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Abstract

This work presents a scale-based forward-and-backward diffusion (SFABD) scheme. The main idea of this scheme is
to perform local adaptive diffusion using local scale information. To this end, we propose a diffusivity function
based on the Minimum Reliable Scale (MRS) of Elder and Zucker (IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 699-
716, 1998) to detect the details of local structures. The magnitude of the diffusion coefficient at each pixel is
determined by taking into account the local property of the image through the scales. A scale-based variable
weight is incorporated into the diffusivity function for balancing the forward and backward diffusion. Furthermore,
as numerical scheme, we propose a modification of the Perona-Malik scheme (IEEE Trans. Pattern Anal. Mach. Intell.
12(7), 629-639, 1990) by incorporating edge orientations. The article describes the main principles of our method
and illustrates image enhancement results on a set of standard images as well as simulated medical images,
together with qualitative and quantitative comparisons with a variety of anisotropic diffusion schemes.
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1. Introduction

Different attributes such as noise, due to image acquisi-
tion, quantization, compression and transmission, blur
or artefacts can influence the perceived quality of digital
images [1], and requires post-processing such as image
smoothing and sharpening steps for further image analy-
sis including image segmentation, feature extraction,
classification and recognition. In order to reduce noise
while preserving spatial resolution, recent approaches
use an adaptive approach by applying a combination of
smoothing and enhancing filter to the image: image
areas with little edges or sharpness are selectively
smoothed while sharper image areas are instead pro-
cessed with edge enhancing filters. Thus, the optimal
strategy for noisy image enhancement is the combina-
tion of smoothing and sharpening that is adaptive to
local structure of the image [2] with the aim of improv-
ing signal-to-noise ratio (SNR) and contrast-to-noise
ratio (CNR) [3-8] of the image.
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Scale-space methods in image processing have proven
to be fundamental tools for image diffusion and
enhancement. The scale-space concept was first pre-
sented by lijima [9-11] and became popular later on by
the works of Witkin [12] and Koenderink [13]. The the-
ory of linear scale-space supports edge detection and
localization, while suppressing noise by tracking features
across multiple scales [12-17]. In fact, the linear scale-
space is equivalent to a linear heat diffusion equation
[13,14]. However, this equation was found to be proble-
matic as edge features are smeared and distorted after a
few iterations. In order to overcome this problem, Per-
ona and Malik [18] proposed an anisotropic diffusion
partial differential equation (PDE), with a spatially con-
stant diffusion coefficient. In their work, the term “ani-
sotropic” refers to the case where the diffusivity is a
scalar function varying with the location, it limits the
smoothing of an image near pixels with a large gradient
magnitude, which are essentially the edge pixels. Perona
and Malik’s work paved the way for a variety of aniso-
tropic diffusive filtering methods [19-49], which have
attempted to overcome the drawbacks and limitations of
the original model and has produced significant
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advances. The main motivation for anisotropic diffusion is
to reduce noise while minimizing image blurring across
boundaries, but this process has several drawbacks, among
them the disappearance of fine structures in low SNR or
CNR regions and increased blurring in fuzzy boundaries.
This is mainly due to the fact that the image gradient mag-
nitude, on which the diffusion coefficient is estimated, is
noisy and makes it difficult to distinguish between signifi-
cant features and noise due to overlocalization, hence
deciding edginess using the diffusion coefficient could be
unreliable. In addition, traditional nonlinear diffusion fil-
tering process does not offer any image-dependent gui-
dance for selecting the optimum gradient magnitude at
which the diffusion flow must have a maximum value
[50]. Moreover, as it was expressed by Black et al. [29], the
choice of the diffusion coefficients could greatly affect the
level of preservation of the edges.

In this article, based on early works on forward-and-
backward (FAB) diffusion schemes [38,50], where the
smoothing and sharpening actions are combined in the
same diffusion process system, we propose a scale-based
forward-and-backward diffusion (SFABD) scheme. The
main idea of the proposed scheme is that the magnitude
of the diffusion coefficient at each pixel is determined
by taking into account the local property of the image
through the scales. This is performed using the notion
of the Minimum Reliable Scale (MRS) as proposed by
Elder and Zucker [18]. This technique is based on statis-
tical reliability of the edge detection operator responses
at different scales [51]. The reliable scale as defined by
Elder and Zucker, means that at the selected scale and
larger ones, the likelihood of error due to sensor noise
is below a standard tolerance. By choosing the MRS, for
edge detection at each pixel in the image, we prevent
errors due to sensor noise while simultaneously mini-
mizing errors due to interference from nearby structure.
Such a multiscale measure along with the gradient can
capture more accurately edges over a wide range of blur
and contrasts. Using this concept, a MRS-based diffusiv-
ity function is proposed. As a result, the proposed
scheme can adaptively encourage strong smoothing in
homogeneous regions, while suitable sharpening in
detail and edge regions. Furthermore, we modify the
Perona-Malik [50] discrete scheme by taking edge orien-
tations into account.

The remainder of this article is organized as follows:
Section 2 gives an overview of the state-of-the-art aniso-
tropic diffusion filtering; Sect. 3 presents the proposed
SFABD algorithm; In Sect. 4, we illustrate image
enhancement results on a set of well known test images
as well as artificial medical images, and perform a quali-
tative and quantitative comparison of our method with
a variety of anisotropic diffusion schemes. Finally, Sect.
5 states our concluding remarks.
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2. Recent work on anisotropic diffusion

Perona and Malik [50] formulated anisotropic diffusion
filtering as a process that encourages intraregional
smoothing, while inhibiting interregional denoising. The
Perona-Malik (P-M) nonlinear diffusion equation is of
the form:

ol (x,y, t)
ot

where V is the gradient operator, div is the divergence
operator and ¢(-) is the diffusion coefficient, which is a
non-negative monotonically decreasing function of local
spatial gradient. If ¢(-) is constant, then isotropic diffu-
sion is enacted. In this case, all locations in the image,
including the edges, are equally smoothed. This is an
undesirable effect because the process cannot maintain
the natural boundaries of objects. The P-M discrete ver-
sion of Equation 1 is given by:

=div (¢ (VI (x,y, 1)) VI(x,y,1)) 1)

- A (52 gy (52)
[y t+1)=1(xy,0)+ nGen) > e(VIgVIED (2
(pa)en(xy)
where (x, y) denotes the coordinates of a pixel to be

smoothed in the 2-D image domain, ¢ denotes the dis-
crete time step (iterations). The constant A is a scalar
that determines the rate of diffusion, 1(x, y) represents
the neighbourhood of pixel (x, y) and |n(x, y)| is the

y). VIE;/}I% indicates

the image intensity difference between two pixels at (x,

number of neighbours of pixel (x,

y) and (p, g) to approximate the image gradient. For the

4-connected neighbourhood’s case, the directional gradi-
ents are calculated in the following way:

ViN(xy)=1(x,y—1, t)—I(x,y,t)
Vis(x,y) =1(xy+1,t)—I(xy1) 3)
VIg(x,y) =1(x+1,y,t) —I(xy1t)
Viw (xy) =1(x—1,y,t) = I(x,y,1)

In Perona-Malik’s work [50], the diffusivity function has

1

(191 Gy, 0] /1)

been defined as: € (VI (x, 1z t)) =

where o > 0
or

(VI p) =ep (<(IVI@r ol B7) @

where || VI|| is the gradient magnitude and the para-
meter k serves as a gradient threshold: a smaller gradi-
ent is diffused and positions with larger gradient are
treated as edges. The P-M equation has several practical
and theoretical drawbacks. As mentioned by Alvarez et
al. [20], the continuous P-M equation is ill posed with
the diffusion coefficients in (4); very close pictures can
produce divergent solutions and therefore very different
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edges. This is caused by the fact that the diffusion coef-
ficient ¢ used in [50] leads to flux decreasing for some
gradient magnitudes and the scheme may work locally
as the inverse diffusion that is known to be ill posed,
and can develop singularities of any order in arbitrarily
small time. As a result, a large gradient magnitude no
longer represents true edges and the diffusion coeffi-
cients are not reliable, resulting in unsatisfactory
enhancement performance.

