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neural net without prior conditions
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Abstract

Image restoration aims to restore an image within a given domain from a blurred and noisy acquisition. However,
the convolution operator, which models the degradation, is truncated in a real observation causing significant
artifacts in the restored results. Typically, some assumptions are made about the boundary conditions (BCs) outside
the field of view to reduce the ringing. We propose instead a restoration method without prior conditions which
reconstructs the boundary region as well as making the ringing artifact negligible. The algorithm of this article is
based on a multilayer perceptron (MLP) which minimizes a truncated version of the total variation regularizer using
a back-propagation strategy. Various experiments demonstrate the novelty of the MLP in the boundary restoration
process without neither any image information nor prior assumption on the BCs.

Keywords: image restoration, neural nets, multilayer perceptron (MLP), boundary conditions (BCs), image boundary
restoration, degradation models, TV (total variation).

1. Introduction
Restoration of blurred and noisy images is a classical
problem arising in many applications, including astron-
omy, biomedical imaging, and computerized tomography
[1]. This problem aims to invert the degradation because
of a capture device, but the underlying process is mathe-
matically ill posed and leads to a highly noise sensitive
solution. A large number of techniques have been devel-
oped to cope with this issue, most of them under the
regularization or the Bayesian frameworks (a complete
review can be found in [2-4]).
The degraded image is generally modeled as a convo-

lution of the unknown true image with a linear point
spread function (PSF), along with the effects of an addi-
tive noise. The non-local property of the convolution
implies that part of the blurred image near the boundary
integrates information of the original scenery outside the
field of view. However, this information is not available
in the deconvolution process and may cause strong ring-
ing artifacts on the restored image, i.e., the well-known
boundary problem [5]. Typical methods to counteract
the boundary effect is to make assumptions about the

behavior of the original image outside the field of view
such as Dirichlet, Neuman, periodic, or other recent
conditions in [6-8]. The result of restoration with these
methods is an image defined in the field-of-view (FOV)
domain, but it lacks the boundary area which is actually
present in the true image.
In this article we present a restoration method which

deals with a blurred image defined in the FOV, but with
neither any image information nor prior assumption on
the boundary conditions (BCs). Furthermore, the objec-
tive is not only to reduce the ringing artifacts on the
whole image, but also reconstruct the missed boundaries
of the original image without prior assumption.

1.1. Contribution
In recent studies [9,10], we have developed an algorithm
using a multilayer perceptron (MLP) to restore a real
image without relying on the typical BCs of the litera-
ture. The main goal is to model the blurred image as
truncation of the convolution operator, where the
boundaries have been removed and they are not further
used in the algorithm.
A first step of our neural net was given in a previous

study [9] using the standard l2 norm in the energy func-
tion, as done in other regularization algorithms [11-15].
However, the success of the total variation (TV) in
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deconvolution [16-20] motivated its incorporation in the
MLP. By means of matrix algebra and the approxima-
tion of the TV operator with the majorization-minimiza-
tion (MM) algorithm of [19], we presented a newer
version of the MLP [10] for both l1 and l2 regularizers
and mainly devoted to compare the truncation model
with the traditional BCs.
Now we will analyze the TV-based MLP with the pur-

pose of going into the boundary restoration process. In
general, the neural network is very well suited to learn
about the degradation model and then restore the bor-
ders without the values of the blurred data therein.
Besides, the algorithm adapts the energy optimization to
the whole image and makes the ringing artifact
negligible.
Finally, let us recall that our MLP is somehow based

on the same algorithmic base presented for the authors
about the desensitization problem [21]. In fact, our MLP
simulates at every iteration an approach to both the
degradation (backward) and the restoration (forward)
processes, thus extending the same iterative concept but
applied to a nonlinear problem.

1.2 Paper organization
This article is structured as follows. In the next section,
we provide a detailed formulation of the problem, estab-
lishing naming conventions, and the energy function to
be minimized. In Section 3, we present the architecture
of the neural net under analysis. Section 4 describes the
adjustment of its synaptic weights in every layer and
outlines the reconstruction of boundaries. We present
some experimental results in Section 5 and, finally, con-
cluding remarks are given in Section 6.

2. Problem formulation
Let h(i, j) be any generic two-dimensional degradation
filter mask (PSF, usually invariant low pass filter) and x
(i, j) the unknown original image, which can be lexico-
graphically represented by the vectors h and x

h =
[
h1, h2, ..., hM

]T
x = [x1, x2, ..., xL]T

(1)

where M = [M1 × M2] ⊂ �2 and L = [L1 × L2] ⊂ �2

are the supports which define the PSF and the original
image, respectively. Let B1 and B2 be the horizontal and
vertical bandwidths of the PSF mask, then we can
rewrite the support M as

[
(2B1 + 1) × (2B2 + 1)

]
.

A classical formulation of the degradation model (blur
and noise) in an image restoration problem is given by

y = Hx + n (2)

where H is the blurring matrix corresponding to the
filter mask h of (1), y is the observed image (blurred
and noisy image) and n is a sample of a zero mean
white Gaussian additive noise of variance s2.
The matrix H can generally be expressed as

