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Abstract

It is usually assumed that N samples of the time domain orthogonal frequency division multiplexing (OFDM)
symbols have an identical Gaussian probability distribution (PD) in the real and imaginary parts. In this article, we
analyze the exact PD of M-QAM/OFDM symbols with N subcarriers. We show the general expression of the
characteristic function of the time domain samples of M-QAM/OFDM symbols. As an example, theoretical discrete
PD for both QPSK and 16-QAM cases is derived. The discrete nature of these distributions is used to reconstruct
the distorted OFDM symbols due to deliberate clipping or amplification close to saturation. Simulation results show
that the data reconstruction process can effectively lower the error floor level.
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1 Introduction
A significant drawback of orthogonal frequency division
multiplexing (OFDM)-based systems is their high peak-
to-average power ratio (PAPR) at the transmitter,
requiring the use of a highly linear amplifier which leads
to low power efficiency. For reasonable power efficiency,
the OFDM signal power level should be close to the
nonlinear area of the amplifier, going through nonlinear
distortions and degrading the error performance.
The distortion can be introduced for two main rea-

sons: nonlinear amplifier [1,2] and/or deliberate clipping
[3]. For the first case, if an OFDM symbol is amplified
in the saturation area of an amplifier, its data recovery
is not possible. For the second case, deliberate clipping
makes an intentional noise which falls both in-band and
out-of-band. In-band distortion results in an error per-
formance degradation, while out-of-band radiation
reduces spectral efficiency. Filtering methods can reduce
out-of-band radiation, but also introduces peak regrowth
of OFDM signals and increases the overall system
impulse response [4,5].
Several approaches have been investigated for mitigat-

ing the clipping noise with an amount of computational

complexity, such as iterative methods [6-10] and an
oversampling method [11].
It is usually assumed that the time domain samples of

OFDM symbols are complex Gaussian distributed,
which is a very good approximation if the number of
subcarriers is large enough. Furthermore, it is theoreti-
cally proved in [12,13] that a bandlimited uncoded
OFDM symbol converges weakly to a Gaussian random
process as the number of subcarriers goes to infinity.
In this article, we derive the discrete Probability Dis-

tribution (PD) of the time domain samples of M-QAM/
OFDM symbols with a limited number of subcarriers.
The discrete PD can be used to reconstruct distorted
OFDM symbols. We focus on the in-band distortion
which can be caused when OFDM symbols are ampli-
fied in the saturation area or when deliberate clipping is
used to reduce the PAPR [3]. Note that the conventional
Gaussian assumption cannot be used for the data recov-
ery of distorted OFDM symbols. The article is organized
as follows: In Section 2, we derive the PD of M-QAM
modulated OFDM symbols. Using our derivation of PD,
we consider the data reconstruction (DRC) method in
the presence of a soft limiter in Section 3. Finally, we
conclude this article in Section 4.
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2 IDFT for M-QAM symbols
An OFDM signal in the time domain is the sum of N
independent signals over sub-channels of equal band-
width 1/(T + Tcp) and regularly spaced with frequency
1/(T + Tcp), where T is the orthogonality period and Tcp

is the duration of cyclic prefix.
At the transmitter, a frequency domain OFDM symbol

X with N samples X = {X0, X1, ..., XN - 1} is transformed
via an N-point inverse discrete Fourier transform
(IDFT) to a time domain OFDM symbol x with N sam-
ples x = {x0, x1, ..., xN - 1}:

xm =
1
N

N−1∑
l=0

Xl · exp
(
j
2π lm
N

)
, (1)

where m, l Î {0, 1, ..., N - 1}. Note that the trans-
mitted signal is made of the time domain OFDM sym-
bol together with the cyclic prefix. Since the cyclic
prefix is the copy of a part of x, the derivation of the
distribution of the samples in x completely determines
the distribution of the transmitted signal.
We assume hereafter that all the frequency domain

samples Xl are uniformly distributed in the set of a
square M-QAM constellation S; for example:

S = { +1+j√
2
, +1−j√

2
, −1+j√

2
, −1−j√

2
} in the QPSK case. In addi-

tion, the real and imaginary parts of Xl, denoted, respec-
tively, X̂l � �{Xl} , �

Xl � �{Xl} , are uniformly distributed
as depicted in Figure 1. The minimum Euclidean dis-
tance of the constellation is given by 2τ. Then, a general
expression for the PD of {X̂l,

�

Xl} , l Î {0, 1, ..., N - 1} is

given by

Pr
{
X̂l =

(√
M − 2k − 1

)
τ
}
= Pr

{
�

Xl =
(√

M − 2k − 1
)

τ

}
=

1√
M

, (2)

where k ∈ {0, 1, . . . , √
M − 1} .

The characteristic function of X̂l and
�

Xl, l Î {0, 1, ...,
N - 1}, is given by [14]

ϕX̂l
(ω) = ϕ

�
Xl

(ω)

� E
[
exp

(
j X̂lω

)]

=
1√
M

√
M−1∑
k=0

exp
(
j (

√
M − 2k − 1)τω

)
,

(3)

where E [·] is the expectation operator. We will use
this characteristic function in order to obtain the PD of
time domain OFDM samples.

We first consider the real part x̂m � �{xm} given by

x̂m =
1
N

N−1∑
l=0

[
X̂l · c (l,m) +

�

Xl · s (l, m)
]
, (4)

where c (l, m) � cos
(

−2π lm
N

)
and

s (l, m) � sin
(

−2π lm
N

)
.

Given l and m, since both c (l, m) and s (l, m) are

constants, the characteristic functions of X̂l · c (l, m)

and
�

Xl · s (l, m) are obtained as

ϕX̂l·c (l, m)(ω) = ϕX̂l
(c (l, m) · ω) = 1√

M

√
M−1∑
k=0

exp
(
j (

√
M − 2k − 1) τ · c (l, m) · ω

)
,

ϕ�
Xl·s (l, m)

(ω) = ϕ�
Xl

(s (l, m) · ω) = 1√
M

√
M−1∑
k=0

exp
(
j (

√
M − 2k − 1) τ · s (l, m) · ω

)
.

(5)

Then, the characteristic function of

X̂l · c (l, m) +
�

Xl · s (l, m) is given by

ϕ
X̂l·c (l, m)+

�
Xl·s (l, m)

(ω)

=
4
M

⎡
⎢⎢⎢⎢⎣
sin

(√
M
2

τ · c (l, m)ω

)
cos

(√
M
2

τ · c (l, m)ω

)

sin(τ · c (l, m)ω)

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣
sin

(√
M
2

τ · s (l, m)ω

)
cos

(√
M
2

τ · s (l, m)ω

)

sin(τ · s (l, m)ω)

⎤
⎥⎥⎥⎥⎦

(6)
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Figure 1 PD of the M-QAM symbol. PD of the M-QAM modulated symbol in each real or imaginary part, X̂ or
�

X .
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which is proved in Appendix.
Since X̂l and X̂l , l Î {0, 1, ..., N - 1}, are mutually

independent, ϕN x̂m(ω) is given by Equation (7).

ϕN x̂m(ω) =ϕ∑N−1
l=0

[
X̂l·c (l, m)+

�
Xl·s (l, m)

](ω) =

N−1∏
l=0

⎛
⎜⎜⎜⎜⎝ 4

M

⎡
⎢⎢⎢⎢⎣

sin

⎛
⎜⎝

√
M
2

τ ·c (l, m)ω

⎞
⎟⎠ cos

⎛
⎜⎝

√
M
2

τ ·c (l, m)ω

⎞
⎟⎠

sin (τ ·c (l, m)ω)

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

sin

⎛
⎜⎝

√
M
2

τ ·s (l, m)ω

⎞
⎟⎠ cos

⎛
⎜⎝

√
M
2

τ ·s (l, m)ω

⎞
⎟⎠

sin (τ ·s (l, m)ω)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ .

(7)

Therefore,

ϕx̂m(ω) =
N−1∏
l=0

⎛
⎜⎜⎜⎜⎝ 4

M

⎡
⎢⎢⎢⎢⎣

sin

⎛
⎜⎝

√
M

2N
τ ·c (l, m)ω

⎞
⎟⎠ cos

⎛
⎜⎝

√
M

2N
τ ·c (l, m)ω

⎞
⎟⎠

sin (τ ·c (l, m)ω/N)

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

sin

⎛
⎜⎝

√
M

2N
τ ·s (l, m)ω

⎞
⎟⎠ cos

⎛
⎜⎝

√
M

2N
τ ·s (l, m)ω

⎞
⎟⎠

sin (τ ·s (l, m)ω/N)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ . (8)

The general PD for M-QAM modulated OFDM sym-
bols can be obtained by using inversion of characteristic
function of (8), which is expressed as

Pr{x̂m = x} = 1
2π

∞∫
−∞

ϕx̂m(ω) exp (−jωx) dω. (9)

Notice that, since ϕx̂m(ω) in (8) is a function of m, its
PD is also a function of m. In other words, the mathe-
matical expression of PD in (9) has a large number of
different forms, depending on m. In the remainder of
this article, to illustrate our reasoning, we restrict our-

selves to the case where m ∈ {0, N4 , 2N4 , 3N4 } .
When m ∈ {0, N4 , 2N4 , 3N4 } , Equation (8) is reduced to

ϕx̂m(ω) =

⎛
⎜⎜⎜⎜⎝
2 sin

(√
M

2N
τω

)
cos

(√
M

2N
τω

)
√
M sin (τω/N)

⎞
⎟⎟⎟⎟⎠

N

=

(
sin(

√
Mτω/N)√

M sin(τω/N)

)N

.

(10)

As a function of M, Equation (10) represents the charac-
teristic function of x̂m � �{xm} . We proceed further the

PD derivation for two representative examples of modula-
tion scheme: QPSK (M = 4) and 16-QAM (M = 16).

2.1 QPSK case
In the QPSK case (M = 4), Equation (10) turns into

ϕx̂m(ω) =
[
cos (τω/N)

]N
=

1
2N

(
N
N/2

)
+

2
2N

N
2 −1∑
k=0

(
N
k

)
cos

(
(N − 2k)τω

N

)
,

=
1
2N

(
N
N/2

)
+

1
2N

N
2 −1∑
k=0

(
N
k

)

·
[
exp

(
j (N − 2k) τω

N

)
+ exp

(−j (N − 2k) τω

N

)]
.

(11)

Referring to Equations (2) and (3), the discrete PD of
Pr{x̂m} , Pr{x̂m} , is given by

Pr{x̂m = 0} = 1
2N

(
N
N/2

)
,

Pr
{
x̂m = τ

(
1 − 2k

N

)}
= Pr

{
x̂m = τ

(
2k
N

− 1
)}

=
1
2N

(
N
k

)
,

(12)

where k ∈ {0, 1, . . . , N2 − 1}.
Similarly, the PD of �

xm � �{xm} can be derived as

Pr {�

xm} = Pr {x̂m} .

2.2 16-QAM case

In the 16-QAM case (M = 16), ϕx̂m(ω) from (10) is
given by

ϕx̂m(ω) =
[
cos
(
2τω

N

)]N
·
[
cos
(τω

N

)]N
=
[
2
(
cos
(τω

N

))3 − cos
(τω

N

)]N

=
N∑
k=0

(
N
k

)
(−1)k · 2N−k ·

(
cos
( τω

N

))3N−2k
,

(13)

where

(
cos

(τω

N

))3N−2k
=

1
23N−2k

(
3N − 2k
3N−2k

2

)
+

1
23N−2k

3N−2k
2 −1∑
t=0

(
3N − 2k

t

)

·
[
exp

(
jτω (3N − 2k − 2t)

N

)
+ exp

(−jτω(3N − 2k − 2t)
N

)]
.