So far, much research has been devoted for improv-
ing the Perona-Malik’s anisotropic diffusion method.
For example, Catte et al. [19] showed that the P-M
equation can be made well posed by smoothing isotro-
pically the image with a scaling parameter o, before
computing the image gradient used by the diffusion
coefficient:

al (x,y,t)

o =div(c (VI (xy,t)) VI(x,y.t)) (5)

Equation 5 corresponds to the regularized version of
the P-M PDE, and I; = G, (I)*I is a smoothed version
of I obtained by convolving the image with a zero-
mean Gaussian kernel G, of variance ¢”. Similarly,
Torkamani-Azar et al. [52] replaced the Gaussian filter
with a symmetric exponential filter and the diffusion
coefficient is calculated from the convolved image.
Although these improvements can convert the ill-
posed problem [53] in the Perona-Malik’s anisotropic
diffusion method into a well-posed one, their reported
enhancement and denoising performance has been
further improved. Weickert [54] proposed later a non-
linear diffusion coefficient that produces segmentation-
like results given by:

|V, (x,y,1)| =0
, |VI17 (% l)‘ >0 (6)

1,
cxy )= [ e (- Chn
e ( (IVI Gy, o) /R)"

where segmentation-like results are obtained using m
=4 and C, = 3.31488.

Black et al. [29] proposed a more robust “edge-stop-
ping” function derived from Tukey’s biweight:

(o) - {g}-[l (Vi l/e) ] V] 200 (7)

otherwise.

where o, is the “robust scale”. Anisotropic smoothing
with such edge stopping function can preserve sharper
boundaries than previous schemes. Another diffusivity
function, based on sigmoid function, has been proposed
by Monteil and Beghdadi [33]:

¢(xyt) =05 [1—tanh(y - (|VI(xy,1)| —k))] (8)
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where y controls the steepness of the min-max transition
region of anisotropic diffusion, and k controls the extent of
the diffusion region in terms of gradient gray-level.

Notice that all of anisotropic diffusion filters presented
above, utilize a scalar-valued diffusion coefficient (diffu-
sivity function) ¢ that is adapted to the underlying
image structure, Weickert [26,30,55] defined this “pseu-
doanisotropy” as “isotropic nonlinear”, and pointed out
that the consequence of isotropic nonlinear diffusion is
that only the magnitude, but not the direction of the
diffusion flux can be controlled at each image location.
Noise close to edge features remains unfiltered due to
the small flux in the vicinity of edges. To enable
smoothing parallel to edges, Weickert [30] proposed
edge enhancing diffusion by constructing the diffusion
tensor based on an orientation estimate obtained from
observing the image at a larger scale:

ol (x,y, t)

o = div (D (VI (xy, t)) -VI (x, Y1) 9)

where D is a 2 x 2 diffusion tensor and is specially
designed from the spectral elements of the structure
tensor to anisotropically smooth the image, while taking
into account its intrinsic local geometry, preserving its
global discontinuities.

For simultaneously enhance, sharpen and denoise
images, Gilboa et al. [38] proposed a FAB adaptive diffu-
sion process, denoted here as GSZFABD, where a nega-
tive diffusion coefficient is incorporated into image-
sharpening and enhancement processes to deblur and
enhance the extremes of the initial signal:

1
1+ (| VI(xy o) k)"

Lo ((IVI Gy 0l =) )™

where: k; has similar role as the k parameter in the P-
M diffusion equation; k;, and w define the range of back-
ward diffusion, and are determined by the value of the
gradient that is emphasized; o controls the ratio
between the forward and backward diffusion; and the
exponent parameters (n, m) are chosen as (n = 4, m =
1). Equation 10 is locally adjusted according to image
features, such as edges, textures and moments. The
GSZFABD diffusion process can therefore enhance fea-
tures while locally denoising the smoother segments of
images. Following the same ideas, and in order to avoid
that the transition length between the maximum and
minimum coefficient values varies with the gradient
threshold, which makes controlling diffusion difficult,
we proposed in [44] the local variance controlled for-
ward-and-backward diffusion (LVCFABD) coefficient:

c(VI(xy1)) =
(10)
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1—tanh (81 - (| VI (xy,1) | - )
—a-[1-1ant? (B2 (o — |VI (@ y0)]))] (D)

c(VI(xy.1) = )

where B, and 3, control the steepness for the min-max
transition region of forward diffusion and backward dif-
fusion, respectively. These two parameters are vital to the
FAB diffusion behaviour and the transition width from
isotropic to oriented flux can be altered by modulating
them. In addition, the obtained diffusion process can pre-
serve the transition length from isotropic to oriented flux,
and thus it is better at controlling the diffusion behaviour
than the FAB diffusion of Gilboa et al. [38].

3. Scale-based forward-and-backward diffusion
scheme

In this article, we propose a SFABD scheme combining
the forward-backward scheme given by Equation 10 and
the notion of MRS as proposed by Elder and Zucker
[18]. The MRS allows defining a classification map R(x,
), where each pixel (x, y) is classified into homogenous,
edge or detail pixel. R(x, y) is then used in the coeffi-
cient o of Equation 10 to locally adapt the anisotropic
diffusion. Finally, for implementing the SFABD scheme,
we propose a modification of the P-M scheme by taking
edge orientation into account.

3.1 Local scale-based classification map

In anisotropic diffusion scheme the rate of diffusion at
each pixel is determined by diffusion coefficients that
are monotonically decreasing functions of the gradient,
thereby mainly ensuring strong smoothing in flat areas
and weak diffusing near edge features. Thus, the strat-
egy of identifying homogeneous and edge regions is
very significant. Gradient is widely used to detect vari-
able boundary in image processing, however, it is diffi-
cult for this measure to distinguish significant
discontinuities from noise due to overlocalization. In
addition, during anisotropic diffusion process, fine
structures often disappear and increasing blurring
occurs in fuzzy boundaries. To overcome this problem,
we follow the idea of Elder and Zucker [18] of multi-
scale approach for edge detection, and explore the
selection of proper scales for local estimation that
depends upon the local structure of edges. The esti-
mated scale is then used as a critical value and repre-
sents the MRS for each pixel in an image. The MRS
proposed by Elder and Zucker [18] is based on two
assumptions: (1) the noise comes from a stationary,
zero-mean white noise process; (2) the standard devia-
tion of the noise can be estimated from the image
itself or by calibration. For the sake of clarity, the MRS
is briefly described.
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In edge detection, it is very important to estimate the
nonzero gradient at each pixel in an image. The gradient
computation from discrete data is an ill-posed problem.
Smoothing the data with a Gaussian filter is the well-
known regularization method. Hence, the gradient can
be estimated using steerable Gaussian first derivative
basis filters:

—(+r?)
—X 207 (12)
& (x,y,01) = 277014e o;
—(+r?)
-y 202 (13)
g (xy,01) = 277014e o;

where o, denotes the scale of the first derivative
Gaussian kernel g(x, y, 01). The magnitude and direction
of the gradient in an image I(x, y) are given by:

191 (vson)| =y (1 (ovson) + 1y oy o)) (1)
where:
0 = arctan (Z EZ :: :3) (15)

0 is the gradient vector direction at (x, y). L(x, y, 1)
and I, (x, y, 01) are defined as:

L (x,y,01) = 8 (x,y,01) * I (x,y) (16)

L (x,y,01) = 8 (x,y,01) * I (x,y) (17)

In gradient-based edge detection, the local gradients in
a homogeneous region due to noise will have a nonzero
value. Thus, the likelihood that the response of the gra-
dient operator induced by noise should be respected.
Considering the derivative operation as a random pro-
cess transformation, the probability distribution function
(PDF) of a noise gradient can be represented as [56,57]:

pron (v) = :; exp (=12 /25) (18)

