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Abstract

The heavy memory access of motion estimation (ME) execution consumes significant power and could limit ME
execution when the available memory bandwidth (BW) is reduced because of access congestion or changes in the
dynamics of the power environment of modern mobile devices. In order to adapt to the changing BW while
maintaining the rate-distortion (R-D) performance, this article proposes a novel data BW-scalable algorithm for ME
with mobile multimedia chips. The available BW is modeled in a R-D sense and allocated to fit the dynamic
contents. The simulation result shows 70% BW savings while keeping equivalent R-D performance compared with
H.264 reference software for low-motion CIF-sized video. For high-motion sequences, the result shows our
algorithm can better use the available BW to save an average bit rate of up to 13% with up to 0.1-dB PSNR
increase for similar BW usage.
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1. Introduction
With the rapid progress of semiconductor technology,
video coding is becoming popular in modern mobile
devices to provide video services. In these devices,
motion-compensated temporally predictive coding with
motion estimation (ME) not only contributes the most
to the coding efficiency of modern video encoder
designs [1], but also requires large amounts of computa-
tions as well as data bandwidth (BW) [2]. This leads to
severe design challenges for power-limited mobile
devices. In power-limited mobile device, the available
power could be changed dynamically due to low battery
power or dynamic power management, such as dynamic
voltage and frequency scaling [2,3]. In such cases, the
available data BW could be inconsistent with the video
requirements and be lower than expected. Once this
situation occurs, the video coding will be delayed or
forced to drop frames. Either case leads to unwanted
low video quality. This BW constrained problem is get-
ting worse with increasing camera resolution in mobile
devices.
Broadly speaking, the BW-constrained ME problem is

one of the resource constraints. Other resource

constrained designs [2-9] focus on lowering power con-
sumption, with or without rate-distortion (R-D) optimi-
zation [2-5], or adjusting computational complexity with
rate-control like methods [6-9]. He et al. [2] developed a
new R-D analysis framework with a power constraint.
Subsequently, the power-aware designs [3,4] directly
change their search algorithms without R-D optimiza-
tion to predesigned ones to fit a lower power mode.
Chen et al. [5] used a fast algorithm and data reuse to
achieve a power-aware design. Tai et al. [6] proposed a
novel computation-aware scheme to determine the tar-
get amount of computation power allocated to a frame
and allocated this to each block in a computation-dis-
tortion-optimized manner. The computational complex-
ity complexity-aware designs [7-9] used a rate-control
like method to combine complexity constraints into R-D
optimization. The basic assumption of these approaches
is that there are limited computational resources in
handheld devices but sufficient memory BW. This
assumption could easily fail because of dynamic mobile
environment in which videos are coded and decoded at
the same time or because of the dynamic power man-
agement mentioned above.
To solve the above issue, we propose a BW-scalable

ME algorithm to fit the available data BW constraint.
We assume that the data BW are the limited resource
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and could be dynamically changed [3]. The available
data BW will be sufficient in full or normal battery
mode and have a higher working frequency. In low bat-
tery or power-saving mode, the available data BW will
be insufficient due to the lower working frequency or
lower voltage supply. With a lower than expected BW
supply, ME computations could fail to meet real-time
constraints or lead to significant R-D performance loss
due to the macroblock (MB) skipping coding. The pro-
posed method predicts and allocates the memory BW
according to its R-D gain (RDG) and the available BW
to model the bandwidth-rate-distortion (B-R-D) beha-
vior of the existing ME algorithm. This B-R-D algorithm
is a rate-control like method for MB MB-based BW
allocation, which maximizes the coding efficiency under
the BW constraint. The simulation results show that the
proposed algorithm can better utilize the BW instead of
wasting it as other designs do, and it can be scaled to
the available BW.
The rest of this article is organized as follows. The

review of related studies is presented in Section 2. In
Section 3, we propose an analytical B-R-D optimized
model. The online R-D optimized BW-scalable ME
scheme is summarized in Section 4. Section 5 presents
the simulation results and comparisons with traditional
approaches. Finally, Section 6 concludes this article.

