance spectrum.
This can be done through extraction of spectral absorp-
tion features of any minerals from their corresponding
laboratory-measured reflectance spectra, and comparing
it with those extracted from the image. The results of
evaluation show acceptable and reliable performance of
the suggested technique. In this study, along with the
first two innovations of Tetracorder method, based on
absorption depth and absorption areas in the CR of
reflectance curves, some weighting coefficients are cal-
culated. These weighting coefficients help classification
of pixels through their spectral similarities to a particu-
lar substance. The significance of CDAF technique is
that in this technique besides using absorption features
in the material and pixel in the respective CR of reflec-
tance curves, the reflectance curves themselves are being
used as well. Considering the results of classification, it
can be seen that CDAF can perform well in all classes
and can be applied to the region with the high variety of
minerals distributing in a continuous manner. On the
other hand, the results shown in Table 2 prove that this
technique has been able to perform 100% accuracy
in classification for most of the cases. So, the CDAF
technique is recommended as a good substitution for
unsupervised classification techniques in hyperspectral
images.
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