1

s1= gy on)], - on (19)

where the L norm of the first derivative operator is
-1
I8 (xy. 1), = (2\/27r<712) , 0, is the standard devia-

tion of the sensor noise, and o7 is the scale of the Gaus-
sian kernel. Elder and Zucker [18] defined the MRS as
the unique scale at which the events can be reliably
detected. By reliable, they mean that at this and larger
scales, the likelihood of error due to sensor noise is
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equal to or below a predetermined false positive rate.
Reliability is defined in terms of a Type I (false positive)
error, oy, for the entire image and a point-wise Type I
error, ,. Under the assumption of i.i.d. noise, the
point-wise Type I error ¢, can be computed from the
probability of having no false positive edges as follows
[18]:

ap=1—(1—a)N (20)

where N is the total number of pixels in the image. By
selecting the MRS, the error due to sensor noise is lim-
ited while the interference of neighbourhood structures
is minimized. Given the probability distribution function
(pdf) of gradient of the noise in equation (18), point-
wise Type I error «, is defined when using a gradient
threshold ¢; to detect an edge:

ap =fc SU% exp (—1v7/2s7) dv

Using the above equation, and considering a fixed type
I error, we can define a critical value function:

on \/ —In(a) (29

207 bd

(21)

1 @) = [g (5.01) o+ /=210 (@) =

Giving a point-wise Type I error ¢, ¢,(07) represents
the statistically reliable minimum gradient response
based on the sensor noise and operator scale. Figure 1
depicts the critical value function ¢;(o;) for different
noise levels and different Type I error rates. It is easy to
observe that c¢;(-) is a non-negative monotonically
decreasing function of o;, which is helpful in detecting
blurred boundaries. Comparing Figure la and 1b, we
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notice that ¢;(0;) is more sensitive to the standard
deviation of sensor noise o, than to the Type I error o;.
Furthermore, ¢;(07) grows as o, increases, for eliminat-
ing spurious edges in the presence of highly corrupted
images. In this article, a thin-plate smoothing spline
model is used to smooth a given image. It is assumed
that the model whose generalized cross-validation score
is minimum can provide the variance of the sensor
noise o,, [58].

For the MRS algorithm, how to sample the scale space
is an open question. In scale space theory and for nat-
ural images, it is known that logarithmic scale is suffi-
cient to represent the scale space completely [13]. For
example, Elder and Zucker [18] used six logarithmic
scales oy = {0.5, 1, 2, 4, 8, 16} in their experiments.
Table 1 summarises the alternative sampling schemes
for scale space, both the Logarithmic and Limited-Log
methods are logarithmic scales, while the latter has a
shorter coverage. The Linear method samples the scale
uniformly, and the Linear-Log one is a combination of
Linear and Logarithmic. In this work, we empirically
found the following linear sampling gives good results:
o, = {06, 09, 1.2, 1.5,..., 2.4}. In our implementation, we
select the MRS at each pixel as the smallest scale at
which the gradient estimate exceeds the critical value
function:

61 (xy) =infloy : ||VI(xy.01)]| = c1 (o1)} (23)

Strictly speaking, if | VI (x,y,01)| < ¢1 (max (07)), the
pixel usually resides in homogeneous regions and the
MRS can be defined as &7 =max(o;), while
[VI(x,y,01)| > c1 (min (07)), the pixel may correspond

@
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Figure 1 Plots of the critical value function for different parameters settings. (a) The critical value function with respect to different noise
levels (o = 0.05). (b) The critical value function with respect to different Type | error rates (o, = 20).
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Table 1 Alternative sampling of the scale space.

Sample method [o2]

Logarithmic {05, 1, 2,4, 8 16}
Linear {05,1,15,2, 25,3}
Limited-Log {05, 1,2}
Linear-Log {05, 1,2, 3,4, 5}

to edge or detailed feature and the MRS is chosen as
6’1 = min (0’1 )

Finally, we define the scale-based classification map R
(%, y) as follows:
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homogeneous region if 61 (x,¥) > Gsmooth
edge region if 61 (x,y) < Oedge (24)
detail region otherwise

R(xy) €

where R(x, y) denotes the region type of pixel (x, y). It
has to be noted that the proper modulation of the
thresholds Ogmooth and Oeqge is required for a robust
classification map. As an example, the classification map
of the Cameraman image and its noisy version (o° =
225) are illustrated in Figures 2b and 2d, respectively. In
the map, black regions are homogeneous, gray regions
represent detail regions, while white regions manifest

e
4

(d)
Figure 2 Local scale-based classification map of the Cameraman image. (a) Original image. (b) Classification map of (a) (Gsmooth = 2, Cedge
= 1). (c) Noisy image (0” = 225). (d) Classification map of (0) (Gsmootn = 2. Oedge = 1).
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inhomogeneities that indicate most of the important fea-
tures, e.g., the camera and tripod. This example clearly
illustrates that the scale-based classification map readily
indicate locations of highly homogeneous, detail and
edge regions.

3.2 Scale-based forward-and-backward diffusion
coefficient

As shown in [59,60], if the weight o in (10-11) is con-
stant for all pixels in an image, this diffusion coefficient
(10) is positive for small image gradients, while it
becomes negative for large ones, and finally becomes
positive again. Different nonlinear diffusion behaviours
can be obtained by varying the value of «. For example,
when « is large, the backward diffusion force is domi-
nant. The larger o is, the more sharpening occurs. How-
ever, a too large «a easily results in oscillations.
Conversely, when o is small, the diffusion process per-
forms image smoothing. Small values of ¢ increase the
noise attenuation at the price of a possible increase of
detail blur. Thus, the optimal choice depends on the
amount of noise variance and is typically a trade-off
between smoothing and sharpening. Nevertheless, Gil-
boa et al. [38] proposed that the same « is used for the
entire image, regardless of local structures of an image,
which leads to over-smoothing in edge or detail regions
and under-smoothing in homogeneous regions. In this
article, we propose the balancing weight ¢, with differ-
ent values dymooths Oedge ANd Jqerail » Selectively applied at
each pixel following the value of the local scale-based
classification map R(x, y). Indeed, in the edge areas, the
image requires more sharpening to highlight important
features embedded in it, while in the detail regions, the
diffusion process should compromise the effects of
smoothing and sharpening, ensuring that the backward
force can emphasize the fine structures in the image
and the stabilizing forward force is strong enough to
avoid oscillations. Whereas, in homogeneous regions,
the gradient magnitude is very slow after the Gaussian
pre-smoothing is applied to reduce the background
noise. Thus, the approximate isotropic diffusion is per-
formed to uniformly smooth the gentle and flat areas. In
this way, each pixel is adaptively assigned a different
parameter by evaluating the local structures. This is
made possible using the MRS-based diffusivity function:

1

c(VI(xy,t)) = — o
N I S A I (25)
with
8smooth R (x,7) € homogeneous regions
o =1 Sedge R(x,y) € edge regions (26)
Sdetail R(x,y) € detail regions
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where dsmooths Jedge aNd dgerail are the scale-based
weights, selected empirically such that degge > dgetail 2
Osmooth = 0. K¢ and ki, control the MRS-based diffusiv-
ity function for forward and backward diffusion,
respectively. As mentioned above, the parameter k¢ has
the same role as the gradient threshold in the P-M dif-
fusion equation. Thus, the mean of local intensity dif-
ferences in homogeneous regions is effective for
controlling the forward diffusion; while k;, is deter-
mined by the value of the gradient that is emphasized.
Previous works [38,59] demonstrated that &, is several
times larger than k¢, in our case, we empirically defined
the two gradient thresholds in (25) as [kg k] = [1,2]*k.
This strategy is indeed required in cases of natural sig-
nals or images because of their nonstationary structure.
Usually, a minimal value of forward diffusion should
be kept, so that large smooth areas do not become
noisy. For the estimation of k, we use the assumption
of i.i.d. noise, indeed, since the noise is assumed to be
randomly distributed in the image space, a practical
way of estimating its variance is to consider homoge-
neous regions where small variations or textures are
mainly due to noise. Thus, k is estimated as the mean
of the local intensity differences on the homogeneity
map, i.e.,

~ 2 (xp)e, (if) By 1) =1 (xy)|
- N,

k (27)

where Q4 ={(xy) : 61 (%)) = Osmoon} and B,, is
the neighbourhood set of pixel (x, y), and N, is the total
number of pixels in the homogeneous regions as defined
by the classification map R(x, ). When Q, is empty, the
simplest idea might be to setup k as a user defined con-
stant, or using a “noise estimator™ a histogram of the
absolute values of the gradient throughout the image is
computed, and k is set greater than or equal to e.g. 90%
value of its integral at each iteration.

