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Abstract

Color quantization is an important operation with many applications in graphics and image processing. Most
quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the
effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings
pertaining to the fuzzy c-means algorithm. Interestingly, none of these studies directly compared the two types of
c-means algorithms. In this study, we implement fast and exact variants of the hard and fuzzy c-means algorithms
with several initialization schemes and then compare the resulting quantizers on a diverse set of images. The
results demonstrate that fuzzy c-means is significantly slower than hard c-means, and that with respect to output
quality, the former algorithm is neither objectively nor subjectively superior to the latter.

1 Introduction
True-color images typically contain thousands of colors,
which makes their display, storage, transmission, and
processing problematic. For this reason, color quantiza-
tion (reduction) is commonly used as a preprocessing
step for various graphics and image processing tasks. In
the past, color quantization was a necessity due to the
limitations of the display hardware, which could not
handle over 16 million possible colors in 24-bit images.
Although 24-bit display hardware has become more
common, color quantization still maintains its practical
value [1]. Modern applications of color quantization in
graphics and image processing include: (i) compression
[2], (ii) segmentation [3], (iii) text localization/detection
[4], (iv) color-texture analysis [5], (v) watermarking [6],
(vi) non-photorealistic rendering [7], (vii) and content-
based retrieval [8].
The process of color quantization is mainly comprised

of two phases: palette design (the selection of a small
set of colors that represents the original image colors)
and pixel mapping (the assignment of each input pixel
to one of the palette colors). The primary objective is to
reduce the number of unique colors, N’, in an image to
C, C ≪ N’, with minimal distortion. In most applica-
tions, 24-bit pixels in the original image are reduced to

8 bits or fewer. Since natural images often contain a
large number of colors, faithful representation of these
images with a limited size palette is a difficult problem.
Color quantization methods can be broadly classified

into two categories [9]: image-independent methods that
determine a universal (fixed) palette without regard to
any specific image [10] and image-dependent methods
that determine a custom (adaptive) palette based on the
color distribution of the images. Despite being very fast,
image-independent methods usually give poor results
since they do not take into account the image contents.
Therefore, most of the studies in the literature consider
only image-dependent methods, which strive to achieve
a better balance between computational efficiency and
visual quality of the quantization output.
Numerous image-dependent color quantization meth-

ods have been developed in the past three decades.
These can be categorized into two families: preclustering
methods and postclustering methods [1]. Preclustering
methods are mostly based on the statistical analysis of
the color distribution of the images. Divisive precluster-
ing methods start with a single cluster that contains all
N’ image colors. This initial cluster is recursively subdi-
vided until C clusters are obtained. Well-known divisive
methods include median-cut [11], octree [12], variance-
based method [13], binary splitting method [14], and
greedy orthogonal bipartitioning method [15]. On the
other hand, agglomerative preclustering methods
[16-18] start with N’ singleton clusters each of which
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contains one image color. These clusters are repeatedly
merged until C clusters remain. In contrast to preclus-
tering methods that compute the palette only once,
postclustering methods first determine an initial palette
and then improve it iteratively. Essentially, any data
clustering method can be used for this purpose. Since
these methods involve iterative or stochastic optimiza-
tion, they can obtain higher quality results when com-
pared to preclustering methods at the expense of
increased computational time. Clustering algorithms
adapted to color quantization include hard c-means
[19-22], competitive learning [23-27], fuzzy c-means
[28-32], and self-organizing maps [33-35].
In this paper, we compare the performance of hard

and fuzzy c-means algorithms within the context of
color quantization. We implement several efficient var-
iants of both algorithms, each one with a different initia-
lization scheme, and then compare the resulting
quantizers on a diverse set of images. The rest of the
paper is organized as follows. Section 2 reviews the
notions of hard and fuzzy partitions and gives an over-
view of the hard and fuzzy c-means algorithms. Section
3 describes the experimental setup and compares the
hard and fuzzy c-means variants on the test images.
Finally, Sect. 4 gives the conclusions.