2. Review of related studies
To solve the computational complexity and data BW
challenges of ME, various approaches have been pro-
posed, such as parallel full search hardware design and
fast ME algorithms.
Full search ME designs handle the computational

complexity by using parallel processing elements for
matching cost computation [10]. Furthermore, with its
search center at (0, 0), it can reduce the data BW by
reusing the overlapped search area, termed Level C data
reuse in [11]. Such a design style is simple to use, but it
will need constant data BW regardless of the video con-
tents. Besides, to meet the Level C data reuse require-
ment, such a design also needs a larger search range
(SR) to cover the possible best matching point due to
the (0, 0) search center [12], which implies a waste of
data BW compared to methods with a search center at
the motion vector (MV) predictor (MVP).
On the other hand, fast ME algorithms only search a

few candidates so that the computational complexity is
lower. To facilitate such searching, most of the fast algo-
rithms adopt the MVP as the search center [13]. In [14],
most of best matching points are around the MVP,
which can cover over 90% of the best matching points
within ± 8 SR. Thus, it can have a smaller SR and could
have lower data BW even with poor data reuse between
consecutive searches. However, even the fast ME

algorithm still assumes constant and sufficient data BW
support for the required SR. Some designs with a
dynamic SR [15-17] could have even lower data BW
demands by changing the SR according to the content
content-dependent prediction, but they still assume con-
stant and sufficient BW support in the planning of chip
design. Besides, none of the designs can adapt to
dynamic data BWs. Several approaches have tried to
reduce the required data BW. Designs in [18,19] use a
cache to maximize the possible data reuse for irregular
search patterns. Bus BW-effective ME designs in [20,21]
lower the BW requirement by reducing the pixel repre-
sentation from 8 bits to a binary pattern. However,
these designs are only useful for specific search algo-
rithms without a data BW constraint.
In summary, none of above approaches has considered

data BW as a limited resource to explore the possibility
of optimizing its usage in an R-D sense. The assumption
that there will be constant and sufficient BW has the
benefit of simplifying the design procedure, and thus, it
is widely used in VLSI hardware design, but it usually
wastes a lot of data BW because only a portion of the
MBs in a high-motion video will need such a large
amount of data. Such data BW waste is a serious pro-
blem for power-limited mobile devices because data
access to DRAM is off-chip access and thus consumes
significant power, which can be as much as the power
consumption of the video chip [22]. As indicated in
[22], the power consumption of external DRAM access
could be up to 50% of the total power consumed by the
video decoding chip. For encoding, this portion will be
larger but is often neglected in the previous design.
Besides, with a dynamically changing BW, the current
approaches with constant and sufficient BW assumption
would have insufficient BW for coding, could need
more time to complete the coding and fail the real-time
constraint or drop MB coding and quality to fulfill the
timing constraint. Both situations are not acceptable to
attain a high-quality visual experience.

3. Analytical B-R-D optimized modeling
For a given video coding distortion (or equivalent pic-
ture quality), D, and bit rate, R, if we decrease the avail-
able encoding BW, the coding will generate more
distortion and bits, which in turn implies a higher D
and R for ME operation and more data BW for video
coding. Therefore, the overall BW usage of a ME mod-
ule is linearly proportional to its search area. We intro-
duce a set of BW control parameters, B = [b1,b2,...,bL],
to control the search area of the ME module. The
model with the BW control parameters is of a more
generic form and captures the available data BW under
different system conditions. Consequently, the ME SR
selection is then a function of these control parameters,
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denoted by SR(b1,b2,...,bL). However, the overall BW
usage of a ME module is linearly proportional to its
search area. Within the BW-limited design framework,
the encoder BW requirement, denoted by BW, is a func-
tion of SR, and is also a function of B, denoted by

BW = �(SR) = BW(β1,β2, ...,βL) (1)

where F(·) is the SR selection model of the ME mod-
ule. To optimize the BW usage, the available data BW,
bi, should dynamically be allocated among the MBs
according to their motion characteristics. Thus, we exe-
cute the ME algorithm with a different SR of BW con-
trol parameters and obtain the corresponding R-D data.
According to our measurements and analysis, the R-D
performance model can well be approximated by the
following expression, denoted by RDG(BW(b1,b2, ...,bL))
as (2).