3.3 Edge orientation driven discretization scheme
(EODDS)

As mentioned in Sect. 3.1, three different regions are
classified before diffusion evolution. However, edge
orientation is not taken care in the discrete scheme of
P-M anisotropic diffusion. As a result, they are always
considered to be displaced vertically or horizontally [61].
Moreover, one cannot recognize whether a slight inten-
sity variation is mainly due to a slow varying edge or
noise, so it is unreasonable that both situations are trea-
ted in the same way. The anisotropic diffusion discrete
scheme should be modified to take edge orientations
into account in the detail and edge regions, i.e. filtering
action should be rather stronger on the direction paral-
lel to the edge, and weaker on the perpendicular
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direction. Hence, we discretized the original anisotropic
diffusion equation as follows:

I(x,y,t+1)

=I(xyt)+A- (Wy(0) - (cx - VNI +cs - VsI)
+ Wy (0) - (cg - Vil + cw - Vwl)) +

L+ (Wp, (0) - (enk - VNE + csw + Vswl)

W, () - (exw - Vawl + ¢sg - Vsel))

where the mnemonic subscripts N, S, E, W, NE, SW,
NW and SE denote the eight directions North, South,
East, West, North-East, South-West, North-West and
South-East, and the symbol V stands for nearest-neigh-
bour differences. A is the time step for the numerical
scheme; 0 is the edge direction at pixel (x, y), W~/(0),
Wx(0), Wp, (0) and Wp, (0) are weights for different
edge directions.

For a nonlinear diffusion scheme, stability is an impor-
tant issue that concerns possible unbounded growth or
boundness of the final result of the diffusion scheme.
The essential criterion defining stability is that the
numerical process must restrict the amplification of all
components from the initial conditions. In the following,
we describe how to find the maximum value of A assur-
ing the stability. Assuming N, the dimension of the
neighborhood in direction d (in the vertical or horizon-
tal direction for 4-connected neighbourhood, N,; = 1),
the stability condition is given by [30]:

(28)

1

D
2

0<Ac< 5

2
Nd

where D is the dimension of a given image. For our
case (2-D images and 8-connected neighborhood), the
condition becomes:

1 1 1
0<A<

2 - 2 2 2 2 273
D 4
Zd:lezi Zd:l[\]ﬁ ptrpetpet

In this article, the step of keypoint orientation in
scale-invariant feature transform (or SIFT) [62] algo-
rithm is used for estimating the edge direction. The
image is subdivided into nonoverlapping blocks of the
same size, typically between 8 x 8 and 32 x 32 pixels.
The gradient-based edge orientation histogram is then
calculated in each block. If we let N be the total number
of pixels in the image and # be the total number of bins,
the histogram H; meets the following conditions:

n
N = Z Hi (x,y)
i1

(29)
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In the histogram, 360 degree is grouped in 36 groups,
each of which is /18 degree, and we obtain n = 36.
Thus, the main orientation in each block is defined as
follows:

T . T T
0=0+ ) =arctan(1ndex~ 18>+ 5 (30)
and
index = argmax{i : H;(x, y)} (i=1,2 ..36) (31)

1

where 9 is the main gradient direction, by calculating
the histogram of the gradient direction for each pixel (x,
) in the block, and “arctan” is the inverse tangent func-
tion. We assume that if an intensity variation between
two zones is present, the edge has to be located along
the perpendicular direction. The calculation of orienta-
tion histogram can be performed in real time. Further-
more, the comparison of orientation histograms can be
performed using Euclidian distance that is very fast to
compute for vectors whose dimensions are 36.

Once the estimation of the edge direction has been
performed, the weights W,(6), Wy(6), Wp, (8) and
Wb, (8) have to be defined, in such a way that they
satisfy the following constraint, with the aim of main-
taining the numerical stability of the process:

Wy (0) - (en +¢s) + Wi () - (ce - +ew) + Wp, (6) - (enE + Csw)
(32)
+Wb, (0) - (enw + Csg) < N
In order to illustrate the way the weights are esti-
mated, we divide the x - y plane into five domains as

follows (see Figure 3):

Q0<60=<n/8or7r/8<6<m,

R n/8<6<3m/8,

S 37/8 <60 <57/8, (33)
Q3 5S7/8<6<7n/8,

e A

Figure 3 Relating edge direction to direction in an image.
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Taking the constraint (32) and the trigonometric rela-
tion into account, the weights W, (0), Wy(0), Wp, (0)
and Wp, (0) are estimated as:

0 OeQiorbhe Qs
Wy (0) = { cos?8 0 € Q (34)
sin’6 0 e
_ 0 0 e Ql orf e Qg
Wi (0) = 1— Wy () otherwise (35)
cos’ (0 —m /4) 6 e
Wp, (0) = { sin® (0 +7/4) 6 € Qs (36)
0 otherwise
_ 0 0eQporfb e
Wo, @) = { 1—Wp, ()  otherwise (37)

For instance, if 8 € Q, substituting these weights in
the modified anisotropic diffusion Equation 29 leads to
the following:

I(x,y,t+1) =1(x,y,t) + A - (cos?6 - (cn - VNI +cs - VsI)

38
+ sin29 . (CE . VEI +Cw le)) ( )

In this case, the edge orientation should approximate
the vertical direction according to the fact that the edge
direction is always perpendicular to the gradient direc-
tion. During the diffusion process, a relatively large
weight cos0 is assigned in the vertical direction to guar-
antee that the diffusion should mainly occur in the
direction parallel to the edge, while a relatively small
weight sin’0 is assigned in the horizontal direction to
ultimately avoid diffusion across the edge.

3.4 SFABD algorithm
The algorithm for the proposed SFABD scheme is sum-
marised in Algorithm 1.

4. Experiments

Chen [63] classified the existing performance evaluation
methods into three categories; i.e. subjective, objective
and application-based methodologies. By the subjective
methodology, a noisy image and its enhanced images
are illustrated. Thus, the evaluation on the performance
of an algorithm is dependent on human’s common
sense gained from very much sophisticated visual per-
ception experience. By the objective methodology, an
evaluation is performed by comparing the enhanced
image and its original uncorrupted version to see how
much noise has been removed from a noisy image. By
the application-based methodology, images in a certain
application field are used for test and the enhancing
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results are assessed by a specialist who has expertise in
the field or a comparison with an anticipated result set
up prior to the test.

To assess the proposed approach, we follow the
above-described methodology and demonstrate the
effectiveness of SFABD in enhancing fine edge struc-
tures, i.e. we applied it to a variety of blurred and noisy
images by comparing its results to five counterparts,
namely, the Catte’s anisotropic diffusion (CAD) [19], the
robust anisotropic diffusion (RAD) [29], the Monteil’s
anisotropic diffusion (MAD) [33], the Weickert’s aniso-
tropic diffusion (WAD) [54], and the edge-enhancing
diffusion (EED) [30]. The gradient threshold k should be
chosen according to the noise level and the edge
strength. In our experiments, we set k in different diffu-
sion algorithms by referring to the original papers. The
ultimate goal of image enhancement is to facilitate the
subsequent processing for early vision. To demonstrate
the usefulness of our algorithm in an early vision task,
we apply our algorithm for performing edge-enhancing
filtering on medical images, for an application-based
evaluation.

In order to objectively evaluate the performance of
the different diffusion algorithms, we adopt two
noise-reduction measures: peak signal-to-noise ratio
(PSNR) and the universal image quality index (UIQI).
The measure of PSNR has been widely used in evalu-
ating performance of a smoothing algorithm in the
objective methodology. For a given noisy image 1, I(i,
j» T) denotes the intensity of pixel (x, y) € I at itera-
tion T while an anisotropic diffusion algorithm is
applied to the noisy image. G(i, j) is its uncorrupted
ground-truth. As a result, the PSNR is defined as fol-
lows:

> MAX}

K L | dB (39)
2 (G (i) =1 (i T))

ij

PSNR = 10 - log,,

Here, MAX; is the maximum gray value of the image.
When the pixels are represented using 8 bits per sam-
ple, MAX; = 225. Typical values for the PSNR in lossy
image and video compression are between 30 and 50
dB, where higher is better. Acceptable values for wire-
less transmission quality loss are considered to be about
20 to 25 dB [64,65]. Recently, the UIQI has been used
to better evaluate image quality due to its strong ability
in measuring structural distortion occurred during the
image degradation processes [66]:

j

1
Q=,,2-9 (40)
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Table 2 PSNR (In dB) and UIQI of the noisy testing images of Peppers, Lena, Cameraman and Boat with respect to

different noise variances

Image Noise variance (c?)

