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Abstract

In this article, we consider the problem of joint optimization of multi-input multi-output (MIMO) radar waveform
and biased estimator with prior information on targets of interest in the presence of signal-dependent noise. A
novel constrained biased Cramer-Rao bound (CRB) based method is proposed to optimize the waveform covariance
matrix (WCM) and biased estimator such that the performance of parameter estimation can be improved. Under a
simplifying assumption, the resultant nonlinear optimization problem is solved resorting to a convex relaxation that
belongs to the semidefinite programming (SDP) class. An optimal solution of the initial problem is then
constructed through a suitable approximation to an optimal solution of the relaxed one (in a least squares (LS)
sense). Numerical results show that the performance of parameter estimation can be improved considerably by the
proposed method compared to uncorrelated waveforms.
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1 Introduction

Multi-input multi-output (MIMO) radar has attracted
more and more attention recently [1-19]. Unlike the tra-
ditional phased-array radar which can only transmit
scaled versions of a single waveform, MIMO radar can
use multiple transmitting elements to transmit arbitrary
waveforms. Two categories of MIMO radar systems can
be classified by the configuration of the transmitting
and receiving antennas: (1) MIMO radar with widely
separated antennas (see, e.g., [1,2]), and (2) MIMO radar
with colocated antennas (see, e.g., [3]). For MIMO radar
with widely separated antennas, the transmitting and
receiving elements are widely spaced such that each
views a different aspect of the target. This type of
MIMO radar can exploit the spatial diversity to over-
come performance degradations caused by target scintil-
lations [2]. In contrast, MIMO radar with colocated
antennas, the elements of which in transmitting and
receiving arrays are close enough such that the target
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radar cross sections (RCS) observed by MIMO radar are
identical, can be used to increase the spatial resolution.
Accordingly, it has several advantages over its phased
array counterpart, including improved parameter iden-
tifiability [4,5], and more flexibility for transmit beam-
pattern design [6-19]. In this article, we focus on MIMO
radar with colocated antennas.

One of the most interesting research topics on both
types of MIMO radar is the waveform optimization,
which has been studied in [6-19]. According to the target
model used in the problem of waveform design, the cur-
rent design methods can be divided into two categories:
(1) point target-based design [6-12], and (2) extended tar-
get-based design [13-19]. In the case of point targets, the
corresponding methods optimize the waveform covar-
iance matrix (WCM) [6-8] or the radar ambiguity func-
tion [9-12]. The methods of optimizing the WCM only
consider the spatial domain characteristics of the trans-
mitted signals, while the one of optimizing the radar
ambiguity function treat the spatial, range, and Doppler
domain characteristics jointly. In the case of extended
targets, some prior information on the target and noise
are used to design the transmitted waveforms.
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In [7], based on the Cramer-Rao bound (CRB), the
problem of MIMO radar waveform design for parameter
estimation of point targets has been investigated under
the assumption that the received signals do not include
the clutter which depends on the transmitted wave-
forms. However, it is known that the received data is
generally contaminated by the clutter in many applica-
tions (see, e.g., [13,14]). It is noted that the CRB pro-
vides a lower bound on the variance when any unbiased
estimator is used without employing any prior informa-
tion. In fact, some prior information may be available in
many array signal processing fields (see, e.g., [20-22]),
which can be regarded as a constraint on the estimated
parameter space. A variant of the CRB for this kind of
the constrained estimation problem was developed in
[20,22], which is called the constrained CRB. Moreover,
a biased estimator can lower the resulting variance
obtained by any unbiased estimator generally [23-28].
The variant of the CRB for this case is named as the
biased CRB. Furthermore, the variance produced by any
unbiased estimator can be lowered obviously while both
biased estimator and prior information are used. A var-
iant of the CRB for this case was studied in [29], which
can be referred to as the constrained biased CRB. Con-
sequently, from the parameter estimation point of view,
it is worth studying the waveform optimization problem
in the presence of clutter by employing both the biased
estimator and prior information.

In this article, we consider the problem of joint opti-
mization of the WCM and biased estimator with prior
information on targets of interest in the presence of
clutter. Under the weighted or spectral norm constraint
on the bias gradient matrix of the biased estimator, a
novel constrained biased CRB-based method is proposed
to optimize the WCM and biased estimator such that
the performance of parameter estimation can be
improved. The joint WCM and biased estimator design
is formulated in terms of a rather complicated nonlinear
optimization problem, which cannot be easily solved by
convex optimization methods [30-32]. Under a simplify-
ing assumption, this problem is solved resorting to a
convex relaxation that belongs to the semidefinite pro-
gramming (SDP) class [31]. An optimal solution of the
initial joint optimization problem is then constructed
through a suitable approximation to an optimal solution
of the relaxed one (in a least squares (LS) sense).