2 Color quantization using c-means clustering
algorithms
2.1 Hard versus fuzzy partitions
Given a data set X = {x1, x2, . . . , xN} Î ℝD, a real
matrix U = [uik]C×N represents a hard C-partition of X
if and only if its elements satisfy three conditions [36]:

uik ∈ {0, 1} 1 ≤ i ≤ C, 1 ≤ k ≤ N
C∑
i=1

uik = 1 1 ≤ k ≤ N

0 <

N∑
k=1

uik < N 1 ≤ i ≤ C.

(1)

Row i of U, say Ui = (ui1, ui2, . . . , uiN), exhibits the
characteristic function of the ith partition (cluster) of X:
uik is 1 if xk is in the ith partition and 0 otherwise;∑C

i=1 uik = 1 ∀k means that each xk is in exactly one

of the C partitions; 0 <
∑N

k=1 uik < N ∀i means that

no partition is empty and no partition is all of X, i.e. 2
≤ c ≤ N. For obvious reasons, U is often called a parti-
tion (membership) matrix.
The concept of hard C-partition can be generalized by

relaxing the first condition in Equation 1 as uik Î 0[1]
in which case the partition matrix U is said to represent
a fuzzy C-partition of X [37]. In a fuzzy partition matrix

U, the total membership of each xk is still 1, but since 0
≤ uik ≤ 1 ∀i, k, it is possible for each xk to have an arbi-
trary distribution of membership among the C fuzzy
partitions {Ui}.

2.2 Hard c-means (HCM) clustering algorithm
HCM is inarguably one of the most widely used meth-
ods for data clustering [38]. It attempts to generate opti-
mal hard C-partitions of X by minimizing the following
objective functional:

J(U,V) =
N∑
k=1

C∑
i=1

uik(dik)
2 (2)

where U is a hard partition matrix as defined in §2.1, V
= {v1, v2, . . . , vC} Î ℝD is a set of C cluster representa-
tives (centers), e.g. vi is the center of hard cluster Ui ∀i,
and dik denotes the Euclidean (L2) distance between
input vector xk and cluster center vi, i.e. dik = ||xk - vi||2.
Since uik = 1 ⇔ xk Î Ui, and is zero otherwise, Equa-

tion 2 can also be written as:

J(U,V) =
C∑
i=1

∑
xk∈Ui

(dik)
2.

This problem is known to be NP-hard even for C = 2
[39] or D = 2 [40], but a heuristic method developed by
Lloyd [41] offers a simple solution. Lloyd’s algorithm
starts with C arbitrary centers, typically chosen uni-
formly at random from the data points. Each point is
then assigned to the nearest center, and each center is
recalculated as the mean of all points assigned to it.
These two steps are repeated until a predefined termina-
tion criterion is met.
The complexity of HCM is O(NC) per iteration for a

fixed D value. In color quantization applications, D
often equals three since the clustering procedure is
usually performed in a three-dimensional color space
such as RGB or CIEL * a * b * [42].
From a clustering perspective, HCM has the following

advantages:
◊ It is conceptually simple, versatile, and easy to

implement.
◊ It has a time complexity that is linear in N and C.
◊ It is guaranteed to terminate [43] with a quadratic

convergence rate [44].
Due to its gradient descent nature, HCM often con-

verges to a local minimum of its objective functional
[43] and its output is highly sensitive to the selection of
the initial cluster centers. Adverse effects of improper
initialization include empty clusters, slower convergence,
and a higher chance of getting stuck in bad local
minima. From a color quantization perspective, HCM
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has two additional drawbacks. First, despite its linear
time complexity, the iterative nature of the algorithm
renders the palette generation phase computationally
expensive. Second, the pixel mapping phase is ineffi-
cient, since for each input pixel a full search of the pal-
ette is required to determine the nearest color. In
contrast, preclustering methods often manipulate and
store the palette in a special data structure (binary trees
are commonly used), which allows for fast nearest
neighbor search during the mapping phase. Note that
these drawbacks are shared by the majority of postclus-
tering methods, including the fuzzy c-means algorithm.
We have recently proposed a fast and exact HCM var-

iant called Weighted Sort-Means (WSM) that utilizes
data reduction and accelerated nearest neighbor search
[21,22]. When initialized with a suitable preclustering
method, WSM has been shown to outperform a large
number of classic and state-of-the-art quantization
methods including median-cut [11], octree [12], var-
iance-based method [13], binary splitting method [14],
greedy orthogonal bipartitioning method [15], neu-
quant [33], split and merge method [18], adaptive distri-
buting units method [23,26], finite-state HCM method
[19], and stable-flags HCM method [20].
In this study, WSM is used in place of HCM since

both algorithms give numerically identical results. How-
ever, in the remainder of this paper, WSM will be
referred to as HCM for reasons of uniformity.