H = T + B (3)

where T has a Toeplitz structure and B, which is
defined by the BCs, is often structured, sparse and low
rank. BCs make assumptions about how the observed
image behaves outside the FOV and they are often cho-
sen for algebraic and computational conveniences. The
following cases are commonly referenced in literature:
Zero BCs [22], aka Dirichlet, impose a black boundary

so that the matrix B is all zeros and, therefore, H has a
Toeplitz structure (BTTB). This implies an artificial dis-
continuity at the borders which can lead to serious ring-
ing effects.
Periodic BCs [22], aka Neumann, assume that the

scene can be represented as a mosaic of a single infi-
nite-dimensional image, repeated periodically in all
directions. The resulting matrix H is BCCB which can
be diagonalized by the unitary discrete Fourier trans-
form and leads to a restoration problem implemented
by FFTs. Although computationally convenient, it can-
not actually represent a physical observed image and
still produces ringing artifacts.
Reflective BCs [23] reflect the image like a mirror with

respect to the boundaries. In this case, the matrix H has
a Toeplitz-plus-Hankel structure which can be diagona-
lized by the orthonormal discrete cosine transformation
if the PSF is symmetric. As these conditions maintain
the continuity of the gray level of the image, the ringing
effects are reduced in the restoration process.
Anti-reflective BCs [7], similarly reflect the image with

respect to the boundaries but using a central symmetry
instead of the axial symmetry of the reflective BCs. The
continuity of the image and the normal derivative are
both preserved at the boundary leading to an important
reduction of ringing. The structure of H is Toeplitz-
plus-Hankel and a structured rank 2 matrix, which can
be also efficiently implemented if the PSF satisfies a
strong symmetry condition.
BCs are required to manage the non-local property of

the convolution operator which leads to the undeter-
mined problem (2), in the sense that we have fewer data
points than unknowns to explain it. In fact, the matrix
product Hx yields a vector y of length L̃ , where H is

L̃ × L in size and the value of L̃ is greater than the ori-
ginal size L

L̃ =
[
(L1 + 2B1) × (L2 + 2B2)

]
(4)
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for linear convolution (aperiodic model).
Then, we obtain a degraded image y of support

L̃ ⊂ �2 with pixels integrated from the BCs; however,
they are not actually present in a real observation. Fig-
ure 1 illustrates the boundary regions resulted after
shifting the PSF mask throughout the entire image, and
defines the region FOV as

FOV = [(L1 − 2B1) × (L2 − 2B2)] ⊂ L̃ (5)

A real observed image yreal is therefore a truncation of
the degradation model up to the size of the FOV sup-
port. In our algorithm, we define an image ytru which
represents this observed image yreal by means of a trun-
cation on the aperiodic model

ytru = trunc {Hax + n} (6)

where Ha is the blurring matrix for the aperiodic
model and the operator trunk{·} is responsible for
removing (zero-fixing) the borders appeared due to the
BCs, that is to say,

ytru(i, j) = trunc
{
Hax + n|(i,j)

}

=
{
yreal = Hax + n

∣∣
(i,j) ∀(i, j) ∈ FOV

0 otherwise

} (7)

Dealing with a truncated image like (7) in a restora-
tion problem is an evident source of ringing for the dis-
continuity at the boundaries. For that reason, this article
aims to provide an image restoration approach to avoid
those undesirable ringing artifacts when ytru is the
degraded image. Furthermore, it is also intended to
regenerate the truncated borders while adapting the

Figure 1 Real observed image which truncates the borders appeared due to the non-local property of the linear convolution.
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center of the image to the optimum linear solution. Fig-
ure 2 shows the restored image x̂ with a reconstructed
boundary region B defined by

B = L − FOV (8)

and whose area is calculated by B = (L1-B1) × 4B1, if
we consider square dimensions such that B1 = B2 and
L1 = L2.
Restoring an image x is usually an ill-posed or ill-con-

ditioned problem since either the blurring operator H
does not admit inverse or is nearly singular. Thus, a reg-
ularization method should be used in the inversion pro-
cess for controlling the high sensitivity to the noise.
Many examples have been presented in the literature by

means of the classical Tikhonov regularization

x̂ = arg min
x

{
1
2

∥∥y − Hx
∥∥2
2 +

λ

2
‖Dx‖22

}
(9)

where ‖z‖22 =
∑
i

z2i denotes the �2 norm, x̂ is the

restored image, and D is the regularization operator,
built on the basis of a high pass filter mask d of support

N = [N1 × N2] ⊂ �2 and using the same BCs described
previously. The first term in (9) is the �2 residual norm
appearing in the least-squares approach and ensures
fidelity to data. The second term is the so-called “regu-
larizer” or “side constrain“ and captures prior knowledge

Figure 2 Restored image which indicates the boundary reconstruction area B.
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about the expected behavior of x through an additional
�2 penalty term involving just the image. The hyper-
parameter (or regularization parameter) l is a critical
value which measures the trade-off between a good fit
and a regularized solution.
Alternatively, the TV regularization, proposed by

Rudin et al. [24], has become very popular in recent
research as result of preserving the edges of objects in
the restoration. A discrete version of the TV deblurring
problem is given by

x̂ = arg min
x

{
1
2

∥∥y − Hx
∥∥2
2 + λ‖∇x‖1

}
(10)

where ||z||1 denotes the �1 norm (i.e., the sum of the
absolute value of the elements) and ∇ stands for the dis-
crete gradient operator. The ∇ operator is defined by
the matrices Dξ and Dμ as

∇x =
∣∣∣Dξx

∣∣∣ + ∣∣Dμx
∣∣ (11)

built on the basis of the respective masks dξ and dμ of
support N = [N1 × N2] ⊂ �2 , which turn out the hori-
zontal and vertical first-order differences of the image.
Compared to the expression (9), the TV regularization
provides a �1 penalty term which can be thought as a
measure of signal variability. Once again, l is the critical
regularization parameter to control the weight we assign
to the regularizer relatively to the data misfit term.
Significant amount of work has been addressed to

solve any of the above regularizations and mainly the
TV deblurring in recent times. Nonetheless, most of the
approaches adopted any of the BCs described at the
beginning of this section to cope with the indetermina-
tion of the problem. We now intend to study an algo-
rithm able to restore the real truncated image (6)
removing the assumptions about the boundaries and
using the TV method as mathematical regularizer. Con-
sequently, the restoration problem (10) can be redefined
as

x̂ = arg min
x

⎧⎪⎨
⎪⎩

1
2

∥∥y − trunc {Hax}
∥∥2
2 +

λ

∥∥∥trunc {∣∣∣Dξ
ax
∣∣∣ + ∣∣Dμ

a x
∣∣}∥∥∥

1

⎫⎪⎬
⎪⎭ (12)

where the subscript a denotes the aperiodic formula-
tion of the matrix operator. Table 1 summarizes the
dimensions involved in the expression (12) taking into
account the definition of the operator trunc{·} in (7).
To go through this problem, we know that neural net-

works are particularly well suited as their ability to non-
linear mapping and self-adaptiveness. In fact, the
Hopfield network has been used in the literature to
solve the optimization problem (9) and recent studies

provide neural network solutions to the TV regulariza-
tion (10) as in [16,17]. In this article, we present a sim-
ple solution to solve the TV-based solution by means of
an MLP with back-propagation. Previous researches of
the authors [10] showed that the MLP also using the �2
term of (9).