100 225 400 625 9200

PSNR ulQl PSNR ulQl PSNR ulQl PSNR V][e]] PSNR uliQl
Peppers 28.16 05411 2471 04087 2222 03232 2031 0.2646 18.82 02237
Lena 28.14 0.5024 24.60 0.3891 2215 03137 20.22 02617 18.70 0.2221
Cameraman 2827 0.3806 24.86 0.3066 2245 0.2585 20.56 02227 19.03 0.1945
Boat 2813 0.6322 24.63 0.5031 2217 04132 20.27 0.3467 1873 0.2960

where M is the total step number and Q; denotes the
local quality index computed within a sliding window.
In this article, a sliding window of size 8 x 8 is applied
to estimate an entire image. The dynamic range of Q is
[-1,1], the value 1 is only achieved if the compared
images are identical and the value of -1 means lowest
quality of the distorted image.

4.1 General images
The performance of the proposed algorithm is evaluated
using four standard images of size 512 x 512 and 256
gray-scale values. The image of Peppers is employed as
an example of piecewise-constant image. The Lena and
Cameraman images are two examples with both textures
and smooth regions. The Boat image is an example with
different edge features. For performance evaluation, the
images have been corrupted with additive Gaussian
white noise with different noise levels. The PSNR and
UIQI values of the four noisy images with respect to dif-
ferent noise variance are listed in Table 2. The Lena and
Boat images and their noisy versions with noise variance
225 are displayed in Figures 4 and 5, respectively. For
clarity, only selected regions of the images are displayed.
Figures 6 and 7 depict the restored images using the
six algorithms, for visual quality assessment. The

(b)

Figure 4 Lena image. (a) Original image. (b) Noisy image with a
noise variance of 225.

results yielded by CAD and WAD schemes are
depicted in Figures 6a, b and 7a, b, respectively. Both
methods can well clean noise but blur the details of
the restored results, such as the hat, its decoration and
the hair in the image of Lena (see Figure 4a)), and the
ground texture at the end of the Boat image of (see
Figure 5a). This conforms our analysis that using the
gradient, as only local discontinuity measure, would
yield difficulties in distinguishing between edge details
and noise and detecting fine structure. For RAD, a lot
of noise still survives in the restored images. The
restored results indicate that this method is very sensi-
tive to noise. In Figures 6d and 7d, very large oscilla-
tions of gradient introduced by noise cannot be fully
attenuated by MAD. The two resultant images present
insufficient diffusion for restoration, in which the
homogeneous background, such as Lena’s face and
bare shoulder (see Figure 4a) and the sky in the Boat
image (see Figure 5a), cannot be completely eliminated
because the diffusion process is terminated in early
iterations. A better edge-preserving filtering is yielded
by the EED process and the corresponding results are
shown in Figures 6e and 7e, respectively. Finally, the
images produced by the proposed SFABD scheme are
represented in Figures 6f and 7f, respectively. The

(b)

Figure 5 Boat image. (a) Original image. (b) Noisy image with a

noise variance of 225.
\ J
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Figure 6 Enhanced Lena image. (a) CAD. (b) WAD. (c) RAD. (d) MAD (y = 0.1). (e) EED. (f) SFABD (0 = 0.1, Osmooth = 2/ Oedge = 1, Osmooth =
03, dedge = 0.6, bedge = 0.9) (10 iterations).

Figure 7 Enhanced Boat image. (a) CAD. (b) WAD. (c) RAD. (d) MAD (y = 0.1). (e) EED. (f) SFABD (0 = 0.1, Osmooth = 2, Oedge = 1, Osmooth =
0.3, Odetail = 0.6, edge = 0.9) (10 iterations).
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Table 3 PSNR of the six diffusion algorithms for the noisy testing images of Peppers, Lena, Cameraman and Boat with

respect to different noise variances

Scheme Image Noise variance (6%)
100 225 400 625 900
PSNR ulQl PSNR ulQl PSNR ulQl PSNR V][e]] PSNR ulQl
CAD Peppers 3293 05917 31.90 0.5681 30.81 0.5367 29.81 0.5040 2893 04737
Lena 3348 06518 31.16 06118 31.08 05733 30.06 0.5339 29.12 04961
Cameraman 34.55 0.5819 3289 05138 3143 0.4588 30.06 04156 28381 0.3806
Boat 3087 06252 30.03 0.6048 29.18 0.5816 2831 0.5507 2755 05252
WAD Peppers 3257 0.5771 31.60 0.5553 3061 0.5287 29.67 0.5001 28.87 04719
Lena 3298 0.6345 31.84 0.6036 30.80 0.5667 29.87 0.5309 29.00 04959
Cameraman 33.96 0.5619 32.51 04984 31.13 04487 29.84 04072 2867 03722
Boat 30.55 0.6022 29.73 05814 28.88 0.5579 28.09 05318 2537 0.5078
RAD Peppers 3144 06165 2827 0.4995 25.82 04118 2395 0.3496 2250 0.3042
Lena 31.91 06174 2836 04931 25.88 0.4095 2398 03525 2246 0.3085
Cameraman 3260 04944 2881 0.3868 26.21 03278 2423 0.2854 2261 0.2538
Boat 3146 0.7036 2833 0.6037 25.87 05164 2398 04460 2242 03927
MAD Peppers 3266 0.6025 30.84 0.5538 2897 04930 27.28 04373 2595 03919
Lena 3332 0.6583 31.19 0.5886 29.19 05137 27.54 04552 26.09 04046
Cameraman 34.15 0.5809 3163 04773 29.24 0.3990 2733 0.3453 2577 0.3071
Boat 31.25 0.6475 29.74 06103 28.14 0.5599 2663 0.5050 2534 04578
EED Peppers 33.04 06130 3162 05754 30.15 05274 28.88 04832 27.76 04447
Lena 33.85 06702 32,11 06128 3060 0.5608 2923 05104 2801 04656
Cameraman 34.77 0.5952 3272 0.5088 3087 04508 29.28 04045 27.90 0.3690
Boat 31.28 0.6655 30.26 0.6348 29.14 06018 28.08 05613 27.07 05282
SFABD Peppers 3294 05977 31.82 0.5662 30.80 0.5366 29.90 0.5071 2899 04743
(without EODDS)
Lena 33.76 0.6612 3213 0.6135 30.95 05725 30.01 05338 29.24 05032
Cameraman 35.06 0.5947 33.01 05159 3141 04572 30.17 04205 29.05 0.3858
Boat 3144 0.6496 29.92 0.6043 28.79 0.5681 2793 0.5363 27.20 0.5093
SFABD Peppers 3333 0.6210 32.03 0.5801 30.90 0.5407 30.08 05109 29.35 04789
(with EODDS)
Lena 34.24 0.6763 3251 0.6195 31.21 05737 30.28 05378 29.67 0.4957
Cameraman 35.64 0.6006 3358 05222 3173 0.4654 30.53 04250 29.46 0.3929
Boat 31.87 0.6805 3069 0.6363 2949 0.6090 2855 0.5684 27.59 0.5330

For the SFABD, the parameters settings are: Gsmooth = 2, Gedge = 1, dsmooth = 0.3, detail = 0.6, dedge = 0.9

noise is removed and this is due to the forward diffu-
sion. Meanwhile, edge features, including most of the
fine details, are sharply reproduced. By comparing the
resultant images of SFABD with the other five classical
algorithms, we can notice that the SFABD algorithm
achieves better visual quality. The reason for this is
twofold: First, the multiscale discontinuity measure of
the MRS-based diffusivity function is more effective
than the gradient in detecting edge features and fine
structure under a noisy environment, which is helpful
for correctly classifying regions and estimating the gra-
dient thresholds. Second, the proposed diffusion
method incorporates both of the two discontinuity
measures in the FAB diffusion coefficient by adopting

a scale-based weight for balancing the forward diffu-
sion and backward one. This strategy can ensure the
elegant property of effectively smoothing noise while
simultaneously sharpening edges and fine details of a
noisy image. Table 3 lists the PSNR and UIQI values
that are reported by the different algorithms, applied
on the test images with different noise levels. For clar-
ify, a noise variance of 400 is used for comparison.
The experimental results demonstrate that the SFABD
scheme can efficiently improve the PSNR value by
around 8.6 dB better than the other algorithms. Addi-
tionally, the proposed diffusion scheme can produce an
image with around 22% less structural distortion
according to the UIQI values, which is the best among
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Table 4 PSNR of the four FAB diffusion schemes for the noisy testing images of Peppers, Lena, Cameraman and Boat
with respect to different noise variances