RDG (BW) = RDG(BW(β1, β2, ..., βL)) (2)

where

RDG = RDCinit − RDCBMA (3)

and the RDG is the difference of the Lagrange R-D
cost (RDC) at the MVP (RDCinit) and the final best
matching position (RDCBMA). The Lagrange RDC func-
tion is frequently employed as a measure of ME effi-
ciency, which is defined as

RDCmotion (mv,λmotion) = min
{
SAD (s, c (mv)) + λmotionR

(
mv − pmv

)}
(4)

where mv is the MV received by the ME, and lmotion

indicates the Lagrange multiplier. The distortion term
SAD(s, c(mv)) is the sum of the absolute differences
between the original signal s and the coded video signal
c. The rate term, lmotionR(mv - pmv), represents the
motion information and the coded bit length of the MV
difference (MVD) between the MV and predicted MV.
Note that Equation 2 is computationally intensive and is
intended for offline analysis to obtain the B-R-D model.
Next, we optimally configure the BW control para-

meters to maximize the video quality (or minimize the
video distortion) and minimize the video bit rate under
the BW constraint. Mathematically, this can be formu-
lated as in (5).

max
{β1,β2,...βL}

RDG = RDG(BW(β1, β2, ..., βL))

s.t. BW(β1,β2, ...βL) ≤ BW
(5)

where BW is the available BW pool for video encod-
ing. The optimum solution, denoted by RDG(BW),
describes the B-R-D behavior of the video encoder. The
corresponding optimum BW control parameters are
denoted by {bi*(BW)}, 1 ≤ i ≤ L.

More specifically, we develop an analytical B-R-D
model to perform on-line BW optimization for real-time
video coding. For the simplicity of on-line execution,
the RDG formulation can be well approximated by the
following expression.

RDCinit − RDCBMA = γ × BW(β1,β2, ...,βL) (6)

where g is a positive constant. In this study, we refer
to BW as the maximum required data BW for ME.

4. Online R-D optimized BW-scalable ME
Section 3 provides a theoretical analysis of the data BW-
limited performance of the B-R-D optimization. How-
ever, in this section, we discuss how this theoretical lim-
ited data BW performance can be realized in practical
video coding. There are four major issues that need to
be addressed. First, the real BW calculation requires glo-
bal knowledge of the on-chip SRAM buffer resource and
reuse strategy. Second, in BW variations between video
coding and decoding as discussed in this section, we
assume that the available data BW for video coding are
time-varying because of non-stationary video input on
the real-time coding and decoding side. Third, once the
optimum BW efficiency of the previous coded MB is
determined, we need to develop a scheme to allocate
and predict the BW interval to achieve the video
smoothness constraint. This approach is computation-
ally intensive and its corresponding parameter adjust-
ment is only suitable for offline analysis. In real-time
video encoding on mobile devices, it is desirable to
develop a low-complexity scheme that is able to esti-
mate the BW interval parameters from the frame statis-
tics collected in the video coding. Fourth, to avoid
under- or over-use of the BW pool, the target SR is
further refined by the neighboring MV. In the following,
we will discuss these issues.

4.1. BW budget initialization
First, the BW budget (BWbudget) is initialized for BW
allocation of the overall data BW pool later in the cod-
ing process. This initialization takes the available system
BW and converts it to a default system SR for the ME.
Then, the BW budget is allocated with the above system
SR for a GOP, as in (7).

BWbudget =
BWBus

Frame Rate
× GOP size (7)

where the BWBus denotes the bus data transmission
rate (bytes/s), Frame_Rate is the number of coded
frames per second, and GOP_size denotes the frame
numbers in a GOP. Larger GOP size allows for more
freedom in adjusting the BW. For the purposes of hav-
ing a concrete example that represents common
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practices in video coding, the BW budget for the GOP is
set 16 frames in this article.

4.2. BW evaluation in an R-D sense
To justify the BW usage from (6), the BW efficiency,
Gave, is defined as the sum of the RDG before the cur-
rent coded kth MB divided by the total used BW

(BWk
usage ), which denotes the accumulated used data

BW up to the (k - 1)th MB, as in (8) and (9).