3. Definition of the MLP approach
Let us build our neural net according to the MLP archi-
tecture illustrated in Figure 3. The input layer of the net
consists of L̃ neurons with inputs y1, y2, ..., yL̃ being,
respectively, the L̃ pixels of the truncated image ytru. At
any generic iteration m, the output layer is defined by L
neurons whose outputs x̂1(m), x̂2(m), ..., x̂L(m) are,

respectively, the L pixels of an approach x̂(m) to the
restored image. After mtotal iterations, the neural net
outcomes the actual restored image x̂ = x̂(mtotal) . On
the other hand, the hidden layer consists of two neu-
rons, this being enough to achieve good restoration
results while keeping low complexity of the network. In
any case, the following analysis will be generalized for
any number of hidden layers and any number of neu-
rons per layer.
At every iteration, the neural net works by simulating

both an approach to the degradation process (backward)
and to the restoration solution (forward), while refining
the results according to a optimization criteria. How-
ever, the input to the net is always the image ytru, as no
net training is required. Let us remark that we manage
“backward” and “forward” concepts in the opposite
sense to a standard image restoration problem due to
the specific architecture of the net.
During the back-propagation process, the network

must iteratively minimize a regularized error function
which we will set to the expression (12) in the following
sections. Since the trunc{·} operator is involved in those
expressions, the truncation of the boundaries is per-
formed at every iteration but also their reconstruction
as deduced by the L̃ size at the input (though it is really
defined in FOV since the rest of pixels are zeros) and
the L size at the output. What deserves attention is that
no a priori knowledge, assumption or estimation con-
cerning the unknown borders is needed to perform the
regeneration. In general, this could be explained by the
neural net behavior, which is able to learn about the
degradation model. A restored image is therefore
obtained in real conditions on the basis of a global
energy minimization strategy, with reconstructed bor-
ders while adapting the center of the image to the opti-
mum solution and thus making the ringing artifact
negligible.
Following a similar naming convention to that

adopted in Section 2, let us define any generic layer of
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the net composed by R inputs and S neurons (outputs)
as illustrated in Figure 4,
where p is the R × 1 input vector, W represents the

synaptic weight matrix, S × R in size, and z is the S × 1
output vector of the layer. The bias vector b is ignored
in our particular implementation. In order to have a dif-
ferentiable transfer function, a log-sigmoid expression is
chosen for �{·}

ϕ {v} = 1
1 + e−v

(13)

which is defined in the domain 0 ≤ �{·} ≤ 1.
Then, a layer in the MLP is characterized for the fol-

lowing equations

z = φ {v}
v = Wp + b = Wp

(14)

as b = 0 (vector of zeros). Furthermore, two layers are
connected each other verifying that

zi = pi+1 and Si = Ri+1 (15)

where i and i+1 are superscripts to denote two conse-
cutive layers of the net. Although this superscripting of
layers should be appended to all variables, for notational
simplicity we shall remove it from all formulae of the
manuscript when deduced by the context.

Table 1 Size of the variables involved in the definition of the MLP, both in the degradation and the restoration
processes

Degradation

size{x} size{h} size{Ha} size{Hax} size{ytru}

L × 1 M × 1 L̃ × L L̃ × 1 L̃ × 1

L = [L1 × L2] M =
[

(2B1 + 1) ×
(2B2 + 1)

]
L̃ =

[
(L1 + 2B1) × (L2 + 2B2)

]
Truncated image ytru is defined in the support FOV =

[
(L1 − 2B1) ×
(L2 − 2B2)

]
and the rest are zeros up to the size L̃

Restoration

size{dξ},
size{dμ}

size
{
Dξ

a

}
,

size
{
Dμ

a

} size
{
Dξ

ax
}
,

size
{
Dμ

a x
} size

{
trunc

{
Dξ

ax
}}

, size
{
trunc

{
Dμ

a x
}}

N × 1 U × L U × 1 U × 1

N = [N1×N2] U = [(L1+N1-1) × (L2+N2-1)] Truncated images Dξ
ax and Dμ

a x are defined in the support [(L1-N1+1) × (L2-N2+1)]
and the rest are zeros up to the size U

Figure 3 MLP scheme adopted for image restoration.
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4. Adjustment of the neural net
In this section, our purpose is to show the procedure of
adjusting the interconnection weights as the MLP iter-
ates. A variant of the well-known algorithm of back-pro-
pagation is applied by solving the optimization problem
in (12).
Let ΔWi(m+1) be the correction applied to the weight

matrix Wi of the layer i at the (m + 1)th iteration. Then,

�W i(m + 1) = −η
∂E(m)

∂W i(m)
(16)

where E(m) stands for the restoration error after m
iterations at the output of the net and the constant h
indicates the learning speed. Let us compute now the

so-called gradient matrix
∂E(m)

∂W i(m)
in the different layers

of the MLP.

4.1 Output layer
Defining the vectors e(m) and r(m) for the respective
error and regularization terms at the output layer after
m iterations

e(m) = y − trunc
{
Hax̂(m)

}
(17)

r(m) = trunc
{∣∣∣Dξ

ax̂(m)
∣∣∣ + ∣∣Dμ

a x̂(m)
∣∣} (18)

we can rewrite the restoration error from (12) as

E(m) =
1
2

∥∥e(m)
∥∥2
2 + λ

∥∥r(m)
∥∥
1

(19)

Using the matrix chain rule when having a composi-
tion on a vector [25], the gradient matrix leads to

∂E(m)
∂W(m)

=
∂E(m)
∂v(m)

· ∂v(m)
∂W(m)

= δ(m) · ∂v(m)
∂W(m)

(20)

where δ(m) =
∂E(m)
∂v(m)

is the so-called local gradient

vector which again can expanded by the chain rule for
vectors [26].