Scheme Image Noise variance (6?)
100 225 400 625 900
PSNR V][e]] PSNR ulQl PSNR uiQl PSNR ulQl PSNR uiQl
FABD Peppers 3247 0.5922 31.73 0.5677 30.90 05373 29.98 0.5068 29.16 04831
Lena 32.58 0.6488 31.94 0.6098 30.70 0.5543 30.25 0.5374 2935 04940
Cameraman 33.55 0.5754 32.74 05127 31.60 04559 30.39 04227 29.21 0.3928
Boat 29.38 06137 2907 0.5991 2859 05783 27.81 0.5426 27.29 05163
LVCFABD Peppers 3235 06207 31.74 05732 30.30 0.5249 29.54 04914 28.24 0.4468
Lena 33.27 06769 3237 06138 31.05 0.5699 2991 05201 2840 04635
Cameraman 34.34 0.5905 3348 05155 31.68 04606 30.22 04169 2861 03785
Boat 3142 0.6994 3049 06352 29.28 0.6087 2839 0.5668 27.30 05293
TFABD Peppers 32.85 0.6044 31.98 05703 30.67 05336 30.01 0.5054 29.24 04763
Lena 33.72 06711 32,50 06181 31.09 05702 30.27 05372 2942 0.5052
Cameraman 3531 0.5980 3341 05197 31.69 04648 3042 04235 29.39 03937
Boat 31.72 0.6689 30.56 0.6487 29.34 06019 2840 05719 27.58 05212
SFABD Peppers 3333 06210 3201 0.5801 30.90 05407 30.08 05109 2935 04789
(with EODDS)
Lena 34.24 06763 32.51 0.6195 31.21 05737 30.28 0.5378 29.67 04957
Cameraman 35.64 0.6006 33.58 0.5222 31.73 04654 30.53 04250 29.46 03929
Boat 31.87 0.6805 30.69 0.6363 29.49 0.6090 2855 0.5684 27.59 05330

For the SFABD, the parameters settings: Gsmooth = 2, Oedge = 1/ dsmooth = 0.3, Odetail = 0.6, dedge = 0.9

the six algorithms. Thus, we can say that the SFABD
scheme outperforms the state-of-the-art diffusion
methods. In addition, the performance of the EODDS
has also been revealed in Table 4. It is evident that our
algorithm using EODDS has achieved better statistical
results than that of our algorithm without it, which
confirms the validity of the EODDS.

Second, the proposed SFABD algorithm has been also
compared to three existing FAB diffusion schemes,
namely the GSZFABD [38], LVCFABD [44] and tunable
FAB diffusion (TFABD) [47], using visual quality and
the PSNR and UIQI values. Figure 8 depicts the
obtained results of the considered FAB diffusion
schemes. One can notice that all the four FAB processes

Figure 8 Peppers image. (a) Original image. (b) Noisy image with a noise variance of 225. (c) Enhanced with GSZFABD. (d) LVCFABD. (e)
TFABD. (f) SFABD. (0 = 0.1, Gsmooth = 2, Oadge = 1, Osmooth = 0.3, dgerail = 0.6, Jeage = 0.9) (10 iterations).
AN
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can achieve a good compromise between sharpening
and denoising. However, as illustrated in Figure 8a, the
GSZFABD process blurs edges and detail features. From
Figures 8b, ¢, it can be seen that the LVCFABD and
TFABD schemes are sensitive to noise: the LVCFABD
results in developing singularities in homogeneous
regions, such as the inner parts of peppers, while the
TFABD causes oscillations in the vicinity of edges, e.g.
the outer contour of peppers. However, the proposed
SFABD scheme exhibits the best edge-enhancing diffu-
sion behaviour. The quantitative results of the four
schemes are given in Table 4. It is evident from Table 4
that the SFABD scheme is much more efficient than the
other three schemes for the four images. Hence, we can
say that SFABD outperforms the existing FAB enhance-
ment techniques.

In order to appraise the effectiveness of the adaptive
gradient threshold, the gradient threshold &y curves for
four noisy images (6> = 400) are depicted in Figure 9. It
can be seen that all the curves, representing the evolution
of this parameter, share the same decreasing behaviour as
already demonstrated in other works, allowing lesser and
lesser gradients to take part in the diffusing process.
Moreover, after 20 iterations, ky decreases slower and
slower and the scheme converges to a steady state where
for ¢ — oo, we get ¢(|VI|) > 0, which means that almost
no diffusion is performing. Note that, the estimation of
an optimum threshold value k has been addressed by sev-
eral authors [29,50,67,68]. However, to our knowledge,
these authors do not explain how to determine the
homogenous regions during the process. In this work, an
appropriate solution for automatically adapting the gradi-
ent threshold at each iteration has been proposed.

k,(t) Curve for the four testing Images
25

—+— Peppers
—+—Lena

\ ~—e—Cameraman
20+ | ——Boat

w

Gradient threshold k,(t)
=
T

0 5 10 15 20 25 30
Iterations

Figure 9 Gradient threshold evolution curves for the noisy test

images Peppers, Lena, Cameraman and Boat (noise variance

400).
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4.2 Medical images

In medical images, low SNR and CNR often degrade the
information and affect several image processing tasks,
such as segmentation, classification and registration.
Therefore, it is of considerable interest to improve SNR
and CNR to reduce the deterioration of image informa-
tion. In this section, we report the results of the proposed
SFABD scheme on two three-dimensional MR images
[69,70], both of which have been simulated using two
sequences (T1- and T2-weighted) with 1 mm of slice
thickness, 9% noise level and 20% of intensity non-unifor-
mity downloaded from Brainweb [71] using default acqui-
sition parameters for each modality. These simulations are
based on an anatomical model of normal brain, which can
serve as ground truth for any analysis procedure.

Figures 10 and 11 show two examples of enhanced
MR image using different diffusion schemes. The origi-
nal noise-free images and their corrupted versions are
illustrated in Figures 10a, b and 11a, b, respectively. As
expected, the six algorithms remove noise and simulta-
neously smooth the homogeneous regions, such as
white matter. However, for RAD, noise is still remain-
ing in the resulting images. Some structure details are
not visible in the images restored by the CAD, WAD
and MAD algorithms, though they can greatly attenu-
ate the effect of noise. According to the visual analyses
of the image quality, the results given by the EED dif-
fusion and the proposed SFABD are comparable,
because the two processes perform edge-enhancing dif-
fusion. Nevertheless, the SFABD scheme achieves bet-
ter contrast and produces more reliable edges, which is
especially useful for segmentation and classification
purposes necessary in medical image applications.

In order to objectively evaluate the performances of the
different diffusion algorithms on medical images, we
adopt the PSNR and the Structural Similarity (SSIM)
measure [72]. SSIM is a quality metric that measures the
presence of the image structure details in the restored
images and the value one is only achieved if the com-
pared images are identical. The lowest value is zero if the
images show no similarity at all. Since both the consid-
ered MR simulated images are three-dimensional data
volume, we compare the PSNR and SSIM values at each
slice for objective evaluation. As shown in Figure 12, the
PSNR values of the restored images achieved by the pro-
posed SFABD scheme are comparable or higher than the
other diffusion algorithms, and the SSIM values of
SFABD are significantly higher. Finally, the proposed
scheme enhances boundary sharpness and fine structures
better than other considered diffusion methods.

5. Conclusion
We have presented a novel SFABD scheme for image
restoration and enhancement. In the proposed scheme,



Wang et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:22

http://asp.eurasipjournals.com/content/2011/1/22

Page 15 of 19

®

=1, Osmooth = 0.2, ddetail = 04, Jegge = 0.6) (10 iterations).