Gave =

∑k−1
i=1

(
RDCi

init − RDCi
BMA

)

BWk
usage

(8)

where

BWk
usage =

k−1∑
i=1

BWi
usage (9)

and RDCi
init denotes the RDC at the predicted MV

position. RDCi
BMA denotes the RDC after the motion

search of the block-matching algorithm, and BWk
usage

denotes the used data BW in the ith MB with a Level C
data reuse scheme.
Gave measures the BW efficiency by averaging the

RDG over the used BW before the kth MB, which
implies how much RDG can be achieved with a unit of
data BW. Thus, the more Gave we gain, the better BW
and coding efficiency we will obtain. In the following
step, we will use Gave for BW prediction.

4.3. BW prediction and allocation with the smoothness
constraint
With the BW efficiency, Gave, we can derive the allowed
BW interval with the BW prediction and allocation. The
BW prediction predicts the available BW for the next
coded MB with the smoothness constraint. The smooth-
ness constraint maintains the quality and the smooth-
ness (i.e., similar RDC) between consecutively coded
MBs. With this constraint and the RDG per unit BW
from (8), we can predict the forward and backward BW
usage and thus, constrain the possible BW usage of the
next coded MB.
First, to keep the quality and the smoothness between

the current and the previous MBs, we use the RDC data
from previous MBs to make further predictions (10).

RDCk
init − Gave BWk

BP =

∑k−1
i=1 RDCi

BMA

k − 1
(10)

where BWBP denotes the backward BW prediction, as
shown in latter equation. In (10), the left-hand side is
the target RDC of the current MB, and the right-hand

side is the average RDC of the previous MBs. To main-
tain the quality and the smoothness, ideally, the target
RDC of the current MB will be equal to the average
past RDCs. Thus, if we have larger Gave, (10) implies
that less BW (i.e., BWBP) is needed to maintain a similar
RDG as the previous MBs. Therefore, the backward pre-
diction for the current kth MB can be derived, as in (11)
from (10).

BWk
BP =

RDCk
init −

∑k−1
i=1 RDCi

BMA

k − 1
Gave

(11)

In contrast to BWBP, we define the forward prediction
BWFP to keep the quality and smoothness between the
current and the future MBs by adopting BW informa-
tion as in (12).

BWk
FP =

BWbudget −BWk
usage

n − (k − 1)
(12)

where n is the overall MB numbers in a GOP. Because
we have no knowledge of the future RDG, the forward
prediction, BWFP, is set to the remaining BW budget
divided by the remaining MBs in the GOP that are not
coded yet.
These two BW predictions link the BW usage between

the past MBs and the future MBs. Their relationship can
be used to allocate the available BW as follows:

if (BWFP > BWBP) { (condition 1)
BWlower = BWBP + 0.5 × (BWFP - BWBP);
BWupper = BWFP + 0.25 × (BWFP - BWBP);

}
else { (condition 2)

BWlower = BWFP - 0.5 × (BWBP - BWFP);
BWupper = BWFP;

}

in which, BWlower and BWupper are the lower and
upper bounds of the BW usage per MB, respectively.
The parameters, 0.5 and 0.25, are selected empirically
and are easy to implement because they are powers of
2. The parameters are obtained from a two-step process.
In the first step, we execute the proposed BW-scalable
ME algorithm with different configurations of para-
meters to obtain the corresponding BWlower, BWupper,
and R-D data. Note that this step is computationally
intensive and is intended for offline analysis to obtain
BWlower, BWupper, and the B-R-D model only. Once the
B-R-D model and the BW intervals BWlower and BWup-

per are established, we perform the second step, which
optimizes the configuration of the BW control para-
meters to maximize the video quality under the system
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BW constraint. Meanwhile, the parameters, which are
empirically selected in the following section, are
obtained by the same method. For condition 1, as
shown in Figure 1, BWBP is smaller than BWFP, which
implies that less BW had been allocated to the previous
MBs, and thus, more BW can be allocated to the next
MB. As a result, we set the lower bound, BWlower,
higher than the average BW in the past MBs (equal to
BWBP + 0.5 × (BWFP - BWBP)), and also set the upper
bound, BWupper, higher than the average BW prediction
in the future MB coding (equal to BWFP + 0.25 ×
(BWFP - BWBP)). This larger BW allocation enables bet-
ter quality. In contrast, for condition 2 in Figure 1,
BWFP is smaller than or equal to BWBP, which implies
that too much BW had been allocated to the previous
MBs, and hence less BW can be allocated to the next
MB. As a result, both bounds should be lower than
BWFP to keep the smoothness and quality, and we set
BWlower equal to BWFP - 0.5 × (BWBP - BWFP) and set
BWupper equal to BWFP.