δ(m) =
∂z(m)
∂v(m)

· ∂E(m)
∂z(m)

(21)

Since z and v are elementwise related by the transfer

function �{·} and thus
∂zi(m)
∂vj(m)

= 0 for any i ≠ j, then

∂z(m)
∂v(m)

= diag
(
ϕ′ {v(m)

})
(22)

representing a diagonal matrix whose eigenvalues are
computed by the function

ϕ′ {v} = e−v

(1 + e−v)2
(23)

Figure 4 Model of a layer in the MLP.
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We recall that z(m) is actually x̂(m) in the output
layer (see Figure 3). If we wanted to compute the gradi-

ent matrix
∂E(m)

∂W i(m)
with formulation (19), we would

find out a challenging nonlinear optimization problem
that is caused by the nondifferentiability of the �1
norm. One approach to overcome this challenge comes
from the approximation
∥∥r(m)

∥∥
1 ≈ TV

{
x̂(m)

}
=

=
∑
k

√(
Dξ

ax̂(m)
)2
k
+
(
Dμ

a x̂(m)
)2
k + ε

(24)

where TV stands for the well-known TV regularizer
and ε > 0 is a constant to avoid singularities when mini-

mizing. Both products Dξ
ax̂(m) and Dμ

a x̂(m) are sub-
scripted by k meaning the kth element of the respective
U × 1 sized vector (see Table 1). It should be mentioned
that �1 norm and TV regularizations are quite often
used as the same in the literature. But, the distinction
between these two regularizers should be kept in mind
since, at least in deconvolution problems, TV leads to
significant better results as illustrated in [18].
Bioucas-Dias et al. [18,19] proposed an interesting for-

mulation of the TV problem by applying MM algo-
rithms. It leads to a quadratic bound function for TV
regularizer, which thus results in solving a linear system
of equations. Similarly, we adopt that quadratic majori-
zer in our particular implementation as

TV
{
x̂(m)

} ≤ QTV
{
x̂(m)

}
= x̂T(m)DT

aΩ(m)r(m) + K (25)

where K is an irrelevant constant, the involved
matrixes are defined as

Da =
[(

Dξ
a

)T (
Dμ

a

)T]T (26)

Ω(m) =
[

Λ(m) 0
0 Λ(m)

]

with Λ(m) = diag

⎛
⎜⎜⎝ 1

2

√(
Dξ

ax̂(m)
)2

+
(
Dμ

a x̂(m)
)2 + ε

⎞
⎟⎟⎠
(27)

and the regularization term r(m) of (18) is reformu-
lated

r(m) = trunc
{
Dax̂(m)

}
(28)

such that the operator trunk{·} is applied individually
to Dξ

a and Dμ
a (see Table 1) and merged later as indi-

cated in the definition of (26).

Finally, we can rewrite the restoration error E(m) as

E(m) =
1
2

∥∥e(m)
∥∥2
2 + λQTV

{
x̂(m)

}
(29)

Taking advantage of the quadratic properties of the
expression (25) and applying Matrix Calculus basis (see
a detailed computation in [10]), the differentiation
∂E(m)
∂z(m)

leads to

∂E(m)
∂z(m)

=
∂E(m)
∂ x̂(m)

= −HT
a e(m) + λDT

aΩ(m)r(m) (30)

According to Table 1, it can be deduced that
∂E(m)
∂z(m)

represents a vector of size L × 1. When combining with
the diagonal matrix of (22), we can write

δ(m) = ϕ′ {v(m)
} ◦ (−HT

ae(m) + λDT
aΩ(m)r(m)

)
(31)

where ○ denotes the Hadamard (elementwise)
product.
To complete the analysis of the gradient matrix, we

have to compute the term
∂v(m)
∂W(m)

. Based on the layer

definition in the MLP (14), we obtain

∂v(m)
∂W(m)

=
∂W(m)p(m)

∂W(m)
= pT(m) (32)

which in turns corresponds to the output of the pre-
vious connected hidden layer, that is to say,

∂v(m)
∂W(m)

=
(
zi−1(m)

)T
(33)

Putting together all the results into the incremental
weight matrix ΔW(m+1), we have

�W(m + 1) = −ηδ(m)
(
zi−1(m)

)T
=

= −η
[
ϕ′ {v(m)

} ◦ (−HT
a e(m) + λDT

aΩ(m)r(m)
)] (

zi−1(m)
)T (34)

Table 2 Summary of dimensions for the output layer

Output layer

size{p(m)} p(m) = zi-1(m)⇒ size{p(m)} = Si-1 × 1

size{W(m)} L × Si-1

size{v(m)} L × 1

size{z(m)} z(m) = x̂(m) ⇒ size
{
z(m)

}
= L × 1

size{e(m)} L̃ × 1
size{r(m)} size{Da} = 2U × L⇒size{r(m)} = 2U × 1

and size{Ω} = 2U × 2U

size{δ(m)} L × 1
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A summary of the dimensions of every variable can be
found in Table 2.