2.3 Fuzzy c-means (FCM) clustering algorithm
FCM is a generalization of HCM in which points can
belong to more than one cluster [36]. It attempts to
generate optimal fuzzy C-partitions of X by minimizing
the following objective functional:

Jm(U,V) =
N∑
k=1

C∑
i=1

(uik)
m(dik)

2 (3)

where the parameter 1 ≤ m < ∞ controls the degree of
membership sharing between fuzzy clusters in X.
As in the case of HCM, FCM is based on an alternat-

ing minimization procedure [45]. At each iteration, the
fuzzy partition matrix U is updated by

uik =

⎡
⎣ C∑

j=1

(
dik
djk

)2/(m−1)
⎤
⎦

−1

. (4)

which is followed by the update of the prototype
matrix V by

vi =

(
N∑
k=1

(uik)
mxk

)
/

(
N∑
k=1

(uik)
m

)
. (5)

As m
+→ 1 , FCM converges to an HCM solution.

Conversely, as m ® ∞ it can be shown that uik ® 1/C
∀i, k, so vi → X̄ , the centroid of X. In general, the larger
m is, the fuzzier are the membership assignments; and
conversely, as m

+→ 1 , FCM solutions become hard. In
color quantization applications, in order to map each
input color to the nearest (most similar) palette color,
the membership values should be defuzzified upon con-
vergence as follows:

ûik =

⎧⎨
⎩
1 uik = max

1≤j≤C
ujk

0 otherwise
.

A näive implementation of FCM has a complexity of
O(NC2) per iteration, which is quadratic in the number
of clusters. In this study, a linear complexity formula-
tion, i.e. O(NC) , described in [46] is used. In order to
take advantage of the peculiarities of color image data
(presence of duplicate samples, limited range, and spar-
sity), the same data reduction strategy used in WSM is
incorporated into FCM.

3 Experimental results and discussion
3.1 Image set and performance criteria
Six publicly available, true-color images were used in the
experiments. Five of these were natural images from the
Kodak Lossless True Color Image Suite [47]: Hats (768 ×
512; 34,871 unique colors), Motocross (768 × 512;
63,558 unique colors), Flowers and Sill (768 × 512;
37,552 unique colors), Cover Girl (768 × 512; 44,576
unique colors), and Parrots (768 × 512; 72,079 unique
colors). The sixth image was synthetic, Poolballs (510 ×
383; 13,604 unique colors) [48]. The images are shown
in Figure 1.
The effectiveness of a quantization method was quan-

tified by the commonly used mean absolute error
(MAE) and mean squared error (MSE) measures:

MAE
(
I, Î

)
=

1
HW

H∑
h=1

W∑
w=1

∥∥∥I(h,w) − Î(h,w)
∥∥∥
1

MSE
(
I, Î

)
=

1
HW

H∑
h=1

W∑
w=1

∥∥∥I(h,w) − Î(h,w)
∥∥∥2
2

(6)

where I and Î denote, respectively, the H × W original
and quantized images in the RGB color space. MAE and
MSE represent the average color distortion with respect
to the L1 (City-block) and L2

2 (squared Euclidean)
norms, respectively. Note that most of the other popular
evaluation measures in the color quantization literature
such as peak signal-to-noise ratio (PSNR), normalized
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MSE, root MSE, and average color distortion [24,34] are
variants of MAE or MSE.
The efficiency of a quantization method was measured

by CPU time in milliseconds, which includes the time
required for both the palette generation and the pixel
mapping phases. The fast pixel mapping algorithm
described in [49] was used in the experiments. All of
the programs were implemented in the C language,
compiled with the gcc v4.4.3 compiler, and executed on
an Intel Xeon E5520 2.26 GHz machine. The time fig-
ures were averaged over 20 runs.