The rest of this article is organized as follows. In Sec-
tion 2, we present MIMO radar model, and formulate
the joint optimization of the WCM and biased estima-
tor. In Section 3, under the weighted or spectral norm
constraint on the gradient matrix, we solve the joint
optimization problem resorting to the SDP relaxation,
and provide a solution to the problem. In Section IV,
we assess the effectiveness of the proposed method via

Page 2 of 13

some numerical examples. Finally, in Section V, we
draw conclusions and outline possible for future
research tracks.

Throughout the article, matrices and vectors are
denoted by boldface uppercase and lowercase letters,
respectively. We use {-}, {}’, and {}* to denote the
transpose, conjugate, and conjugate transpose, respec-
tively. vec{-} is the vectorization operator stacking the
columns of a matrix on top of each other, I denotes the
identity matrix, and ® indicates the Kronecker product.
The trace, real, and imaginary parts of a matrix are
denoted by tr{:}, Re{-}, and Im{:}, respectively. The sym-
bol {}" denotes Moore-Penrose inverse of a matrix, and
{}" indicates the positive part of a real number. The
notation E{} stands for the expectation operator, diag{a}
for a diagonal matrix with its diagonal given by the vec-
tor a, and ||Al|p for the Frobenius norm of the matrix A.

Given a vector function f : R" —» R¥, we denote by 88;

of;
the k x n matrix the ijth element of which is l‘. NR(A)

90,
is the range space of a matrix A. Finally, the notation
A < B means that B-A is positive semidefinite.

2 System model and problem formulation
Consider a MIMO radar system with M, transmitting
elements and M, receiving elements. Let
S=s1,8,..., sM[]T e CMxL be the transmitted wave-
form matrix, where s; ¢ CL*Li = 1,2,...,M, denotes the
discrete-time baseband signal of the ith transmit ele-
ment with L being the number of snapshots. Under the
assumption that the transmitted signals are narrowband
and the propagation is non-dispersive, the received sig-
nals by MIMO radar can be expressed as

K N¢
Y= 3 Aa@)v! (S + 1 p(B)ac(6)ve (6)S + W, (1)
=1 i=

where the columns of Y ¢ CM:xL are the collected data
snapshots, {Be}x_, are the complex amplitudes propor-
tional to the RCSs of the targets with K being the num-
ber of targets at the considered range bin, and {Gk}gle
denote the locations of these targets. The parameters
(B}, and {6k}, need to be estimated from the
received signal Y. The second term in the right hand of
(1) indicates the clutter data collected by the receiver, p
(0,) is the reflect coefficient of the clutter patch at 6,
and N¢ (Nc > MM, the number of spatial samples of
the clutter. The term W denotes the interference plus
noise, which is independent of the clutter. Similar to [7],
the columns of W can be assumed to be independent
and identically distributed circularly symmetric complex
Gaussian random vectors with mean zero and an
unknown covariance B. a(d;) and v(6;) denote,



Wang et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:15

http://asp.eurasipjournals.com/content/2011/1/15

respectively, the receiving and transmitting steering vec-
tors for the target located at 6;, which can be expressed
as

a(6y) = [¢2Non ) g27hn®) | el2rhorn(@)]

()

v(6y) = [T, 2R B0 g2rhtu @)

where f; represents the carrier frequency, 7,, (6x), m =
1,2,..M, is the propagation time from the target located
at 6 to the wmth receiving element, and
7(6r), n=1,2,... M, is the propagation time from
the nth transmitting element to the target. Also, a. (¢;)
and v, (#,) denote the receiving and transmitting steer-
ing vectors for the clutter patch at 6, respectively.

For notational simplicity, (1) can be rewritten as

Y= 3" Aa(6)v (6)S + HeS + W, 3
k=1

N
where He = )" p(6;)ac(6;)vL(6;), which represents the
i=1
clutter transfer function similar to the channel matrix in
[2]. According to Chen and Vaidyanathan and Wang
and Lu [33,34], vec(H.) can be considered as an identi-
cally distributed complex Gaussian random vector with
mean zero and covariance

Ry, =E [Vec(Hc)vecH(Hc)] . (4)

In fact, Ry, can be explicitly expressed as (see, e.g.,
[35]):

Ry, = VEVI, (5)
where
V= [V1,V2, .. ,VNC] , Vi = Vc(ei) ® 35(91‘), i=1,2,...,Ng

and O'iz =E [,0(9,')/)*(91‘)].
Note that Ry, is a positive semidefinite Hermitian
matrix [33].

We now consider the constrained biased CRB of the

- . 2 2 2
) =d1ag{ol,02,...,aNC},

unknown target parameters x = [0, 83, ﬂIT]T, where

Br=[Bi1 B, ,BI,K]T’ Br=[B1 B ,,31/1<]T:
Br =Re(B), Br =Re(B) and B; = Im(B). According to

Zvika and Eldar Yonina [29], if
n(uut(1+D)") c wuuruu?), the constrained
biased CRB can be written as
Jeaers = (I+ D)U(UTFU)~'u(1+ D), (6)
where

od(x

D(x) = 4%, %
0x

with d(x) denoting the bias for estimating x. U
satisfies:
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G(x)U(x) =0, Uf(x)U(x)=1 (8)

in which G(x) = Bi(x) is assumed to have full row
X

rank with g(x) being the equality constraint set on x
and U is the tangent hyperplane of g(x) [20].