4.2 Any i hidden layer
If we set superscripting for the gradient matrix (20) over
any i hidden layer of the MLP, we obtain

∂E(m)

∂W i(m)
=

∂E(m)
∂vi(m)

· ∂vi(m)

∂W i(m)
= δi(m) · ∂vi(m)

∂W i(m)
(35)

and taking what was already demonstrated in (33),
then

∂E(m)

∂W i(m)
= δi(m)

(
zi−1(m)

)T
(36)

Let us expand the local gradient δi(m) by means of the
chain rule for vectors as follows

δi(m) =
∂E(m)
∂vi(m)

=
∂zi(m)
∂vi(m)

· ∂vi+1(m)
∂zi(m)

· ∂E(m)
∂vi+1(m)

(37)

where
∂zi(m)
∂vi(m)

is the same diagonal matrix (22), whose

eigenvalues are represented by �’{vi(m)}, and
∂E(m)

∂vi+1(m)
denotes the local gradient δi+1(m) of the following con-

nected layer. With respect to the term
∂vi+1(m)
∂zi(m)

, it can

be immediately derived from the MLP definition of (14)
that

∂vi+1(m)
∂zi(m)

=
∂W i+1(m)pi+1(m)

∂zi(m)
=

=
∂W i+1(m)zi(m)

∂zi(m)
=
(
W i+1(m)

)T (38)

Consequently, we come to

δi(m) = diag
(
ϕ′ {vi(m)

}) (
W i+1(m)

)T
δi+1(m) (39)

which can be simplified after verifying that (Wi+1(m))T

δi+1(m) stands for a Ri+1 × 1 = Si × 1 vector,

δi(m) = ϕ′ {vi(m)
} ◦
((
W i+1(m)

)T
δi+1(m)

)
(40)

We finally provide an equation to compute the incre-
mental weight matrix ΔWi(m+1) for any i hidden layer

�W i(m + 1) = −ηδi(m)
(
zi−1(m)

)T
=

= −η
[
ϕ′ {vi(m)

} ◦
((
Wi+1(m)

)T
δi+1(m)

)] (
zi−1(m)

)T (41)

which is mainly based on the local gradient δi+1(m) of
the following connected layer i+1.

4.3 Algorithm
As described in Section 3, our MLP neural net performs a
couple of forward and backward processes at every itera-
tion m. First, the whole set of connected layers propagate
the degraded image y from the input to the output layers
by means of Equation 14. Afterwards, the new synaptic
weigh matrixes Wi(m+1) are recalculated from right to left
according to the expressions of ΔWi(m+1) for every layer.
Algorithm: MLP with TV regularizer
Initialization: p1 = y ∀m and Wi(0) = 0 1 ≤ i ≤ J
1: m: = 0
2: while StopRule not satisfied do
3: for i: = 1 to J do /* Forward */
4: vi: = Wi pi

5: zi: = �{vi}
6: end for /* x̂(m) := zJ */
7: for i: = J to 1 do /* Backward */
8: if i = J then /* Output layer */
9: Compute δJ(m) from (31)
10: Compute E(m) from (29)
11: else
12: δi(m): = �’{vi(m)}○((Wi+1(m))Tδi+1(m))
13 end if
14: ΔWi(m+1): = -hδi(m)(zi-1(m))T

15: Wi(m+1): = Wi(m)+ΔWi(m+1)
16: end for
17: m: = m+1
18: end while /* x̂ := x̂(mtotal) */
The previous pseudo-code summarizes our proposed

algorithm in an MLP of J layers. StopRule denotes a
condition such that either the number of iterations is
more than a maximum; or the error E(m) converges
and, thus, the error change ΔE(m) is less than a thresh-
old; or, even, this error E(m) starts to increase. If one of
these conditions comes true, the algorithm concludes
and the final outgoing image is the restored image
x̂ := x̂(mtotal) .

4.4. Reconstruction of boundaries
If we particularize the algorithm for two layers J = 2, we
come to an MLP scheme such as illustrated in Figure 5.
It is worthy to emphasize how the boundaries are recon-
structed at any iteration of the net, from a real image of
support FOV (5) to the restored image of size L = [L1 ×
L2] (recall that the remainder of pixels in ytru was zero-
fixed). In addition, we shall observe in Section 5 how
the boundary artifacts are removed from the restored
image based on the energy minimization E(m), but they
are critical however for other methods of the literature.

4.5 Adjustment of l and h
In the image restoration field, it is well known how
important the parameter l becomes. In fact, too small
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values of l yield overly oscillatory estimates owing to
either noise or discontinuities; too large values of l yield
over smoothed estimates.
For that reason, the literature has given significant

attention to it with popular approaches such as the
unbiased predictive risk estimator (UPRE), the general-
ized cross validation (GCV), or the L-curve method; see
[27] for an overview and references. Most of them were
particularized for a Tikhonov regularizer, but lately
researches aim to provide solutions for TV regulariza-
tion. Specifically, the Bayesian framework leads to suc-
cessful approaches in this field.
In our previous article [10], we adjusted l with solu-

tions coming from the Bayesian state-of-art. However,
we still need to investigate a particular algorithm for the
MLP since those Bayesian approaches work only for cir-
culant degradation models, but not for the truncated
image of this article. So we shall compute yet a hand-
tuned l which optimizes the results.
Regarding the learning speed, it was already demon-

strated that h shows lower sensitivity compared to l. In
fact, its main purpose is to speed up or slow down the
convergence of the algorithm. Then, for the sake of sim-
plicity, we shall assume h = 2 for the images of 256 ×
256 in size.

5. Experimental results
Our previous article [10] showed a wide set of results
which mainly demonstrated the good performance of
the MLP in terms of image restoration. We shall focus
now on its ability to reconstruct the boundaries using
standard 256 × 256 sized images such as Lena or Bar-
bara and common PSFs, some of which are presented
here (diagonal motion, uniform, or Gaussian blur).
Let us see our problem formulation by means of an

example. Figure 6 depicts the original Barbara image
blurred by a motion blur of 15 pixels and 45° of inclina-
tion, which turns out a PSF mask of 11 × 11 in size (B1

= B2 = 5). Specifically, we have represented the trun-
cated image ytru (c) which reflects the zeros at the

boundaries and the size of L̃ = 266 × 266 . A real
model would consist of the FOV = 256 × 256 region
of this image which we have named as yreal in the arti-
cle. Most of the recent restoration algorithms deal
with the real image yreal making assumptions about the
boundaries, however the restored image is only 256 ×
256 in size. Consequently, the boundaries marked with
white broken line in (b) are never restored and then
sensible information is lost. In contrast, our MLP uses
the ytru version of the real image and outcomes a 256
× 256 sized image x̂, thus trying to reconstruct the
boundary area B = 251 × 20.
In the light of the expression (18), we define the gradi-

ent filters dξ and dμ as the respective horizontal and
vertical Sobel masks [1]