(14)

Using (14), Equation (13) is expressed as follows:

ϕx̂m(ω) =
N∑
k=0

(
N
k

)
·
(
3N − 2k
3N−2k

2

)
· (−1)k · 2N−k

23N−2k

+
N∑
k=0

3N−2k
2 −1∑
t=0

(
N
k

)
·
(
3N − 2k

t

)
· (−1)k · 2N−k

23N−2k

·
[
exp

(
jτω(3N − 2k − 2t)

N

)
+ exp

(−jτω(3N − 2k − 2t)
N

)]
.

(15)

The first term in Equation (15) gives the PD of x̂m :

Pr {x̂m = 0} =
N∑
k=0

(
N
k

)
·
(
3N − 2k
3N−2k

2

)
· (−1)k · 2N−k

23N−2k
. (16)

For the second term in Equation (15), let p = k + t,
then

Pr
{
x̂m =

τ (3N − 2p)
N

}
= Pr

{
x̂m =

−τ (3N − 2p)
N

}

=
min(N,p)∑

k=0

(
N
k

)
·
(
3N − 2k
p − k

)
· (−1)k · 2N−k

23N−2k
,

(17)

where p ∈ {0, 1, . . . , 3N2 − 1} .
Similarly, we can obtain Pr {�

xm} = Pr {x̂m} .

2.3 Graphical comparison
Figures 2 and 3 represent the comparison between the
estimated (upper) and theoretical (lower) PDs of

m ∈ {0, N4 , 2N4 , 3N4 } for the QPSK and the 16-QAM case,
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Figure 2 PD of QPSK/OFDM symbol. Estimated (upper) and theoretical (lower) PD of {x̂m, �

xm} in a time domain QPSK/OFDM symbol (N =
16), where m ∈ {0, N4 , 2N4 , 3N4 } and τ is normalized to τ = 1√
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Figure 3 PD of the 16-QAM/OFDM symbol. Estimated (upper) and theoretical (lower) PD of {x̂m, �

xm} in a time domain 16-QAM/OFDM
symbol (N = 16), where m ∈ {0, N4 , 2N4 , 3N4 } and τ is normalized to τ = 1√
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respectively, where m ∈ {0, N4 , 2N4 , 3N4 } . The estimated

PD matches the theoretical PD.
Note that these results describe the discrete distribu-

tion of {x̂m, �

xm} , which is not continuous Gaussian dis-
tribution. In the following section, we will use the
discrete nature of the distribution to reconstruct dis-
torted OFDM symbols.

3 Application to DRC
In this section, we show that PD analysis can be applic-
able to DRC at the receiver. We consider a deliberately
clipped OFDM symbol [3] or an OFDM symbol which
operates in the saturation area of an amplifier. Note that
these kinds of distorted OFDM symbols yield an error
floor, depending on the saturation level.

3.1 Soft clipping
In order to illustrate the DRC concept, we consider
hereafter an example of a QPSK case without loss of
generality. Figure 4 represents the constellation of Xl

(frequency domain), where l Î {0, 1, ..., N - 1}. Using
Equation (12), the constellation of xm (time domain),

m ∈ {0, N4 , 2N4 , 3N4 } , is depicted in Figure 5. We assume

that a soft limiter simply clips the OFDM symbol xm as
follows [3]:

x̄m =

⎧⎨
⎩

xm, for |xm | ≤ Ā

Ā · xm
|xm | , for |xm | > Ā, (18)

where Ā is the maximum permissible amplitude limit,
and m Î {0, 1, ..., N - 1}. Note that Ā can be seen as
the saturated amplitude of the amplifier.
As the soft limiter is processed on xm, the clipping

boundary can be observed on the constellation of xm as

depicted in Figure 6 for m ∈ {0, N4 , 2N4 , 3N4 } . In this fig-

ure, the circle represents the maximum permissible

amplitude (Ā = 0.24) as a clipping threshold. Therefore,
the external constellation points (outside the circle) are
projected on the circle due to the clipping process. As a
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Figure 4 Constellation of Xl (QPSK modulation). Constellation of Xl (QPSK modulation), where l Î {0, 1, ..., N - 1}.
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simple example, the constellation points “Δ” are pro-
jected on the circle and the points “☐” are transmitted
instead of “Δ”.