4.4. SR decision and refinement
Finally, we employ the above available BW interval and
R-D data to make an SR decision for the next MB cod-
ing. The SR decision is divided into three cases, and the
corresponding SR adjustment coefficient is resolution
independent, as shown in Figure 2. Case 1 is the BW
limited case because the average BW usage of the

previous MBs falls outside the available BW interval
bounded by BWupper and BWlower. Thus, the current SR
is decreased by 8 if it is larger than BWupper or increased
by 8 if it is smaller than BWlower for next MB coding.
The average BW usage of the previous MBs falling

inside the available BW interval implies sufficient BW is
available for R-D optimization. This can be further
divided into two cases, case 2 and case 3. If the RDC (R ×
Dcur) is larger than a predefined threshold (case 2), the
video has a bad quality, and thus, the SR is increased by
16 for better quality in the next MB. This threshold is set
empirically to 4 times, the average RDC of the previous
MBs, i.e., 4(R × Davg), for coarse-grained refinement of
the quality. However, if the RDC (R × Dcur) is smaller
than the predefined threshold (case 3), the video has a
quite smooth quality, and thus, the SR is adjusted slightly.
Thus, the SR remains unchanged if the RDG of the cur-
rent MB (RDGcur) is within the average RDG (RDGavg)
plus or minus an adaptive offset (i.e., RDCBMA/20000
empirically for fine-grained refinement of quality). How-
ever, if the RDGcur is smaller than RDGavg - offset, the
video is of good enough quality, and thus, the SR is
decreased by 4 to save BW. On the other hand, if the
RDGcur is larger than RDGavg + offset, the quality is low,
and the SR is increased by 4 to improve the quality.
The above SR decisions are further refined to avoid

BW waste by considering the SR values in the adjacent
MBs, as illustrated in Figure 3a. First, we get the

Figure 1 Illustration of the available BW interval determination.

Figure 2 Illustration of the SR decision.
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adjacent MVs from the neighboring blocks and the MV
of previous frame on the co-located block, such as
MVUL, MVU, MVUR, MVL, and MVCur, shown in Figure
3b. All these MVs are of sub-pel precision. Then, we
compare these five MVs and choose a maximum MV
(max_mv). After that, we set the available SR value
using this maximum MV. The refined SR, max_a-
vail_SR, is

max avail SR =

⎧⎪⎪⎨
⎪⎪⎩

SRlower, max mv ≤ mvlower

SRstep × Ceil
(
max mv/

SRstep

)
+ SRoffset, mvlower < max mv ≤ mvupper

SRupper, otherwise

(13)

in which the parameters SRlower, SRupper, SRstep, and
SRoffset are resolution dependent. For our simulation, we
set SRlower equal to 4 for CIF and 26 for HD (720P)
resolution. Meanwhile, we set SRupper, SRstep, and SRoffset

equal to 32, 4, and 4 for CIF resolution and equal to 72,
8, and 2 for HD (720P) resolution. Meanwhile, we set
mvlower and mvupper equal to 2 and 24 for CIF resolution
and 24 and 64 for HD (720P) resolution.
Finally, the SR is selected by choosing the minimum

SR between max_avail_SR and SR from Figure 2, for
MB coding.