Following [20,21], some prior information can be
available in array signal processing, for example, con-
stant modulus constraint on the transmitted waveform,
and the signal subspace constraints in the estimation of
the angle-of-arrival. Here, we assume that the complex
amplitude matrix B = diag(81,8,...8:) is known as

gi(x) =Bri—1=0,
g(x)=pj—1=0,

i=1,...,K

9
j=K+1,...,2K ©)

Remark

In practice, the parameters of one target can be esti-
mated roughly from the received data by many methods
(see, e.g., [36] for more details). Therefore, we can
obtain the imprecise knowledge of one target by trans-
mitting orthogonal (or uncorrelated) waveforms before
waveform optimization. In this article, our main interest
is only to improve the accuracy of location estimation
by optimizing transmitted waveforms. One can see from
Section 3 that the waveform optimization is based on
the FIM F that considers the unknown parameters con-
sisting of the location and complex amplitude (see, (11)-
(16)). Hence, the estimation of complex amplitude
matrix P is regarded as prior information for waveform
optimization here.

Following (9), we can obtain G = [0kxk, lakx2k]
where 05y, denotes a zero matrix of size 2K x K.
Hence, the corresponding null space U can be expressed
as

U = [Ixxk Oxsxok]. (10)

Based on the discussion above, the Fisher information
matrix (FIM) F with respect to x is derived in Appendix
A and given by

Re(Fi1)  Re(F2) —Im(Fy)

F=2| Rel(F12) Re(Fyn) —Im(Fp) (11)
—ImT(F1;) —ImT(F,,) Re(F22)

where

[Ful; = 87 By [(1 +(Rs®B )Ry ) '(Rs ® B—l)] h;, (12)

[F1ol; = BBy [(1 +(Rs®B Ry,) ' (Rs ® B—l)] h;, (13)
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[Fx2lj = hf'[(1+ (Rs ® B~)Ru,) ' (Rs ® B™) | hy14)

hy, = v(6r) ® a(6r), (15)

b < VO ®@a@)) (16)
26,

Rg = $*ST. (17)

The problem of main interest in this study is the joint
optimization of the WCM and bias estimator to improve
the performance of parameter estimation by minimizing
the constrained biased CRB of target locations. It can be
seen from (6) that the constrained biased CRB depends
on U, D, and F. In practice, it is not obvious how to
choose a particular matrix D to minimize the total var-
iance [23]. Even if a bias gradient matrix is given, it may
not be suitable because a biased estimator reduces the
variance obtained by any unbiased estimator at the cost
of increasing the bias. As a sequence, a tradeoff between
the variance and bias should be made, i.e., the biased
estimator should be optimized [24]. According to Hero
and Cramer-Rao [23], optimizing the bias estimator
requires its bias gradient belonging to a suitable class. In
this article, two constraints on the bias gradient are con-
sidered, i.e., the weighted and spectral norm constraints.
In Section 3, with each norm constraint, we treat the
joint optimization problem under two design criteria, i.
e., minimizing the trace and the largest eigenvalue of
the constrained biased CRB.

3 Joint optimization

In this section, we demonstrate how the WCM and bias
estimator can be jointly optimized by minimizing the
constrained biased CRB. First of all, this problem is con-
sidered under the weighted norm constraint.

A. Joint Optimization With the Weighted Norm Constraint
Similar to [28], the weighted norm constraint can be
expressed as

tr(DDM) < y, (18)

where M is a non-negative definite Hermitian
weighted matrix, and 7y is a constant which satisfies:

y < tr(M). (19)

First, we consider this problem by minimizing the
trace of the constrained biased CRB, which is referred
to as the Trace-opt criterion [7]. Under the weighted
norm constraint (18) and the total transmitted power
constraint, the optimization problem can be formu-
lated as

Page 4 of 13
min tr(Jcacrs)
s.t. tr(Rs) =LP (20)

Rs = 0
tr(D'DM) < y

where the second constraint holds because the power
transmitted by each transmitting element is more than
or equal to zero [6], and P is the total transmitted
power.

It can be seen from (6) that Jcpcrp is a linear function
of F', and a quadratic one of D. Moreover, F is a non-
linear function of Rg, which can be seen from (11)-(14).
As a sequence, this problem is a rather complicated
nonlinear optimization one, and hence it is difficult to
be treated by convex optimization methods [30-32]. In
order to solve it, we make a simplifying assumption that
Rg ® B! spans the same subspace as Ry, i.e.,

N(Rs ® B™!) = R(Ry,), (21)

the rationality of which is proved under a certain con-
dition in Appendix B. Under this assumption, according
to Horn and Johnson [37], the product of Rg ® B! and
Ry, denoted by Rgc, is positive semidefinite, i.e.,

Rsc =0 (22)

With (22), the problem in (20) can be solved by SDP

relying on the following lemma [38, pp. 472]:

Lemma 1

A BH
B C
matrix with C > 0, then Z > 0 if and only if AC > 0,
where AC is the Schur complement of C in Z and is
given by AC = A-B"C'B.