3.2 Data ReConstruction
Let s denotes the constellation of x̄m (see “◊” and “□” in
Figure 6), where m ∈ {0, N4 , 2N4 , 3N4 } . In this example,

the number of “◊” is nd = 21 and the number of “□” is
ns = 24. Therefore, the length of the vector s is K = nd
+ ns = 21 + 24 = 45 such as s = {s1, s2, ..., s45}. The set s
is divided into two subsets: sd and ss

s = {s1, s2, . . . , snd︸ ︷︷ ︸
sd

, snd+1, snd+2, . . . , sK︸ ︷︷ ︸
ss

},
(19)

where sd is the constellation inside the circle ("◊” in
Figure 6) and ss is the constellation on the circle ("□” in
Figure 6).
We consider two kinds of channel: noiseless and

AWGN channels. Over a noiseless channel, if a received
sample rm = x̄m ∈ sd , rm indicates one of “◊” marks.

Then, DRC is not performed, since x̄m = xm . If a
received sample rm = x̄m ∈ ss , rm indicates one of “□”
marks. Then DRC is performed by expanding this “□”
mark to the expected position “Δ” through the line as
illustrated in Figure 7.
Over an AWGN channel, we can use maximum likeli-

hood detection to reconstruct data. A priori probability
Pr{x̄m = sk} , k Î {1, 2, ..., K} can be obtained from the

joint probabilities of x̂m and �

xm , m ∈ {0, N4 , 2N4 , 3N4 } , by
using Equation (12). Through the AWGN channel, a
noisy sample rm = x̄m + wm is received, where wm is a
complex Gaussian random variable with the AWGN
standard deviation s. Using a maximum likelihood cri-
terion, the most probable constellation symbol Fm Î s
is obtained as follows:

φm = argmax
sk∈ s

Pr{x̄m = sk} · Pr{rm | x̄m = sk}

= argmax
sk∈ s

Pr{x̄m = sk}
σ

√
π

exp
(

−| rm − sk |2
σ 2

)
.
(20)
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Figure 5 Constellation of xm. Constellation of xm, where m ∈ {0, N4 , 2N4 , 3N4 } . Note that xm is the mth sample of an OFDM symbol (time
domain).
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DRC is processed as follows: If jm is positioned inside
the circle (jm Î sd), rm is not modified. If jm is posi-
tioned on the circle, it means that jm corresponds to a
□ mark; then its corresponding Δ mark is the recon-
structed value of rm.

3.3 Numerical results
Figure 8 shows the influence of DRC on the QPSK sym-
bol error rate (SER). For the simulation, QPSK/OFDM
symbols are considered with N = 16. A soft limiter clips

the OFDM symbol at Ā = {0.22, 0.23, 0.24, 0.25} . In
this figure, the dashed lines represent the original
OFDM system (clipping without DRC) and the solid
lines represent the DRC case.
The figure shows that DRC can effectively lower the

error floor in the presence of a soft limiter or a satu-
rated nonlinear amplifier, when N is small. Note that
the performance improvements depend on the clipping
threshold Ā , since the constellation of {x0, xN/4, x2 N/4,
x3 N/4} is fixed.

Regardless of the number of subcarriers N, the PD ana-
lysis is always valid, and is given by Equations (12), (16),
and (17). However, since only four subcarriers are used
for DRC, the application for large N will be less effective.
Nevertheless, for higher values of N, it may be worth cal-
culating Equation (9) for some more values of m.