4.5. Summary of the algorithm
Figure 4 shows the proposed B-R-D optimized algorithm
that can be combined with existing ME algorithms to
make them BW scalable. This algorithm first models the
available BW with its RDG and then predicts and allo-
cates the BW in an R-D optimized sense to determine
the available SR. The whole algorithm is repeated for all

inter-coded frames in a GOP and consists of four steps,
as described below.
Step 1. Initialization: Create the BW budget from (7)

for all MBs in a GOP.
Step 2. BW evaluation in an R-D sense: Evaluate the

RDG in terms of the consumed BW as shown in (8) and
(9) to model the BW in a R-D sense.
Step 3. BW prediction and allocation with the

smoothness constraint: From the RDG obtained from
step 2 and the available BW, the BW for the next coded
MB is predicted in (10) to (12) and allocated as
described in Section 4.3 to keep the video quality as
smooth as possible using the smoothness constraint.
Step 4. SR decision and refinement: According to

the available BW from step 3, the SR of next coded MB
is determined and refined in (13) for ME execution.

5. Simulation results
5.1. Simulation conditions
The proposed algorithm was implemented in the H.264/
AVC reference software, JM [23], for performance eva-
luation. The simulation conditions are CIF-sized test
sequences with a baseline profile, no R-D optimization,
one reference frame, a full-search algorithm as well as
an Enhanced Predictive Zonal Search (EPZS) algorithm
[24] for ME, IPPP sequences, 30 frames/s, and 16 frames
per GOP. All of the block matching algorithms were
implemented using Visual C++ on a PC with a 2.66
GHz Intel® Core™ 2 Duo CPU.
In the following simulations, we classify the correspond-

ing BW conditions into two patterns: a constant data BW

Figure 3 Illustration of the SR refinement. (a) Flowchart of the SR refinement method. (b) The relationship between neighboring blocks and
the current block.
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pattern and a variable data BW pattern. Both patterns pro-
vide the same amount of reference block data for the same
SR ± R. However, the constant data BW pattern will
assume that the available BW is constant and fixed during
ME operations, which in turn assumes that the available
BW is sufficient and implies that the video encoder does
not have a BW constraint during the video encoding pro-
cess. Meanwhile, the variable data BW pattern will assume
that the available BW is variable during ME operations,
which assumes that the available BW is insufficient and
implies that the video encoder is BW constrained during
the video encoding process. The constant data BW pattern
is the scenario used in traditional ME design, which does
not consider the other components, while the variable
data BW pattern simulates the scenario where the BW is
changing due to situations like simultaneous coding and
decoding (defined as SCD mode) in a video phone or dif-
ferent low power modes (defined as LP mode) for mobile
applications. The SCD mode assumes the decoding uses
merged sequences from Stefan, Akiyo, and Football (inter-
leaved high-motion and low-motion sequences) and sets
the scene cut at a multiple of 32 frames. With the above
interleaved decoded sequence, the available BW for encod-
ing will change dynamically, as shown in Figure 5a. Figure
5b shows the LP mode with a descending trend in data
BW in a power aware system. In the following simulations,
we assume the SR for the search algorithm is ± R for the
constant data BW pattern R and the variable data BW pat-
tern case.
To show the benefit of the proposed scheme, we

tested three different BW adaption schemes in the fol-
lowing simulations. The first scheme, denoted as fixed-
SR, is for ME without any BW adaption scheme. Thus,
the total BW for ME is equally distributed for all MB
coding, and its SR setting is constant for the entire cod-
ing time. The second scheme, denoted as simple-SR, is
for ME with a simple BW adaption scheme. Its BW

adaption equally distributes the available data BW to all
MBs in a period, as in the fixed-SR case, but the distri-
bution will be changed when the available BW changes.
Thus, its SR adapts as well. This adaption does not con-
sider the used BW or the related R-D information. The
final scheme, denoted as BRD-SR, is the proposed B-R-
D optimized BW-scalable method.

5.2. B-R-D performance evaluation
Tables 1, 2, 3, 4, and 5 show the simulation results for
the constant and variable BW patterns with the different
BW adaption schemes. Figure 6 shows the average BW
per frame for the high-motion Stefan sequence with the
quantization parameter set to 28.
For the constant BW pattern case, Table 1 illustrates