3.2 Comparison of HCM and FCM
The following well-known preclustering methods were
used in the experiments:

• Median-cut (MC) [11]: This method starts by
building a 32 × 32 × 32 color histogram that con-
tains the original pixel values reduced to 5 bits per
channel by uniform quantization (bit-cutting). This
histogram volume is then recursively split into smal-
ler boxes until C boxes are obtained. At each step,
the box that contains the largest number of pixels is
split along the longest axis at the median point, so
that the resulting sub-boxes each contain approxi-
mately the same number of pixels. The centroids of
the final C boxes are taken as the color palette.
• Octree (OCT) [12]: This two-phase method first
builds an octree (a tree data structure in which each
internal node has up to eight children) that

represents the color distribution of the input image
and then, starting from the bottom of the tree,
prunes the tree by merging its nodes until C colors
are obtained. In the experiments, the tree depth was
limited to 6.
• Variance-based method (WAN) [13]: This
method is similar to MC with the exception that at
each step the box with the largest weighted variance
(squared error) is split along the major (principal)
axis at the point that minimizes the marginal
squared error.
• Greedy orthogonal bipartitioning method (WU)
[15]: This method is similar to WAN with the
exception that at each step the box with the largest
weighted variance is split along the axis that mini-
mizes the sum of the variances on both sides.

Four variants of HCM/FCM, each one initialized with
a different preclustering method, were tested. Each var-
iant was executed until it converged. Convergence was
determined by the following commonly used criterion
[50]: (J(i-1) - J(i))/J(i) ≤ ε, where J(i) denotes the value of
the objective functional (Eqs. (2) and (3) for HCM and
FCM, respectively) at the end of the ith iteration. The
convergence threshold was set to ε = 0.001.
The weighting exponent (m) value recommended for

color quantization applications ranges between 1.3 [30]
and 2.0 [31]. In the experiments, four different m values
were tested for each of the FCM variants: 1.25, 1.50,
1.75, and 2.00.

(f) Poolballs(e) Parrots

(a) Hats (b) Motocross (c) Flowers and Sill

(d) Cover Girl

Figure 1 Test images. a Hats, b Motocross, c Flowers and Sill, d Cover Girl, e Parrots, f Poolballs.
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Table 1 MAE comparison of the quantization methods