1
4

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ and

1
4

⎡
⎣−1 0 1

−2 0 2
−1 0 1

⎤
⎦

consequently N = 3 × 3.
As observed in Figure 5, the neural net under analysis

consists of two layers J = 2, where the bias vectors are
ignored and the same log-sigmoid function is applied to
both layers. Besides, looking for a tradeoff between good
quality results and computational complexity, it is
assumed that only two neurons take part in the hidden
layer, i.e., S1 = 2.
In terms of parameters, we previously commented that

the learning speed of the net is set to h = 2 and the reg-
ularization parameter l relies on a hand tuning basis.
Regarding the interconnection weights, they do not
require any network training, so the weigh matrices are
all initialized to zero. Finally, we set the stopping criteria
in the Algorithm as a maximum number of 500 itera-
tions (though never reached) or when the relative differ-
ence of the restoration error E(m) falls below a
threshold of 10-3 in a temporal window of 10 iterations.
The Gaussian noise level is established according to a

BSNR (signal-to-noise ratio of the blurred image) of 20
dB, so that the regularization term of (19) becomes

Figure 5 MLP algorithm specifically used in the experiments for J = 2.
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relevant in the restoration result, i.e., high enough values
of the parameter l.
In order to measure the performance of our algorithm,

we compute the standard deviation se of the error
image e = x̂ − x , since it does not depend on the blurred
image y as occurred in the ISNR [2]. Moreover, our pur-
pose is to measure the boundary restoration process so
we particularize the standard deviation to the pixels of
the boundary region B. Then,

Bσe =

√√√√√ 1
B − 1

B∑
k=1

⎛
⎝ek − 1

B

B∑
j=1

ej

⎞
⎠

2

(42)

where Bse stands for the boundary standard deviation.
Alternatively, we have also used the boundary peak sig-
nal-to-noise ration (BPSNR) as defined in [8]:

BPSNR = 10 log

⎛
⎜⎜⎜⎝

2552

1
B

B∑
k=1

e2k

⎞
⎟⎟⎟⎠
[
dB
]

(43)

considering an 8-bit gray-scaled image.
Our proposed MLP scheme was fully implemented in

Matlab, being very well suited as all formulae of this
article have been presented on a matrix basis. The com-
plexity of the net can be analyzed in the two stages
which describe the algorithm: forward pass (FP) and
backward pass (BP). The computation of the gradient
δ(m) in the output layer makes the BP more time-con-
suming, as shown in (31). In those equations, the pro-
duct trunc

{
Hax̂(m)

}
is the most critical term as it

requires numerical computations of O(L2), although the
operator trunk{·} is responsible for discarding (zero-fix-
ing) L1 × 8B1 operations (assuming B1 = B2 and L1 =
L2). However, this high computational cost is signifi-
cantly reduced for the sparsity of Ha, which obtains a
performance only related to the number of non-zero
elements. Regarding the FP, the two neurons of the hid-
den layer lead to faster matrix operations of O(2L).
In regard to convergence, our MLP is based on the

simple steepest descent algorithm as defined in (16).
Consequently, the time of convergence is usually slow
and controlled by the parameter h. We are aware that
other variations on backpropagation may be applied to
our MLP such as the conjugate gradient algorithm,
which performs significantly better [28]. Finally, we
mention that the experiments were run on a 2.4-GHz
Intel Core2Duo with 2 GB of RAM. For a detailed ana-
lysis of timing, let us refer to the previous article [10].
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(c)  

Figure 6 Barbara image 256 × 256 in size: (a) degraded by
diagonal motion blur of 15 pixels and truncated to the field of view
246 × 246 (c). A broken while line in (b) identifies the 251 × 20
sized boundary region which requires be reconstructing in the MLP.
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5.1. Experiment 1
In a first experiment, we aim to obtain numerical results
of the boundary reconstruction process for different
sizes of degradation. Let us take the original images
Lena and Barbara degraded by diagonal motion and uni-
form blurs. Regarding the motion blur, it is set to 45° of
inclination and the length of shifted pixels is the para-
meter to vary between 5 and 15. We have used the
approximation of Matlab to construct the filter of
motion http://www.mathworks.com/help/toolbox/
images/ref/fspecial.html, which leads to masks between
5 × 5 and 11 × 11 in size. Analogously, the uniform
blur is defined with odd sizes between 5 × 5 and 11 ×
11. Let us recall that a Gaussian noise is added to the
blurred image such that BSNR = 20 dB.
The results of the MLP are shown in Table 3. We can

observe the expected reduction of quality (both se and
Bse are increased, while the BPSNR is lowered) when
the size of degradation is bigger. However, it is impor-
tant to note that the region of boundary reconstruction
is expanded accordingly as we will see in the following
section.
Comparing the blurs in both images, we want to high-

light the better results of boundary reconstruction for
the uniform blur despite of the worse values of se.
Therefore, it is presumable that the MLP carries out
somehow differently the image restoration of the center

of the image from the boundary restoration. In fact, the
restoration of the center is a linear process defined by
the regularization expression (29), but the boundary
reconstruction comes from a nonlinear truncation
which requires different performance.
Finally, let us comment the improvement of the

regeneration of borders in the motion blur for a specific
size when the length of pixels increases. Although we
know it is a consequence of how the motion blur is
modeled, we can deduce the dependency of the MLP to
the structure of the PSF in order to reconstruct the
boundaries.