that the full search ME with the proposed BRD-SR
scheme can attain similar quality performance as the
that with the fixed-SR scheme in the low-motion
sequence (Akiyo sequence) and the medium-motion
sequence (Foreman sequence), but with less BW. In
case of low-motion sequence, the proposed algorithm
can save 35-83% of the BW with different SRs. For the
medium-motion sequence, our algorithm can save 4-
45% of the BW. For the high-motion sequence (Stefan
sequence), our algorithm can save an average bit-rate of
up to 13% and increase the PSNR by up to 0.1 dB under
the low SR constraint. Also, the simulation shows simi-
lar results as that in the full search algorithm by apply-
ing our proposed algorithm to the fast algorithm, the
EPZS algorithm, which is due to our effective SR adjust-
ment. For a fair comparison, the presented BW has con-
sidered data reuse [11] in the overlapped region
between search points, and thus, only new data that are
not in the local buffer will be loaded from external
memory and counted in the BW usage. In summary, the
proposed algorithm can save data BW for the full search
and EPZS algorithms as well.

Initialization Bandwidth
Evaluation

Bandwidth
Prediction &

Allocation

SR
Decision &
Refinement

Last Frame
in GOP

Yes No

Input
Video

Figure 4 Flowchart of the B-R-D optimized modeling method.
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For the variable BW pattern case, Tables 2 and 3
compare the results between the BRD-SR scheme and
the simple-SR scheme in the SCD and LP modes. All of
these results show trends in R-D performance and BW
saving similar to those in Table 1. In summary, these
results show our algorithm with B-R-D optimization can
better utilize the BW for ME computation and achieves
better performance than the fixed-SR and simple-SR
schemes.

Table 4 shows the execution-time of the proposed
algorithm and compares it to the fixed-SR scheme with
the constant BW pattern. The results are similar to
those found with the simple-SR scheme in the variable
BW pattern case. Our proposed algorithm slightly
improves execution time. However, the saving is not
directly proportional to BW saving due to the calcula-
tion overhead of the MB-level BW-scalable scheme.
These overheads can be reduced with further software

Figure 5 Variable data BW pattern with ± 8 SR for: (a) the SCD mode and (b) the LP mode.
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optimization or better hardware implementation of the
existing ME engine.
Table 5 shows the simulation results for the HD reso-

lution videos and a comparison of the proposed scheme
with the fixed-SR scheme. The simulation conditions
are three 720P-sized video sequences with a baseline
profile, no R-D optimization, one reference frame, IPPP
sequences, 30 frames/s, and 16 frames per GOP. All of
the simulation results show similar savings to those
found with CIF resolution, which are listed in Table 1.
This proves the applicability of the proposed algorithm
on larger sized video sequences.

Table 1 Performance comparison with the fixed-SR scheme for CIF resolution

Search
algorithm

Sequence Akiyo Foreman Stefan

BW
pattern

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

FS Const. 8a -35.2 -0.02 +0.24 -4.78 -0.02 +1.79 -1.01 +0.10 -13.42

Const. 16a -69.8 -0.01 -0.35 -22.07 -0.02 +2.10 -6.04 +0.01 -2.45

Const. 24a -82.8 -0.01 -0.45 -43.74 -0.02 +1.99 -17.59 +0.01 -1.21

EPZS Const. 8a -31.3 -0.01 +0.07 -3.66 -0.03 +3.21 -0.25 -0.03 +2.12

Const. 16a -65.4 -0.01 -0.17 -21.26 -0.03 +2.53 -7.14 -0.04 +3.13

Const. 24a -79.8 +0.01 -0.45 -42.95 -0.03 +2.01 -18.75 -0.02 +1.46
ameans constant BW and SR is set within ± 8 and ± 24.

Table 2 Performance comparison with the simple-SR scheme for CIF resolution in the SCD mode

Search
algorithm

Sequence Akiyo Foreman Stefan

BW
pattern

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

FS Variable 8a -37.8 +0.01 +0.17 -12.30 -0.02 +1.98 -1.38 +0.07 -9.83

Variable 16a -69.9 0.00 +0.36 -31.03 -0.02 +3.19 -7.29 +0.01 -2.16

Variable 24a -82.8 -0.01 -0.34 -45.56 -0.02 +1.69 -19.10 -0.01 -1.13

EPZS Variable 8a -33.1 +0.02 -0.15 -11.0 -0.02 +2.64 -0.76 -0.02 +1.17

Variable 16a -65.6 +0.01 +0.20 -29.54 -0.02 +2.37 -7.69 -0.03 +2.98

Variable 24a -79.8 0.00 -0.09 -44.72 -0.02 +1.90 -20.8 -0.01 +1.58
ameans variable BW and SR is set within ± 8 and ± 24