Hats Motocross

HCM FCM HCM FCM

C Init 1.25 1.50 1.75 2.00 Init 1.25 1.50 1.75 2.00

32 MC 30 16 16 16 16 15 26 19 19 19 18 18

OCT 19 15 15 15 15 15 21 17 18 18 18 18

WAN 26 15 15 15 15 15 24 18 18 18 18 18

WU 18 15 15 15 15 15 21 18 18 17 17 18

64 MC 18 12 12 11 11 11 20 15 15 14 14 14

OCT 13 10 10 10 10 10 15 13 13 13 13 13

WAN 18 11 11 10 10 11 19 14 14 13 13 14

WU 12 10 10 10 10 10 15 13 13 13 13 13

128 MC 13 9 8 8 8 8 16 12 11 11 11 11

OCT 9 7 7 7 7 7 12 10 10 10 10 10

WAN 11 8 7 7 7 7 15 10 10 10 10 11

WU 9 7 7 7 7 7 12 10 10 10 10 10

256 MC 10 7 6 6 6 6 13 9 9 9 8 9

OCT 6 5 5 5 5 5 9 8 8 8 8 8

WAN 9 5 5 5 5 5 12 8 8 8 8 8

WU 6 5 5 5 5 5 9 8 8 8 8 8

Flowers and Sill Cover Girl

HCM FCM HCM FCM

C Init 1.25 1.50 1.75 2.00 Init 1.25 1.50 1.75 2.00

32 MC 20 14 14 14 13 13 22 16 15 14 14 14

OCT 15 12 12 12 12 12 17 14 14 14 13 13

WAN 17 12 12 12 12 12 18 14 14 14 14 14

WU 14 12 12 12 12 12 16 14 14 14 14 14

64 MC 14 11 10 10 10 10 16 11 11 11 11 10

OCT 11 9 9 9 9 9 12 10 10 10 10 10

WAN 12 9 9 9 9 9 15 11 11 10 10 11

WU 10 9 9 9 9 9 12 10 10 10 10 10

128 MC 12 8 8 8 7 7 13 9 8 8 8 8

OCT 8 7 7 7 7 7 9 8 7 7 7 8

WAN 9 7 7 7 7 7 12 8 8 8 8 8

WU 8 7 7 7 7 7 9 8 8 8 8 8

256 MC 9 6 6 6 6 6 11 7 7 6 6 6

OCT 6 5 5 5 5 5 7 6 6 6 6 6

WAN 8 5 5 5 5 5 10 6 6 6 6 6

WU 6 5 5 5 5 5 7 6 6 6 6 6

Parrots Poolballs

HCM FCM HCM FCM

C Init 1.25 1.50 1.75 2.00 Init 1.25 1.50 1.75 2.00

32 MC 28 21 21 20 21 21 12 9 9 9 7 7

OCT 24 20 20 20 20 20 8 6 6 6 6 6

WAN 25 21 20 20 20 20 11 6 6 6 6 6

WU 23 20 20 20 20 20 7 7 6 6 6 6

64 MC 22 15 15 15 15 15 9 6 6 6 5 5

OCT 18 15 15 15 15 15 5 4 4 3 3 4

WAN 19 15 15 15 15 15 9 4 4 4 4 4

WU 17 15 15 15 15 15 5 4 4 4 4 4

128 MC 16 12 12 12 12 12 7 5 5 5 4 3
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Table 1 MAE comparison of the quantization methods (Continued)