.

Figure 10 Enhanced images for the 3-dimensional data volume of a T1-weighted MR simulated image. (a) Original MR image (slice 80).
(b) Corrupted MR image. (c) Enhanced MR image with CAD. (d) WAD. (e) RAD. (f) MAD (y = 0.1). (g) EED. (h) SFABD (0 = 0.1, Osmooth = 2, Cedge

(h)

the magnitude of the diffusion coefficients at each pixel is
determined by taking into account the property of the
image through scale-space, using a classification map
obtained via the MRS. According to the type of the con-
sidered pixel (belonging to a homogenous, detail or edge
region), a variable weight is incorporated into the anisotro-
pic diffusion PDE to adaptively encourage strong smooth-
ing in homogeneous regions and suitable sharpening in
detail and edge regions. Moreover, we propose a method
to estimate the parameter k of MRS-based diffusivity

function, as the mean of the local intensity differences on
homogeneous regions as determined by the MRS-based
classification map. Finally, a numerical scheme, taking into
account the edge orientation has been proposed. Further-
more, extensive qualitative and quantitative comparisons
with a variety of existing diffusion schemes demonstrate
the effectiveness of the proposed scheme, along with its
potential use for medical image applications. Future work
will involve two main aspect of the proposed approach,
namely an adaptive approach for the estimation of the
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Figure 11 Enhanced images for the 3-dimensional data volume of a T2-weighted MR simulated image. (a) Original MR image (slice 80).
(b) Corrupted MR image. (c) Enhanced MR image with CAD. (d) WAD. (e) RAD. (f) MAD (y = 0.1). (g) EED. (h) SFABD (0 = 0.1, Osmooth = 2, Oedge
=1, dsmooth = 0.2, ddetail = 04, dedge = 0.6) (10 iterations).

parameters, as well as establishing an automatic stopping iterations 7, the classification map thresholds G0 and
criterion to replace the prefixed numbers of iteration for  Ge4qe, and the scale-based weights dsmooths edge AN Jeail-
anisotropic diffusion. 3. Calculate the critical value for each pixel and deter-
mine its region type.

Algorithm 1. Scale-based forward-and-backward
diffusion
1. Initialize the image data 1. I (x, y, 0) denotes the origi-
nal intensity of pixel (x, y).

2. Initialize the diffusion parameters. Set the values of
the of the noise scale 0, the maximum number of

Obtain the regularized image /.

. Compute the gradient of the smoothed image, VI,
(dypd,)".

. Calculate the critical value for each pixel.

=2

@]



Wang et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:22

http://asp.eurasipjournals.com/content/2011/1/22

Page 17 of 19

265000

260000

PSNR Values
B ®
g 8

24,5000

® 10 2 30 4 & 60 70 80 00 10 10 120 130 140 1% 100
Slice Numbers

(a) PSNR vs. Slice number diagram (T1- weighted)

0 %0 20 20 40 20 6 70 60 8 00 180 120 10 140 190 W0
Sice Numbers

(c) PSNR vs. Slice number diagram (T2- weighted)

Figure 12 The PSNR and SSIM measures for the different diffusion algorithms at each slice of the T1- and T2-weighted MR images.
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d. Determine the minimum reliable scale of each
pixel by using the relationship between the spatial
gradient and the critical value (23).

e. Estimate the classification map R(x, y) in (24)

4. Iterate the diffusion filtering until ¢ = 7.

a. The gradient thresholds krand k; are estimated as
discussed in Section 3.2.

b. For each pixel (x, y), the diffusion coefficient ¢(V)
is computed using Eq. (25). In homogeneous and
detail regions, the traditional 4-connected neigh-
bourhood diffusion discretization equation is per-
formed to update I(x, y, £); while in edge regions, the
8-connected neighbourhood diffusion discretization
equation (28) is performed to update I(x, y, t).

Abbreviations

CAD: Catte's anisotropic diffusion; CNR: contrast-to-noise ratio; EED: edge-
enhancing diffusion; EODDS: edge orientation driven discretization scheme;
FAB: forward-and-backward; LVCFABD: local variance controlled forward-and-
backward diffusion; MAD: Monteil's anisotropic diffusion; MRS: Minimum
Reliable Scale; PDE: partial differential equation; pdf: probability distribution
function; P-M: Perona-Malik; PSNR: peak signal-to-noise ratio; RAD: robust
anisotropic diffusion; SIFT: scale-invariant feature transform; SFABD: scale-
based forward-and-backward diffusion; SNR: signal-to-noise ratio; SSIM:
Structural Similarity; TFABD: tunable FAB diffusion; UIQI: universal image
quality index; WAD: Weickert's anisotropic diffusion.

Acknowledgements

This work was supported in part by the National Natural Science Foundation
of China under Grant 40901205, in part by the National Basic Research
Program of China (973) under Grant 2009CB723905, in part by the Special
Fund for Basic Scientific Research of Central Colleges, China University of
Geosciences, Wuhan, under Grant CUGL090210, in part by the Foundation of
Key Laboratory of Geo-informatics of State Bureau of Surveying and
Mapping under Grant 201022, in part by the Foundation of Key Laboratory
of Resources Remote Sensing & Digital Agriculture, Ministry of Agriculture
under Grant RDA1005, in part by the Foundation of Key Laboratory of
Education Ministry for Image Processing and Intelligent Control under Grant



Wang et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:22
http://asp.eurasipjournals.com/content/2011/1/22

200908, in part by the Foundation of Digital Land Key Laboratory of Jiangxi
Province under Grant DLLJ201004. The authors would also like to thank the
anonymous reviewers for their valuable comments and suggestions which
significantly improved the quality of this article.

Author details

'Institute of Geophysics and Geomatics, China University of Geosciences,
People’s Republic of China “State Key Laboratory of Information Engineering
in Surveying, Mapping, and Remote Sensing, Wuhan University, People’s
Republic of China *Department of Electronics & Informatics (ETRO), Vrije
Universiteit Brussel (VUB), Belgium

Competing interests
The authors declare that they have no competing interests.

Received: 30 November 2010 Accepted: 16 July 2011
Published: 16 July 2011

References

1.

20.

21.

N Damera-Venkata, TD Kite, WS Geisler, BL Evans, AC Bovik, Image quality
assessment based on a degradation model. IEEE Trans Image Process. 9(4),
636-650 (2000). doi:10.1109/83.841940

F Russo, An image enhancement technique combining sharpening and
noise reduction. IEEE Trans Instrum Meas. 51(4), 824-828 (2002).
doi:10.1109/TIM.2002.803394

JS Lee, Digital image enhancement and noise filtering by use of local
statistics. IEEE Trans Pattern Anal Machine Intell. PAMI-2, 165-168 (1980)

P Chan, J Lim, One-dimensional processing for adaptive image restoration.
IEEE Trans Acoust Speech Signal Process. 33(1), 117-126 (1985). doi:10.1109/
TASSP.1985.1164534

DCC Wang, AH Vagnucci, CC Li, Gradient inverse weighted smoothing
scheme and the evaluation of its performance. Comput Graphics Image
Process. 15(2), 167-181 (1981). doi:10.1016/0146-664X(81)90077-0

K Rank, R Unbehauen, An adaptive recursive 2-D filter for removal of
Gaussian noise in images. IEEE Trans Image Process. 1(3), 431-436 (1992).
doi:10.1109/83.148617

(B Ahn, YC Song, DJ Park, Adaptive template filtering for signal-to-noise
ratio enhancement in magnetic resonance imaging. IEEE Trans Med
Imaging. 18(6), 549-556 (1999). doi:10.1109/42.781019

SM Smith, JM Brady, SUSAN-A New Approach to Low Level Image
Processing. Int J Comput Vision. 23(1), 45-78 (1997). doi:10.1023/
A:1007963824710

T lijima, Basic theory of pattern observation. Papers of Technical Group on
Automata and Automatic Control (1959)

T lijima, Basic theory on normalization of a pattern (in case of typical one-
dimensional pattern). Bull Electr Lab. 26, 368-388 (1962)

J Weickert, S Ishikawa, A Imiya, Linear Scale-Space has First been Proposed
in Japan. J Math Imaging Vision. 10(3), 237-252 (1999). doi:10.1023/
A:1008344623873