Table 3 Performance comparison with the simple-SR scheme for CIF resolution in the LP mode

Search
algorithm

Sequence Akiyo Foreman Stefan

BW
pattern

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

FS Variable 8 -37.9 -0.01 +0.12 -5.05 0.00 +0.10 -3.49 +0.03 -2.83

Variable 16 -70.2 -0.01 +0.34 -30.1 -0.02 +2.43 -16.5 +0.07 -9.29

Variable 24 -83.0 -0.01 +0.04 -51.2 -0.02 +1.20 -32.6 -0.01 +0.04

EPZS Variable 8 -32.9 0.00 -0.01 -3.44 -0.01 +0.37 -2.73 -0.02 +1.42

Variable 16 -65.7 -0.01 -0.13 -27.8 -0.03 +2.84 -16.2 -0.05 +3.35

Variable 24 -79.9 +0.01 -0.11 -49.8 -0.01 +1.49 -32.1 -0.01 +1.25

Table 4 Execution-time comparison with the fixed-SR
scheme for CIF resolution

Search algorithm Sequence Akiyo Foreman Stefan

BW pattern ΔTime (%)

FS Const. 8 +0.45 +0.06 +0.19

Const. 16 -0.57 -0.32 -0.06

Const. 24 -1.94 -0.69 -0.38

EPZS Const. 8 -1.31 -0.26 -0.45

Const. 16 -2.31 -0.90 -0.20

Const. 24 -3.21 -2.43 -0.90
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6. Conclusion
In this article, we propose a BW-scalable approach for
an ME algorithm to maximize the R-D performance
while dynamically allocating the available BW.

Compared to the traditional methods, our algorithm
could save up to 70% of the BW with a full-search algo-
rithm and 65% of the BW with the EPZS algorithm with
an average SR size of ± 16 for low-motion CIF

Table 5 Performance comparison with the fixed-SR scheme for 720P resolution.

Search
algorithm

Sequence Station2 Sunflower Tractor

BW
pattern

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

ΔBW
(%)

ΔPSNR
(dB)

ΔBit-rate
(%)

FS Const. 56a -69.64 -0.01 +0.27 -48.98 -0.01 +0.28 -23.86 0.00 -0.11

Const. 64a -75.97 0.00 +0.29 -59.09 -0.01 +0.20 -37.97 0.00 +0.06

EPZS Const.
56a

-69.82 -0.01 -0.06 -49.75 +0.01 -0.2 -26.52 0.00 +0.17

Const. 64a -76.15 0.00 -0.26 -59.69 0.00 +0.39 -40.43 0.00 -0.02
ameans variable BW and SR is set within ± 56 and ± 64.
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Figure 6 Constant BW patterns with SR equal to: (a) ± 8 (b) ± 16 (c) ± 24 and variable BW patterns with SR equal to (d) ± 8 (e) ± 16
(f) ± 24.
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resolution sequences. Compared to either the full search
or EPZS algorithm, our proposed algorithm can save up
to 70% of the BW with an SR size of ± 56 for HD
(720P) resolution video. These savings come from
appropriate MB-level BW allocation. In addition, while
coding high-motion sequences, the simulation result
shows our design could save an average bit rate of up to
13% and increase the average PSNR by up to 0.1 dB
with similar BW usage for CIF resolution. The proposed
design can be combined with current ME designs.
Further study can be done by incorporating this work
into the rate-control scheme or other resource con-
strained algorithms for better performance.
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B-R-D: bandwidth-rate-distortion; BW: bandwidth; BWBP: data bandwidth
backward prediction; BWbudget: bandwidth budget; BWFP: data bandwidth
forward prediction; EPZS: enhanced predictive zonal search; max_mv:
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estimation; MV: motion vector; MVD: motion vector difference; MVP: motion
vector predictor; R-D: rate-distortion; RDC: Lagrange R-D cost; RDCBMA:
Lagrange R-D cost at the final best matching position; RDCinit: Lagrange R-D
cost at MVP; RDG: rate-distortion gain; SR: search range.
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