Using Lemma 1, the proposition 1 below can reformu-
late the nonlinear objective in (20) as a linear one, and
give the corresponding linear matrix inequality (LMI)
formulations of the first two constraints, which is
proved in Appendix C.

Proposition 1
Using matrix manipulations, the first two constraints in
(20) can be converted into the following LMIs:

(Schur’s Complement) Let Z = |: ]be a Hermitian

VeC(IMIMr)H

T
=0 23
[VeC(IM(M,) I, ® (I— ERH()] 23)
0 < ERy, < A1, (24)
where
E=(I+Rs®B ")Ry) '(Rs®@B™"). (25)

and 1, B are given in (75) and (87), respectively.
According to Lemma 1, the matrix I — ERyg, must be
positive definite, which can be guaranteed by (72). From
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(11)-(14) and (25), it is known that the nonlinear objec-
tive in (20) can be converted into a linear one with
respect to E.
With (6), (23) and (24), the problem (20) can be
equivalently represented as
min t
tD,E
st tr((1+ D)U(UFU) U1+ D)) < ¢
tr(DHDM) < y
[ T VQC(IM[MI)H ] <0
VQC(IM‘M[) Ivm, ® (I - ERHC) .
0 < ERy, < B1

(26)

where ¢ is an auxiliary variable.

It is noted that the terms in the left hand of the first
two constraint inequalities in (26) are quadratic func-
tions of D, and hence these inequalities are not LMIs.
The Proposition 2 below can give the LMI formulations
of these inequalities, which is proved in Appendix D.
Proposition 2
Using Lemma 1 and some matrix lemmas, the first two
constraint inequalities in (26) can be, respectively,
expressed as

¢ (vec(UH (1 + D))"
|:Vec(UH(I+D)H) (I® (UFU)) ] =0 (27)
v eI o9
vec(DM'/2) | :

Now, the joint optimization problem (20) can be read-
ily cast as an SDP

min ¢
(DE _
¢ (vec(UH (1 + D))"
s.t. i H u =0
vec(U(I+D)") (I® (U'FU))
v veM¥D)| (29)
VeC(DMl/Z) I g
T VEC(IM M, )
VQC(IMM ) IM M, ® (l ERH )
0 < ERy < Al

Next, the joint optimization problem is treated by
minimizing the largest eigenvalue of the constrained
biased CRB, which is referred to as the Eigen-opt criter-
ion [7]. Similar to the case of the Trace-opt criterion,
the problem can be expressed as

min ¢
tD,E
s.t. (I+D)U(U“ru) 'us(1 + D)
tr(DDM) < y
[ T VQC(IM[MT)H :|
VQC(IM[MI) IMer ® (I - ERHC)
0 < ERy, < BI

(30)
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Using Lemma 1 and the results above, this problem is
equivalent to SDP as

min ¢
t,.D,E ~
o tl a+puy,_
- L(@+p)w? utru |7
v veM”2D) (31)
vec(DM/?) I g
| T vec(Tyu, ) <o
| vec(Ium,) Inmt, ® (I —ERg,) | 7

0 < ERy, < f1

B Joint Optimization With the Spectral Norm Constraint

The spectral norm constraint, similar to [28], can be
written as
THDDIT < y1I, (32)

where T is a non-negative definite Hermitian matrix,
and y is a constant satisfying:

Y < Ahax(T), (33)

with A, (T) denoting the largest eigenvalue of T.
First, we consider the frace-opt criterion. Under the
spectral norm constraint (32), the problem can be simi-
larly written as
min ¢
t,D,Rs
s.t. tr((I+D)U(urFu) Ut I+ D)) < ¢
T'DDT < yI :
tr(Rs) = LP
Rg =0

(34)

Following Lemma I and the propositions above, (34)
can be recast as SDP

min t
t,D,E
t (vec(U"(1+ D))" | _
vec(U(1+ D)) (1 (U'FU)) g
yl T'D 35
DT 1 ] 70 3

T VeC(IM[MI)H
vec(Iym,) Imm, ® (I- ERy,)
0 < ERy,_ < g1

Second, similar to the discussion above, the optimiza-
tion problem under the Eigen-opt criterion can be repre-
sented as SDP

min t
,D,E

| (1+D)U 0
(1+D)w" ufru |~
vl THD
D”T
H
VQC(IMLM‘) > 0
V€C(IM Mr) IM M, [ (I ERH()
0 < ERy, < pI

(36)
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After obtaining the optimum E from (29), (31), (35),
and (36), the term Rgg = Rg ® B! can be solved via
(25), which can be reshaped as

(Ipom, + RsgRy, )E = Rgp. (37)
From (37), we have

Rsp = E(Ipm, — Ry E) 7. (38)
Scale Rgg such that

tr(aRsg) = LPtr(B™1), (39)

where o is a scalar which satisfies the equality
constraint.