5.2. Experiment 2
To visually assess the performance of the MLP on the
boundary reconstruction process, we have devoted an
experiment to show some restored images. In particular,
we have selected some of the results indicated in Table
3 with different sizes of blurring. Figure 7 depicts the
Lena restored image for a diagonal motion blur of 10
pixels. The restored boundary area is 252 × 16 in size
marked by a white broken line and reveals how the bor-
ders are successfully regenerated without neither any
image information nor prior assumption on the BCs.
Still using a bigger motion blur of 13 pixels, the

boundary reconstruction is even more manifest as
shown in Figure 8. In spite of the fact that blurring is
more critical and then the subjective quality of Barbara
image is lower, the 251 × 20 boundary pixels are regen-
erated accurately. Let us look at the table cloth or her
hair to find out the good performance of the MLP.
Finally, we use a different type of blurring in Lena

image of Figure 9. In this case, a uniform blur of size 7
× 7 is applied to the original image and the MLP leads
to a successfully restored image which recovers the 253
× 12 truncated pixels of the original image.
In each of the figures, we have included a gray-scaled

image which represents the evolution of the restoration
error in square blocks. Specifically, it corresponds to the
parameter se where the brighter regions are the lower
values of se, that is to say, the pixels with a better qual-
ity of restoration. We want to highlight the smooth
transition of restoration error in the boundary area due
to the regeneration of borders. On the other hand, the
center of the image comprises the minor values of error
restoration as expected by the global energy minimiza-
tion of the MLP.

5.3. Experiment 3
This experiment aims to compare the performance of
the MLP with other restoration algorithms which needs
BCs to deal with a realistic capture model: zero, peri-
odic, reflective, and anti-reflective as commented in Sec-
tion 2. We have used the well-known RestoreTools

Table 3 Numerical values of se and boundary parameters
Bse and BPSNR for different sizes of degradation

Length Size Lena Barbara

se Bse BPSNR
(dB)

se Bse BPSNR
(dB)

Diagonal motion blur

5 5 × 5 8.70 24.59 20.29 11.49 27.17 19.43

6 5 × 5 8.70 20.58 21.84 11.53 22.76 20.97

7 7 × 7 10.35 27.23 19.42 12.92 30.36 18.44

8 7 × 7 10.25 24.05 20.50 13.18 27.18 19.39

9 7 × 7 10.26 20.96 21.70 13.32 24.30 20.36

10 9 × 9 11.62 26.04 19.81 14.64 29.81 18.57

11 9 × 9 11.50 23.36 20.76 14.80 27.17 19.36

12 9 × 9 11.51 20.85 21.74 14.89 24.90 20.13

13 11 ×
11

12.78 25.85 19.87 16.11 29.76 18.58

14 11 ×
11

12.61 23.15 20.83 16.15 27.33 19.34

15 11 ×
11

12.63 21.10 21.63 16.19 25.71 19.89

Uniform blur

5 × 5 8.90 17.29 23.36 12.20 19.59 22.26

7 × 7 11.32 19.64 22.27 14.13 22.08 21.16

9 × 9 13.20 20.64 21.83 15.80 23.17 20.74

11 × 11 14.69 22.27 21.17 17.25 25.22 20.06

The results are divided into diagonal motion blur and uniform blur, as well as
Lena and Barbara images.
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Figure 7 Restored image from the Lena degraded image by
diagonal motion blur of 10 pixels and BSNR = 20 dB. (a): se =
11.62 A broken white line shows the reconstruction of boundaries
252 × 16 in (b). The image (c) depicts the evolution of the
restoration error.
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(c)  

Figure 8 Restored image from the Barbara degraded image by
diagonal motion blur of 13 pixels and BSNR = 20 dB. (a): se =
16.11 A broken white line shows the reconstruction of boundaries
251 × 20 in (b). The image (c) depicts the evolution of the
restoration error.
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http://www.mathcs.emory.edu/~nagy/RestoreTools
library patched with the anti-reflective modification
http://scienze-como.uninsubria.it/mdonatelli/, which
implements the matrix-vector operations for every
boundary condition. In particular, we have selected a
modified version of the Tikhonov regularization (9)
named as hybrid bidiagonalization regularization (HyBR)
in the library.
Let us consider a Barbara image degraded by a 7 × 7

Gaussian blur and the same additive white noise of the
previous experiments with BSNR = 20 dB. Figure 10
shows the real acquisition of such a degraded image
where we have removed the boundary pixels and the
image is FOV = 250 × 250 in size (FOV). From (b) to
(e) we have represented the restored images for each
boundary condition; all of them are 250 × 250 sized
images which miss the information of the boundaries up
to 256 × 256. Furthermore, a remarkable boundary ring-
ing can be appreciated for the zero and the periodic
BCs as result of the discontinuity of the image in the
boundaries. As demonstrated in [6,7], the reflexive (d)
and the anti-reflexive (e) conditions perform consider-
ably better removing that boundary effect.
The restored image of our MLP algorithm is shown in

Figure 10f and makes obvious the good performance of
the neural net. First, the boundary ringing is negligible
without prior assumption on the boundary condition.
Moreover, the visual aspect is better compared to the
others which supports the good properties of the TV
regularizer. To numerically contrast the results, the
parameter se of the MLP is measured only in the FOV
region. It leads to se = 12.47 which is notably lower to
the values of the HyBR algorithm (e.g., se = 12.99 for
the reflexive BCs). Finally, the MLP is able to recon-
struct the 253 × 12 sized boundary region and outcomes
the original image size of 256 × 256.