4 Conclusion
We analyze the PD of M-QAM-modulated OFDM sym-
bols. Theoretically, the PD of the mth OFDM symbol
with N subcarriers is not continuous Gaussian, and the
PD is a function of m, where m Î {0, 1 ..., N - 1}. We
provide a general form of the PD for m Î {0, 1 ..., N -
1}, and also derive the PD for exemplary cases of

m ∈ {0, N4 , 2N4 , 3N4 } . The discrete nature of the distribu-

tion can be used to reconstruct the distorted OFDM
symbols in the presence of a soft limiter or a saturated
nonlinear amplifier, by using the maximum likelihood
criterion. The reconstruction of OFDM symbols lowers
the error floor level.
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Figure 6 Illustration of clipping process (circle). Illustration of clipping process (circle). OFDM symbols in Figure 5 are clipped at a given
amplitude Ā = 0.24 .
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Figure 8 QPSK SER with and without DRC. QPSK SER with and without DRC, where QPSK modulated OFDM symbols (N = 16) are considered.
A soft limiter clips the OFDM symbol at Ā = {0.22, 0.23, 0.24, 0.25, ∞} . Note that the case of Ā = ∞ represents that OFDM symbols are not clipped.
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Appendix
Let C1 � τ · c(l,m) · ω and C2 � τ · s(l,m) · ω . Then,
Equation (6) is expressed as

ϕ
X̂l· c (l, m)+

�
Xl·s (l, m)

(ω)

=
1
M

⎡
⎣

√
M−1∑
k=0

exp
(
j (

√
M − 2k − 1)C1

)⎤⎦ ·
⎡
⎣

√
M−1∑
k=0

exp
(
j (

√
M − 2k − 1)C2

)⎤⎦ .
(21)

The first term in (21) is given by
√
M−1∑
k=0

exp
(
j (

√
M − 2k − 1)C1

)

=

√
M
2 −1∑
k=0

exp
(
j (

√
M − 2k − 1)C1

)
+

√
M−1∑
√
M
2

exp
(
j (

√
M − 2k − 1)C1

)

=

√
M
2 −1∑
k=0

[
cos
(
(
√
M − 2k − 1)C1

)
+ j sin

(
(
√
M − 2k − 1)C1

)]

+

√
M
2 −1∑
k=0

[
cos
(
(
√
M − 2k − 1)C1

)
+ j sin

(
(
√
M − 2k − 1)C1

)]

= 2 ·

√
M
2 −1∑
k=0

[
cos
(
(
√
M − 2k − 1)C1

)]
.

(22)

In a similar way, the second term in (21) is given by

√
M−1∑
k=0

exp
(
j (

√
M − 2k − 1)C2

)
= 2 ·

√
M
2 −1∑
k=0

[
cos
(
(
√
M − 2k − 1)C2

)]
. (23)

Then, using (22) and (23), Equation (21) is rewritten
as

ϕ
X̂l· c (l, m)+

�
Xl· s (l, m)

(ω)

=
4
M

⎛
⎜⎜⎝

√
M
2 −1∑
k=0

[
cos
(
(
√
M − 2k − 1)C1

)]⎞⎟⎟⎠ ·

⎛
⎜⎜⎝

√
M
2 −1∑
k=0

[
cos
(
(
√
M − 2k − 1)C2

)]⎞⎟⎟⎠

=
4
M

⎛
⎜⎜⎝

√
M
2 −1∑
k=0

[cos((2k + 1))C1)]

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

√
M
2 −1∑
k=0

[cos((2k + 1)C2)]

⎞
⎟⎟⎠ .

(24)

Using an arithmetic formula [15] denoting a finite
sum of cosines given by

n∑
k=0

cos(ka + b) =
sin
( n+1

2 a
)
cos

( an
2 + b

)
sin a

2

, where n ∈ {1, 2, . . .}, (25)

Equation (24) is written as

ϕ
X̂l· c (l, m)+

�
Xl·s (l, m)

(ω)

=
4
M

⎡
⎣ sin

(√
M
2 C1

)
cos

(√
M
2 C1

)
sin(C1)

⎤
⎦ ·

⎡
⎣ sin

(√
M
2 C2

)
cos

(√
M
2 C2

)
sin(C2)

⎤
⎦ .

(26)
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