Given Rgg, Rg can be constructed via a suitable
approximation to it (in a LS sense), which is formulated
as

Rs = arg n}{in ”RSB —Rg®B! ”F
S

st tr(Rs) = LP (40)

Rg =0

The problem above can be equivalently represented as

min t

Rg,t

s.t. ”RSB —Rs®B! ”F <t (41)
tr(Rs) = LP
Rg =0

Using Lemma 1, (41) can be equivalently represented
as an SDP

min t
Rs,t

t vec(Rgg — Rg ® B™1)
[vec(RSB —Rs®B71) I
tr(Rs) = LP
Rs =0

J7o. w2

Using many well-known algorithms (see, e.g., [30-32])
for solving SDP problems, the problems in (29), (31),
(35), (36), and (42) can be solved very efficiently. In the
following examples, the optimization toolbox in [32] is
used for these problems. It is noted that we only obtain
the WCM other than the ultimate transmitted wave-
forms in this article. In practice, the ultimate waveforms
can be asymptotically synthesized by using the method
in [39].

4 Numerical examples
In this section, some examples are provided to illustrate
the effectiveness of the proposed method as compared
with the uncorrelated transmitted waveforms (i.e., Rg =
(P 1 MI).

Consider a MIMO radar system with M, = 5 transmit-
ting elements and M, = 5 receiving elements. We use
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the following two MIMO radar systems with various
antenna configurations: MIMO radar (0.5, 0.5), and
MIMO radar (2.5, 0.5), where the parameters specifying
each radar system are the inter-element spacing of the
transmitter and receiver (in units of wavelengths),
respectively. Let the weighted matrix M =TI and y = 1 in
the case of the weighted norm constraint, and T = I and
v = 0.5 in the other case. In the following examples, two
targets with unit amplitudes are considered, which are
located, respectively, at 0; = 0° and 6, = 13° for MIMO
radar (0.5, 0.5), and #; = 0°and 6, = 7° for MIMO radar
(2.5, 0.5). The number of snapshots is L = 256. The
array signal-to-noise ratio (ASNR) in the following
examples varying from -10 to 50 dB is defined as
PMM, /o, where o2, denotes the variance of the addi-
tive white thermal noise. The clutter is modelled as N,
= 10000 discrete patches equally spaced on the range
bin of interest. The RCSs of these clutter patches are
modelled as independent and identically distributed zero
mean Gaussian random variables, which are assumed to
be fixed in the coherent processing interval (CPI). The
clutter-to-noise ratio (CNR) is defined as tr(Rp,)/ow,
which ranges from 10 to 50 dB. There is a strong jam-
mer at -11 with an array interference-to-noise ratio
(AINR) equal to 60 dB, defined as the product of the
incident interference power and M, divided by 0. The
jammer is modeled as point source which transmits
white Gaussian signal uncorrelated with the signals
transmitted by MIMO radar.

From Section 3, it is known that the joint optimization
problem is based on the CRB that requires the specifica-
tion of some parameters, e.g., the target location and
clutter covariance matrix. In practice, the target para-
meters and clutter covariance can be estimated by using
the method in [36,35], respectively.

In order to examine the effectiveness of the proposed
method, we will focus on the following three cases: the
CRB of two angles with exactly known initial para-
meters, the effect of the optimal biased estimator or
prior information on the CRB, and the effect of the
initial parameter estimation errors on the CRB.

A.The CRB Without Initial Estimation Errors

Figure 1 shows the optimal transmit beampatterns
under the Trace-opt criterion in the case of ASNR = 50
dB and CNR = 10 dB. It can be seen that a notch is
placed almost at the jammer location. Moreover, the dif-
ference between the powers obtained by two targets is
large because only the total CRB is minimized here
excluding the CRB of every parameter. As a sequence,
for a certain parameter, the CRB obtained by the opti-
mal waveforms may be larger than that of uncorrelated
waveforms.
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Figure 1 Optimal transmit beam patterns under the Trace-opt criterion with ASNR = 50 dB and CNR = 10 dB. (a) With the weighted
norm constraint for MIMO radar (0.5, 0.5). (b) With the weighted norm constraint for MIMO radar (2.5, 0.5). (c) With the spectral norm constraint
for MIMO radar (0.5, 0.5). (d) With the spectral norm constraint for MIMO radar (2.5, 0.5).
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Figure 2 shows the CRB of two angles as a function of
ASNR or CNR. One can see that the CRB obtained by our
method or uncorrelated waveforms decreases as the
increasing of ASNR, while increases as the decreasing of
CNR. Moreover, the CRB under the Trace-opt or Eigen-
opt criterion is much lower than that of uncorrelated
waveforms, regardless of ASNR or CNR. Furthermore,
under the same norm constraint, the Trace-opt criterion
leads to a lower total CRB than the Eigen-opt criterion.
Besides, by comparing Figure 2a with 2c or Figure 2b with
2d, it follows that the total CRB for MIMO radar (2.5, 0.5)

is lower than that for MIMO radar (0.5, 0.5). This is
because the virtual receiving array aperture for the former
radar is much larger than that for the latter [3].