5.4. Experiment 4
Finally, let us delve into other algorithms of the litera-
ture which deal with the boundary problem in a differ-
ent sense from the typical BCs. However, it is not only
expected that those methods remove the boundary ring-
ing but also amount to reconstruct the area B bordering
the FOV. In recent research, Bishop [29] and Calvetti
[30] propose similar methods based on the Bayesian
model of the deconvolution problem and treat the trun-
cation effect as modeling error. They rewrite the obser-
vation model (2) to take into account the original image
outside the FOV

yreal = H+x+ + n, x+ =
[
x1
x2

]
, H+ =

[
H1 H2

]
(44)
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(c)  

Figure 9 Restored image from the Lena degraded image by 7
× 7 uniform blur and BSNR = 20 dB. (a): se = 11.32 A broken
white line shows the reconstruction of boundaries 253 × 12 in (b).
The image (c) depicts the evolution of the restoration error.
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(e) 

Figure 10 Restoration results from the Barbara degraded image by Gaussian blur 7 × 7 and BSNR = 20 dB. (a). For the HyBR method,
the restored images with BCs (b) zero: se = 15.25, (c) periodic: se = 13.81, (d) reflexive: se = 12.99 and (e) anti-reflexive: se = 12.98. The MLP
restored image (f) performs considerably better with se = 12.47 in the original image size.
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where x+ is the extended image of length L̃ and x1 is
the restricted image defined in the FOV of (5). It can be
deduced that H1 and H2 are matrixes of size FOV ×

FOV and FOV ×
(
L̃ − L

)
, respectively, and a x2 is the

image vector in the boundary frame of length L̃ − L .
The extrapolation approach of these methods establishes
an adequate prior p(x+) which models the entire image
and the restored distribution p(x+|yreal) is estimated
according to the Bayesian framework. We particularly
select the region L of the restored image x̂+ .
For this section we will extract results from the

Extrapolation algorithm of Bishop, whom we would
like to thank for his close collaboration, using a TV
prior for p(x+). It is demonstrated in [29] that the fig-
ures obtained for Calvetti’s algorithm would be equiva-
lent. On the other hand, we will upgrade our proposed
MLP to leverage somehow the concept of extended
observation. First, it means that the input of our neural
net is actually the real observed image yreal, not the
truncated model ytru, and then the input layer consists
of FOV neurons. The structure of the MLP keeps
unaltered in terms of hidden and output layers, yield-
ing a restored image x̂ of size L. To finish, we remove
the operator trunk{·} from all formulae of Section 4
assuming an aperiodic model (zero-padded) of the
extended image x+. We do not lose generality as the
input is the real image yreal and the MLP has to recon-
struct likewise the boundary region B.
Let us take the blurs of the previous experiments: uni-

form, Gaussian, and motion masks of 7 × 7. Tests are
computed with the Barbara image and a noise ratio of
BSNR = 20 dB. To maximize the results of the MLP,
wechoose the parameters l and h on a hand-tuning
basis. Again the performance of the algorithms are mea-
sured with the restoration errors in the whole image se

and in the boundary region Bse. In this experiment, we
also include the equivalent error in the FOV, which is
denoted as Fse.

Looking into Table 4, we find out that the values of
se are quite similar for both methods, being the MLP
which outperforms in the Gaussian and motion blurs.
But, what really deserves attention are the results in
the boundary region B. The MLP is considerably better
reconstructing the missed boundaries as indicated by
the lower values of Bse. Then, it proves the outstand-
ing properties of the neural net in terms of learning
about the unknown image. On the contrary, the extra-
polation method is able to restore the FOV slightly
better. We can conclude that our MLP is a successful
approach of inpainting the boundary frame, in addition
to recover the FOV without any boundary artifact.
Let us visually assess the performance of both meth-

ods for the experiments of Table 4. In particular, we
have used two 250 × 250 sized images degraded by
uniform and Gaussian blurs of 7 × 7 as depicted in
Figure 11a, d, respectively. The restored images
obtained by the Extrapolation and the MLP algorithms
are placed in a row of Figure 11. It can be deduced
that the output images are all 256 × 256 in size and
thus reconstructing the boundary area B = 253 × 12.
Despite the fact that the value of se is lower for the
Extrapolation method in the uniform blur, we can
observe that the subjective quality of the MLP output
is better. Regarding the Gaussian blur, the restored
images look similar although the value of se is in favor
of the neural net. As for the boundary let us compute
some other experiments to actually notice the recon-
structing process.
We have selected a Gaussian blur with sizes increasing

from 7 × 7 to 17 × 17. In Table 5, we reflect the data cor-
responding to boundary error Bse for every single mask.
It gives clear evidence of the good performance of the
MLP when dealing with the boundary problem. That is
also remarkable when we have a look to the restored
images of Figure 12. We have highlighted the upper right
corner of the Barbara image in the case of Gaussian
masks of 7 × 7 and 17 × 17. We can observe how the
MLP achieves to reconstruct the boundary frame suc-
cessfully, whereas the extrapolation algorithm obtains a
rough estimation of the region as the mask is bigger.

6. Concluding remarks
In this article, we have presented the implementation of
a method which allows restoring the boundary area of a
real truncated image without prior conditions. The idea
is to apply a TV-based regularization function in an
iterative minimization of an MLP neural net. An inher-
ent backpropagation algorithm has been developed in
order to regenerate the lost borders, while adapting the
center of the image to the optimum linear solution (the
ringing artifact thus being negligible).

Table 4 Numerical values of se, Bse, and Fse comparing
the extrapolation algorithm of Bishop and our MLP with
different 7 × 7 sized blurs

Blur se Bse Fse
Extrapolation

Uniform 13.23 17.43 12.99

Gaussian 12.49 17.79 12.18

Motion 11.37 17.63 10.97

MLP

Uniform 13.53 15.05 13.45

Gaussian 12.33 14.13 12.24

Motion 11.33 12.58 11.27
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Figure 11 Restoration results from the Barbara degraded image by Uniform (a) and Gaussian (d) blurs 7 × 7 and BSNR = 20 dB. For
the Extrapolation method, the output images reach restoration errors of (b) se = 13.23 and (e) se = 12.49, respectively, while in the MLP we
compute values of (c) se = 13.53 and (f) se = 12.33.

Table 5 Numerical values of Bse comparing the Extrapolation algorithm of Bishop and our MLP with different sizes of
the Gaussian blur

Bse

Gaussian Extrapolation MLP

7 × 7 17.79 14.13

9 × 9 18.28 14.23

11 × 11 17.93 14.18

13 × 13 17.67 13.86

15 × 15 17.40 13.71

17 × 17 17.12 13.51
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The proposed restoration scheme has been validated
by means of several tests. As a result, we can conclude
the ability of our neural net to reconstruct the bound-
aries of the image with different BPSNR values depend-
ing on the blurring type.
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