OCT 14 11 11 11 11 11 3 2 2 2 2 2

WAN 15 11 11 11 11 12 9 3 3 3 3 3

WU 13 11 11 11 11 11 4 3 3 3 2 2

256 MC 13 9 9 9 9 9 7 4 3 3 3 2

OCT 10 9 8 8 9 9 2 2 2 2 2 2

WAN 12 9 9 9 9 9 8 2 2 2 2 2

WU 10 9 8 8 9 9 4 2 2 2 2 2

Table 2 MSE comparison of the quantization methods

Hats Motocross

HCM FCM HCM FCM

C Init 1.25 1.50 1.75 2.00 Init 1.25 1.50 1.75 2.00

32 MC 618 159 169 163 175 185 427 217 209 229 236 253

OCT 293 185 184 187 214 242 301 197 203 249 277 280

WAN 624 162 160 165 172 201 446 194 193 220 235 291

WU 213 157 157 156 163 172 268 191 191 194 198 208

64 MC 192 91 87 86 87 99 232 125 123 119 125 134

OCT 132 79 79 78 87 94 159 111 112 122 129 142

WAN 311 89 83 84 100 110 292 112 111 117 122 141

WU 103 72 75 75 79 85 147 109 109 111 121 126

128 MC 111 47 45 45 50 52 154 76 74 72 75 86

OCT 65 43 43 43 48 52 96 65 65 69 76 91

WAN 106 44 42 44 48 51 169 66 66 68 72 85

WU 52 38 40 40 42 46 87 63 63 65 70 84

256 MC 63 29 27 26 28 31 100 49 45 45 48 57

OCT 34 22 24 25 28 33 54 39 39 42 48 55

WAN 53 21 23 24 26 30 92 39 39 40 44 53

WU 30 21 23 23 25 28 51 38 38 39 43 50

Flowers and Sill Cover Girl

HCM FCM HCM FCM

C Init 1.25 1.50 1.75 2.00 Init 1.25 1.50 1.75 2.00

32 MC 257 117 117 114 112 120 269 142 132 127 130 135

OCT 155 102 102 102 109 120 182 127 127 128 131 137

WAN 198 102 100 101 107 114 230 126 127 129 133 137

WU 134 101 100 101 103 108 162 126 125 126 129 133

64 MC 113 66 64 64 65 70 145 79 78 76 80 85

OCT 88 58 57 58 66 75 105 72 72 75 78 87

WAN 98 56 55 56 59 64 157 75 75 77 83 88

WU 71 53 56 57 59 61 93 71 72 73 76 82

128 MC 84 42 39 38 39 43 104 52 45 44 47 56

OCT 47 33 33 34 37 42 62 42 42 44 47 52

WAN 57 29 32 33 35 39 102 44 43 45 50 57

WU 40 30 32 32 34 38 55 41 40 41 44 49

256 MC 48 23 24 23 24 27 68 32 29 28 29 34

OCT 26 19 21 21 24 27 36 25 25 25 29 33

WAN 37 18 20 20 22 25 63 26 25 26 28 32

WU 26 18 20 20 22 24 33 24 24 24 26 31

Parrots Poolballs

HCM FCM HCM FCM

C Init 1.25 1.50 1.75 2.00 Init 1.25 1.50 1.75 2.00
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Table 2 MSE comparison of the quantization methods (Continued)