B.Effect of the Optimal Biased Estimator or Prior

Information on the CRB

In this subsection, we will study the CRB obtained by only

using the optimal biased estimator or prior information.
First, only the optimal biased estimator is employed.

In this case, let the matrix u in (6) be equal to I (All

other parameters are the same as the previous
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Figure 2 CRB of two angles versus ASNR or CNR. (a) CRB versus ASNR with CNR = 10 dB for MIMO radar (0.5, 0.5). (b) CRB versus CNR with
ASNR = -10 dB for MIMO radar (0.5, 0.5). (c) CRB versus ASNR with CNR = 10 dB for MIMO radar (2.5, 0.5). (d) CRB versus CNR with ASNR = -10
dB for MIMO radar (2.5, 0.5).
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examples.). The variant of the CRB for this case is the
biased CRB as mentioned above. Figure 3 shows the
CRB in this case as a function of ASNR or CNR. It can
be seen that the optimal biased estimator may lead to a
little higher CRB than using the uncorrelated waveforms
sometimes, which is because the total CRB of the ampli-
tudes of two targets is not taken into account here.
Moreover, the Trace-opt criterion leads to higher
improvement of the CRB than the Eigen-opt one under
the same norm constraint, which is similar to the results
obtained from Figure 2.

Second, we examine the CRB obtained by only using
the prior information. In this case, let the matrix D in
(6) be equal to 034, 3x and all the other parameters
remain the same as the previous examples. The variant
of the CRB for this case is the constrained CRB as stated
above. Figure 4 shows the CRB in the case as a function
of ASNR or CNR. One can observe that the contribu-
tions of the prior information to two optimization cri-
teria are almost identical, and the prior information can
significantly improve the accuracy of parameter estima-
tion with the uncorrelated waveforms.
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Figure 4 CRB obtained only by using the prior information, along with that of the uncorrelated waveforms, versus ASNR or CNR. (a)
CRB versus ASNR with CNR = 10 dB for MIMO radar (0.5, 0.5). (b) CRB versus CNR with ASNR = -10 dB for MIMO radar (0.5, 0.5). (c) CRB versus
ASNR with CNR = 10 dB for MIMO radar (2.5, 0.5). (d) CRB versus CNR with ASNR = -10 dB for MIMO radar (2.5, 0.5).
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C. Effect of the Initial Parameter Estimation Errors on the

CRB

In this subsection, we consider the effect of the initial
angle or clutter estimation error on the CRB of two
angles. It is noted that the relative error of the clutter
estimate is defined as the ratio of the estimation error
of the initial total clutter power to the exact one.

Figure 5 shows the CRB versus the estimation error of
the initial angle or clutter power with ASNR = -10 dB
and CNR = 50 dB under the condition that all the other
parameters are exact. We can see that the CRB varies
with the estimate error of the angle or clutter very
apparently, which indicates that the proposed method is
very sensitive to these errors. Hence, the robust method
for waveform design is worthy of investigating in the
future.

5 Conclusions

In this article, we have proposed a novel constrained
biased CRB-based method to optimize the WCM and
biased estimator to improve the performance of para-
meter estimation of point targets in MIMO radar in the
presence of clutter. The resultant nonlinear optimization
problem can be solved resorting to the SDP relaxation
under a simplifying assumption. A solution of the initial
problem is provided via approximating to an optimal
solution of the SDP one (in a LS sense). Numerical
examples show that the proposed method can signifi-
cantly improve the accuracy of parameter estimation in
the case of uncorrelated waveforms. Moreover, under

the weighted norm constraint, the Trace-opt criterion
results in a lower CRB than the Eigen-opt one. As illu-
strated by examples in Section IV, the performance of
the proposed method may be degraded when the initial
parameter estimates are exploited. One way to overcome
this performance degradation is to develop a more
robust algorithm for joint optimization against the esti-
mation error, which will be investigated in the future.

Appendix A

Fisher information matrix

Consider the signal model in (3), and stack the columns
of Y in a M,.L x 1 vector as

y=(8"® IM,)ki Bre(v(0) ® a(6k)) + (ST ® Iy, Jvec(H,) + vec(W). (4:3)
=

Similar to [7], we calculate the FIM with respect to 9,
Bz, Br (Here we only consider one-dimensional targets.).
According to Xu et al. [40], we have

. (44)

ax; Ax;

K H K
(e Lavmeann) o on) L AceIea0)
F(xi,%) = 2Re { tr ket Q! ket

where Q denotes the covariance of the clutter plus
interference and noise, which can be represented as

Q-=E [ [(S" ® Iy, )vec(Hc) + vec(W)] [(S" ® Iy, )vec(Hc) + V€C(W)]H} (45)
With (4), (45) can be simplified as

Q=(S"®Iy )Ry (S*®Iy,) + Iy, ®B (46)
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Let hy = v(0;) ® a(fy). Note that

H

LS K
J(EEIY)s ﬂkhk) JCEI%)> ﬂkhk)
F(6;,6;) = 2Re { tr 39-k=1 Q! " =1 . (47)
! i
Because
T K
d <(S ®1Iy,) 2 :Bkhk) a8)
k=1 T .
=(S"®I h;,
391_ ( Mr)ﬂl i
then
F(6,6) = 2Re [t [57 B (" © 1n)Q ' (8" © L )y | (49)
= 2Re {ﬂfﬂ}ﬁf'(s* ® In,)[(ST ® Ing,)Rus, (S* @ Iy,) + Iy, ® B] ' (ST ® er)hl}

Let

-1
A=(8*®@1y)[(S" ® Iy )R (S* ®1y,) + 1y, ® B] (8" ® Ly,
By using matrix inversion lemma, we can get
A=(8"®Ly,) IIM, @B~ — (ST @ B )Ry [Lu, + ((S"ST) @ B 1]Ru,]i‘(s¥ ®B 1)] (S"®1ly,)

~(8'S) @B — ((5°8") @ B )R [T, + ((5°ST) ® B)Ry ] (8°87) 9 B (50)
= (Iuwm, + (Rs® B )Ryy,) '(Rs ® B™')

where Rg = S'ST. With (50), (49) can be rewritten as
F(0:,65) = 2Re {7 ] Tl + (Rs ® B )R ] ' (Rs ® By}, (51)
and hence
F(6,0) = 2Re(Fyy), (52)

where F;; is given in (12).
Similarly, we have

T K )

) <(S ®;A;R)1k§ Bihy, T 53)
and

3 ((sT ® In,) i ,Bkhk) ”

P G

Hence

F(0,B) = F'(6, Br) = 2Re(F12), (55)
and

F(0,8)) = F'(6, B;) = —2Im(F1,), (56)

where F;, is given in (13).
We also have

F(Br. Br) = E(B1 B;) = 2Re(F2), (57)
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and

F(B;, Br) = F'(Bg, B;) = —2Im(Fy) (58)

where F,, is given in (14).
From (49) and (55)-(58), we can obtain (11)
immediately.

Appendix B

Proof of the rationality of (21)

It is known that the CRB for an unbiased estimator can
be achieved by using the minimum mean square error
(MMSE) estimator [27]. Therefore, from the parameter
estimation perspective, the optimal transmitted wave-
forms can be obtained through minimizing the MMSE
estimation error. For convenience of derivation, we
stack the collected data in (3) into a M,L x 1 vector as

y = (ST ® Iy, )h + (ST ® Iy, )he + vec(W), (59)

K

where h; = vec (Hy), Hy = Y_ Br(v(6r) ® a(6k)), and h,
k=1

= vec (H.). In order to minimize the MSE, the optimal

MMSE estimator, denoting by G,p, should be firstly

obtained. According to Eldar Yonina [28], G,, can be

obtained by solving the following optimization problem:
Gop = arg min E{ b — Gy[1}, (60)

Differentiating the above function with respect to G
and setting it to zero, we have

Gop =Ry, (8" ® IMr)H[(ST ® L) (Ret, + Ruy ) (ST ® Lny)"" + Ly, ® B]il’ (61)

where Ry, = E[h¢h]. Hence, the MMSE estimate of h,
can be represented as:

flt = Gopy (62)

Accordingly, the MMSE estimation error can be writ-
ten as

T {(ht —ho(h - BK)H} . (63)

By substituting (61) and (62) into the equation above
and using matrix inversion lemma, (63) can be rewritten
as

enmse = tr [RH, ~Ru(S"® IM,]”[(ST & Tu)(Ru, + R )(ST @ Tn)' ' 4 T, © B] l(ST ® IM,)RH‘}
=t R, — R (87 @ 1) (1, @ B7172)
x [, © B2)(87 © 1) Ra + Ria )87 @ 1) (1, @ B77) 41] (64)
x(1u, @ B2)(8" @ Iy )R |

:u{RH‘—RH‘(s*apB 12)[(87 @ B) (R + R (5" @ B 1/l)+1]"(s"®5 ‘/Z)RH(I
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which has the same form as Equation 3 shown in [19].
Therefore, according to Theorem 4 in [19], if Ry, and
Ry, can be joint diagonalized, we can obtain

Rs ®B™' = Q(A¢+ A [uA - 11"QY, (65)

where A; and A, are, respectively, the diagonal
matrices with each diagonal entry given by a real and
nonnegative eigenvalue of Ry, and Ry, Q is the unitary
eigenvector matrix of Ry, and Ry, and y is a scalar con-
stant that satisfies the transmitted power constraints. It
can be seen from (65) that R ® B spans indeed the
same subspace as Ry_. The proof is completed.