32 MC 418 240 240 241 274 285 136 74 72 71 66 61

OCT 342 247 246 246 255 265 130 74 67 75 85 88

WAN 376 246 239 246 254 263 112 49 49 50 52 54

WU 299 234 234 237 244 256 68 50 50 50 50 54

64 MC 274 137 137 138 140 157 64 39 39 39 28 30

OCT 191 133 132 135 140 155 48 29 27 28 29 34

WAN 233 131 131 132 141 164 59 22 22 22 22 24

WU 167 130 130 131 135 155 31 22 21 21 22 23

128 MC 147 82 80 82 86 95 38 22 21 19 15 15

OCT 111 79 78 79 85 97 20 12 12 12 13 16

WAN 153 78 77 80 88 97 45 12 11 11 11 12

WU 95 77 77 78 83 91 17 11 10 10 11 11

256 MC 96 50 49 49 53 62 27 13 10 9 8 8

OCT 64 48 47 50 54 61 9 6 5 6 6 7

WAN 92 44 47 49 55 61 38 6 6 5 6 6

WU 58 46 46 48 52 59 11 6 5 5 6 6

Table 3 CPU time comparison of the quantization methods

Hats Motocross

HCM FCM HCM FCM

C 1.25 1.50 1.75 2.00 1.25 1.50 1.75 2.00

32 MC 48 2,664 3,238 3,192 934 84 11,797 7,749 9,244 1,895

OCT 80 1,883 2,032 1,656 691 110 4,139 5,034 4,054 912

WAN 45 3,406 2,709 2,980 762 60 4,261 2,971 4,013 715

WU 50 1,976 2,227 1,854 425 60 4,547 4,751 4,016 974

64 MC 59 10,536 11,059 5,494 1,211 101 29,081 24,021 24,858 5,640

OCT 97 5,045 7,353 5,533 1,379 130 10,154 8,752 9,366 1,857

WAN 62 9,350 9,729 10,303 1,501 94 12,531 8,842 10,308 3,160

WU 54 4,228 4,756 4,822 1,332 71 6,361 6,903 8,441 2,020

128 MC 108 20,269 19,945 15,815 2,879 156 49,930 54,102 57,146 14,704

OCT 141 12,700 11,745 8,799 2,444 180 22,410 20,504 18,866 5,297

WAN 89 22,871 13,143 11,544 2,071 125 17,472 19,467 23,061 5,683

WU 76 12,719 11,191 11,114 2,300 113 15,604 14,833 13,684 5,049

256 MC 267 42,670 51,559 35,602 6,126 607 144,758 116,915 131,130 28,752

OCT 306 20,287 19,512 17,806 5,039 328 39,101 42,906 37,946 7,988

WAN 202 26,505 20,574 18,794 5,649 380 50,621 45,127 38,105 9,152

WU 191 19,058 20,692 18,763 5,434 284 39,098 43,176 32,835 8,767

Flowers and Sill Cover Girl

HCM FCM HCM FCM

C 1.25 1.50 1.75 2.00 1.25 1.50 1.75 2.00

32 MC 56 5,591 5,633 5,243 1,385 55 6,067 6,772 7,402 1,545

OCT 81 2,618 4,151 3,447 645 82 1,992 2,615 2,026 584

WAN 42 2,240 2,525 2,625 709 45 1,934 1,988 1,975 613

WU 42 2,111 1,585 1,590 547 41 1,927 1,692 2,264 511

64 MC 62 10,508 9,098 8,938 1,970 77 14,165 24,945 18,248 4,979

OCT 99 9,091 6,579 7,396 1,369 100 6,431 6,775 4,570 1,803

WAN 58 5,413 4,060 4,491 1,067 59 6,540 9,785 7,905 2,574

WU 53 3,887 3,992 3,434 1,005 62 5,745 4,913 4,242 1,409

128 MC 124 35,372 31,854 28,658 4,198 120 47,186 45,248 34,731 9,428
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Tables 1 and 2 compare the effectiveness of the HCM
and FCM variants on the test images. Similarly, Table 3
gives the efficiency comparison. For a given number of
colors C (C Î {32, 64, 128, 256}), preclustering method
P(P Î {MC, OCT, WAN, WU}), and input image I, the
column labeled as ‘Init’ contains the MAE/MSE between
I and Î (the output image obtained by reducing the
number of colors in I to C using P), whereas the one
labeled as ‘HCM’ contains the MAE/MSE value obtained
by HCM when initialized by P. The remaining four col-
umns contain the MAE/MSE values obtained by the
FCM variants. Note that HCM is equivalent to FCM
with m = 1.00. The following observations are in order
(note that each of these comparisons is made within the
context of a particular C, P, and I combination):

⊳ The most effective initialization method is WU,
whereas the least effective one is MC.
⊳ Both HCM and FCM reduces the quantization dis-
tortion regardless of the initialization method used.
However, the percentage of MAE/MSE reduction is
more significant for some initialization methods
than others. In general, HCM/FCM is more likely to
obtain a significant improvement in MAE/MSE

when initialized by an ineffective preclustering algo-
rithm such as MC or WAN. This is not surprising
given that such ineffective methods generate outputs
that are likely to be far from a local minimum, and
hence HCM/FCM can significantly improve upon
their results.
⊳ With respect to MAE, the HCM variant and the
four FCM variants have virtually identical
performance.
⊳ With respect to MSE, the performances of the
HCM variant and the FCM variant with m = 1.25 are
indistinguishable. Furthermore, the effectiveness of
the FCM variants degrades with increasing m value.
⊳ On average, HCM is 92 times faster than FCM.
This is because HCM uses hard memberships, which
makes possible various computational optimizations
that do not affect accuracy of the algorithm [51-55].
On the other hand, due to the intensive fuzzy mem-
bership calculations involved, accelerating FCM is
significantly more difficult, which is why the major-
ity of existing acceleration methods involve approxi-
mations [56-60]. Note that the fast HCM/FCM
implementations used in this study give exactly the
same results as the conventional HCM/FCM.

Table 3 CPU time comparison of the quantization methods (Continued)