Appendix C

Proof of proposition 1

In order to convert the objective in (20) into a linear
function, let

E=(I+(Rs®B )Ry.) '(Rs®@B7}), (66)
then
ERy, = (I+Rsc) 'Rsc. (67)

It is noted that ERy, is a Hermitian matrix under the
aforementioned assumption. Substituting (66) into (12)-
(14), we can see that F is the linear function with
respect to E. Because

(T+M)'T+M) =1, (68)
we have

(T+M)TIM=1—(I+M)" L. (69)
Combining (67) and (69), we can obtain

ERy, =1— (I+Rsc) L. (70)
Hence

(I—ERy. )~ ' =1+Rgc. (71)
Because Rgc > 0, we have

I - ERy, > 0. (72)
From (71), it follows that

tr((I — ERy,) ') = tr(I) + tr(Rsc), (73)

Using a well-known inequality in matrix theory, we
have

tr((I — ER,) ') < MiM; + 7max(Re, )tr(Rs ® B™1),

=7

(74)
where

T = MM, + LPtr(B™ ) nmax(Ru, ), (75)
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and 7max(Ruy, ) is the largest eigenvalue of Ry..
With  tr(ABC) = vec(A")" (I ® B)vec(C), we
obtain

can

tr((I — ERy,) ") = tr(I(1 — ERy)~'1)
= vec(Ipnm, ) (Insn, ® (1 — ERy,) ™ Yvec(Iyug,). (76)
= Vec(lM‘M,)H(IM‘M, 24 (I — ERH())_IVEC(IMiMr)

Using Lemma 1, and (74)-(76), (23) follows immedi-
ately. In order to obtain (24), we rely on the following
lemma.

Lemma 2

Let A and Bbe positive and non-negative definite Hermi-
tian matrix, respectively. Then, AB > 0 if AB is a Her-
mitian matrix.

Proof: According to the similarity property of the
matrices [38], AB is similar to a Hermitian matrix
A~12ABAY/?2 = A/2BAY/2. Hence, if we can obtain
x"A2BAY2x > 0, Vx, then AB > 0. Let y = A'/?x,
then

xAZBAY?x = yHBy. (77)

Following the definition of the non-negative matrix
[38], we have

x"AV2BA2x > 0. (78)
Thus, AB > 0.
Following Lemma 2, it is obvious that

ERy, = (I, + Rsc) 'Rsc = 0. (79)

It is noted that Ry, can be diagonalized by its eigenva-
lue decomposition, i.e.,

Rgc = UXUY, (80)

where u is a unitary matrix and £ = diag{1,,4,,...,
AMMr} is a diagonal matrix with each diagonal entry
given by a eigenvalue. With Rgc > 0, we can obtain A; >
0,i=1,2,..,M:M,. Then (79) can be rewritten as

ERy, = U(Z + )~ 'zUr. (81)

Denote the eigenvalue of ERy, by
yi(ERy,), i=1,2,--- ,MM,. From (81), yi(ERn,) can
be expressed as

A

82
)\.i+1 ( )

Yi(ERn,) =
From (82), it is known that y;(ERpy,) increases mono-
tonically with A,. Hence,

Amax

/ 83
Amax + 1 (83)

Ymax (ERHE) =
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where Ymax(ERp, ) and A, are the largest eigenvalues
of ERy, and Ry, respectively. As discussion above, we
have

tr(Rsc) = tr((Rs ® B™")Ru,) < LPymax(Ru )er(B™"). (84)

Because Rgc * 0, then

Amax < tr(Rsc). (85)
With (83)-(85), we have

Ymax(ERn,) < B, (86)
where

-1

" e )1 )
Then, we have

ERy, < L (88)

By combining (79) and (88), (24) follows immediately.

Appendix D
Proof of proposition 2
Because tr(ABCD) = vec(A") (D" ® B)vec(C), then

tr((I+ D)U(uFu)~tuf (1 + D))
= tr((1 + D)U(UFU) UM (1 + D))

= (vec(U"(1+ D))" (1 @ (UFFU) " )vec(U" (1 + D)) (89)
= (vec(UH(1+ D)) (1 @ (UTFU))~tvec(UH (I + D))
Evidently,
tr(D'DM) = tr(D'DM2M'/?), (90)

where M2 is the square root of M [38]. With tr
(ABC) = tr(CAB), (90) can be rewritten as

tr(D'DM) = tr(M'/2D''DM/?). 91)

With Lemma 1, (89) and (91), we can obtain (27) and
(28).
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