OCT 120 9,787 11,505 11,709 2,375 130 12,311 13,002 9,794 2,290

WAN 86 10,875 10,344 11,189 2,378 103 19,432 12,332 13,069 3,347

WU 84 9,145 12,170 9,570 2,897 95 11,016 9,889 8,602 2,872

256 MC 368 63,209 64,305 46,177 9,147 403 84,079 104,289 71,327 19,082

OCT 291 30,560 27,794 23,475 4,738 279 31,042 27,404 25,272 6,417

WAN 223 28,113 21,109 33,265 5,994 238 33,780 31,421 35,709 6,883

WU 226 19,480 19,660 19,310 5,480 216 27,107 25,100 26,488 7,728

Parrots Poolballs

HCM FCM HCM FCM

C 1.25 1.50 1.75 2.00 1.25 1.50 1.75 2.00

32 MC 74 8,209 9,359 6,894 1,917 15 1,076 813 1,004 518

OCT 124 8,127 8,586 13,018 2,408 31 980 1,041 974 305

WAN 65 8,465 4,977 4,095 1,172 15 549 467 441 116

WU 60 3,793 3,346 3,071 1,362 15 729 1,080 1,274 201

64 MC 120 16,492 16,168 18,400 4,936 17 1,556 1,504 2,819 708

OCT 132 10,659 8,395 9,286 2,773 36 3,261 2,625 2,692 519

WAN 85 11,756 12,993 8,709 3,065 19 1,133 1,396 1,103 371

WU 80 6,438 6,155 6,665 2,184 20 1,353 1,056 867 314

128 MC 158 49,581 49,913 42,309 12,247 33 2,492 5,939 4,760 849

OCT 181 28,474 27,161 26,921 5,902 51 3,032 2,385 3,310 1,042

WAN 136 30,827 20,314 23,764 6,878 36 3,576 4,150 2,517 767

WU 122 15,272 19,182 20,661 6,875 33 4,816 3,629 3,484 581

256 MC 536 128,094 103,153 104,613 20,178 224 15,378 10,863 9,566 2,499

OCT 391 54,419 57,325 41,750 10,665 144 6,091 6,194 5,398 1,306

WAN 380 63,969 59,283 50,189 16,601 120 6,372 4,831 6,123 1,292

WU 306 42,535 38,776 43,910 12,148 113 4,977 5,865 7,330 1,291
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⊳ The FCM variant with m = 2.00 is the fastest
since, among the m values tested in this study, only
m = 2.00 leads to integer exponents in Equations 4
and 5.

Figure 2 shows sample quantization results for the
Motocross image. Since WU is the most effective initia-
lization method, only the outputs of HCM/FCM variants
that use WU are shown. It can be seen that WU is

(a) Original

(b) WU (c) HCM–WU

(d) FCM–WU 1.25 (e) FCM–WU 1.50

(f) FCM–WU 1.75 (g) FCM–WU 2.00

Figure 2 Sample quantization results for the Motocross image (C = 32). a Original, b WU, c HCM-WU, d FCM-WU 1.25, e FCM-WU 1.50, f
FCM-WU 1.75, g FCM-WU 2.00.
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unable to represent the color distribution of certain
regions of the image (fenders of the leftmost and right-
most dirt bikes, helmet of the driver of the leftmost dirt
bike, grass, etc.) In contrast, the HCM/FCM variants
perform significantly better in allocating representative
colors to these regions. Note that among the FCM

variants, the one with m = 2.00 performs slightly worse
in that the body color of the leftmost dirk bike and the
color of the grass are mixed.
Figure 3 shows sample quantization for the Hats

image. It can be seen that WU causes significant con-
touring in the sky region. It also adds a red tint to the

(a) Original

(b) WU (c) HCM–WU

(d) FCM–WU 1.25 (e) FCM–WU 1.50

(f) FCM–WU 1.75 (g) FCM–WU 2.00

Figure 3 Sample quantization results for the Hats image (C = 64). a Original, b WU, c HCM-WU, d FCM-WU 1.25, e FCM-WU 1.50, f FCM-WU
1.75, g FCM-WU 2.00.
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pink hat. On the other hand, the HCM/FCM variants
are significantly better in representing these regions.
Once again, the less fuzzy FCM variants, i.e. those with
smaller m values, are slightly better than the more fuzzy
ones. For example, in the outputs of FCM 1.75 and
2.00, a brownish region can be discerned in the upper-
right region where the white cloud and the blue sky
merge.
It could be argued that HCM’s objective functional,

Equation 2, is essentially equivalent to MSE, Equation 6,
and therefore it is unreasonable to expect FCM to out-
perform HCM with respect to MSE unless m ≈ 1.00.
However, neither HCM nor FCM minimizes MAE and
yet their MAE performances are nearly identical. Hence,
it can be safely concluded that FCM is not superior to
HCM with respect to quantization effectiveness. More-
over, due to its simple formulation, HCM is amenable
to various optimization techniques, whereas FCM’s for-
mulation permits only modest acceleration. Therefore,
HCM should definitely be preferred over FCM when
computationally efficiency is of prime importance.

4 Conclusions
In this paper, hard and fuzzy c-means clustering algo-
rithms were compared within the context of color quan-
tization. Fast and exact variants of both algorithms with
several initialization schemes were compared on a
diverse set of publicly available test images. The results
indicate that fuzzy c-means does not seem to offer any
advantage over hard c-means. Furthermore, due to the
intensive membership calculations involved, fuzzy c-
means is significantly slower than hard c-means, which
makes it unsuitable for time-critical applications. In con-
trast, as was also demonstrated in a recent study [22], an
efficient implementation of hard c-means with an
appropriate initialization scheme can serve as a fast and
effective color quantizer.
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