AP Witkin, Scale-space filtering, in Proceedings of International Joint
Conference on Artificial Intelligence, New York, pp. 1019-1021 (1983)

JJ Koenderink, The structure of images. Biol Cybern. 50, 363-370 (1984).
doi:10.1007/BF00336961

JJ Koenderink, AJV Doorn, Generic neighborhood operators. IEEE Trans
Pattern Anal Machine Intell. 14(6), 597-605 (1992). doi:10.1109/34.141551

T Lindeberg, Feature detection with automatic scale selection. Int J Comput
Vision. 30(2), 77-116 (1998)

AL Yuille, T Poggio, Scaling theorems for zero-crossings. IEEE Trans Pattern
Anal Machine Intell. 8(1), 15-25 (1986)

J Babaud, AP Witkin, M Baudin, RO Duda, Uniqueness of the Gaussian
kernel for scale-space filtering. IEEE Trans Pattern Anal Machine Intell. 8(1),
26-33 (1986)

JH Elder, SW Zucker, Local scale control for edge detection and blur
estimation. IEEE Trans Pattern Anal Machine Intell. 20(7), 699-716 (1998).
doi:10.1109/34.689301

F Catte, PL Lions, JM Morel, T Coll, Image selective smoothing and edge
detection by nonlinear diffusion. SIAM-JNA. 29(1), 182-193 (1992)

L Alvarez, PL Lions, JM Morel, Image selective smoothing and edge
detection by nonlinear diffusion. SIAM-JNA. 29(3), 845-866 (1992)

G Gerig, O Kubler, R Kikinis, FA Jolesz, Nonlinear anisotropic filtering of MRI
data. IEEE Trans Med Imaging. 11(2), 221-232 (1992). doi:10.1109/42.141646

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45,

46.

47.

Page 18 of 19

M Nitzberg, T Shiota, Nonlinear image filtering with edge and corner
enhancement. |EEE Trans Pattern Anal Machine Intell. 14(8), 826-833 (1992).
doi:10.1109/34.149593

RT Whitaker, SM Pizer, A multi-scale approach to nonuniform diffusion.
Comput Vision Graphics Image Process Image Underst. 57, 99-110 (1993).
doi:10.1006/cviu.1993.1006

L Alvarez, L Mazorra, Signal and Image Restoration Using Shock Filters and
Anisotropic Diffusion. SIAM J Numer Anal. 31(2), 590-605 (1994).
doi:10.1137/0731032

X Li, T Chen, Nonlinear diffusion with multiple edginess thresholds. Pattern
Recognit. 27(8), 1029-1037 (1994). doi:10.1016/0031-3203(94)90142-2

J Weickert, Theoretical foundations of anisotropic diffusion in image
processing. Computing. 11, 221-236 (1996)

B Fischl, EL Schwartz, Learning an Integral Equation Approximation to
Nonlinear Anisotropic Diffusion in Image Processing. IEEE Trans Pattern Anal
Machine Intell. 19(4), 342-352 (1997). doi:10.1109/34.588012

ST Acton, Multigrid anisotropic diffusion. IEEE Trans Image Process. 7(3),
280-291 (1998). doi:10.1109/83.661178

MJ Black, G Sapiro, DH Marimont, D Heeger, Robust anisotropic diffusion.
IEEE Trans Image Process. 7(3), 421-432 (1998). doi:10.1109/83.661192

J Weickert, Anisotropic Diffusion in Image Processing (BG Teubner, Stuttgart,
1998)

J Weickert, BMTH Romeny, MA Viergever, Efficient and reliable schemes for
nonlinear diffusion filtering. IEEE Trans Image Process. 7(3), 398-410 (1998).
doi:10.1109/83.661190

B Fischl, EL Schwartz, Adaptive nonlocal filtering: a fast alternative to
anisotropic diffusion for image enhancement. IEEE Trans Pattern Anal
Machine Intell. 21(1), 42-48 (1999). doi:10.1109/34.745732

J Monteil, A Beghdadi, A new interpretation of the nonlinear anisotropic
diffusion for image enhancement. IEEE Trans Pattern Anal Machine Intell.
21(9), 940-946 (1999). doi:10.1109/34.790435

ST Acton, Locally monotonic diffusion. IEEE Trans Signal Process. 48(5),
1379-1389 (2000). doi:10.1109/78.839984

| Pollak, AS Wilsky, H Krim, Image segmentation and edge enhancement
with stabilized inverse diffusion equations. IEEE Trans Image Process. 9(2),
256-266 (2000). doi:10.1109/83.821738

G Sapiro, Geometric Partial Differential Equations and Image Analysis
(Cambridge University Press, Cambridge, 2001)

G Aubert, P Kornprobst, Mathematical Problems in Image Processing: Partial
Differential Equations and the Calculus of Variations (Springer Verlag, New
York, 2002)

G Gilboa, N Sochen, YY Zeevi, Forward-and-backward diffusion processes
for adaptive image enhancement and denoising. IEEE Trans Image Process.
11(7), 689-703 (2002). doi:10.1109/TIP.2002.800883

P Mrazek, M Navara, Selection of Optimal Stopping Time for Nonlinear
Diffusion Filtering. Int J Comput Vision. 52(2/3), 189-203 (2003). doi:10.1023/
A:1022908225256

G Gilboa, NSYY Zeevi, Image Enhancement and Denoising by Complex
Diffusion Processes. IEEE Trans Pattern Anal Machine Intell. 25(8), 1020-1036
(2004)

S Young-Chul, C Doo-Hyun, Scale-based image enhancement using
modified anisotropic diffusion filter. Opt Eng. 43(9), 2094-2099 (2004).
doi:10.1117/1.1778730

D Tschumperle, R Deriche, Vector-valued Image Regularization with PDEs: A
Common Framework for Different Applications. IEEE Trans Pattern Anal
Machine Intell. 27(4), 1-12 (2005)

JM Duarte-Carvajalino, PE Castillo, M Velez-Reyes, Comparative Study of
Semi-Implicit Schemes for Nonlinear Diffusion in Hyperspectral Imagery.
|EEE Trans Image Process. 16(5), 1303-1314 (2007)

Y Wang, L Zhang, P Li, Local Varianced-Controlled Forward-and-Backward
Diffusion for Image Enhancement and Noise Reduction. IEEE Trans Image
Process. 16(7), 1854-1864 (2007)

J Zhong, H Sun, Wavelet-Based Multiscale Anisotropic Diffusion With
Adaptive Statistical Analysis for Image Restoration. IEEE Trans Circuits Syst.
55(9), 2716-2725 (2008)

Y Wang, R Niu, X Yu, Anisotropic Diffusion for Hyperspectral Imagery
Enhancement. IEEE Sensors J. 10(3), 469-477 (2010)

Y Wang, R Niu, X Yu, L Zhang, H Shen, Image restoration and enhancement
based on tunable forward-and-backward diffusion. Opt Eng. 49(5), 057004.
(1-20) (2010)


http://www.ncbi.nlm.nih.gov/pubmed/18255436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18255436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18296177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18296177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10463132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10463132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6477978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18218376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18218376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18276248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18276262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18276260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18276260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18255392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18255392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18244666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18244666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17491461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17491461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17605383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17605383?dopt=Abstract

Wang et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:22
http://asp.eurasipjournals.com/content/2011/1/22

48. A Pizurica, | Vanhamel, H Sahli, W Philips, A Katartzis, Bayesian formulation
of edge-stopping functions in nonlinear diffusion. IEEE Signal Process Lett.
13(8), 501-504 (2006)

49. M Alrefaya, H Sahli, | Vanhamel, HD Nho, A Nonlinear Probabilistic
Curvature Motion Filter for Positron Emission Tomography Images, in
Lecture Notes in Computer Science. 5567, 212-223 (2009). doi:10.1007/978-3-
642-02256-2_18

50. P Perona, J Malik, Scale-space and edge detection using anisotropic
diffusion. IEEE Trans Pattern Anal Machine Intell. 12(7), 629-639 (1990).
doi:10.1109/34.56205

51. C Wyatt, E Bayram, Y Ge, Minimum Reliable Scale Selection in 3D. IEEE
Trans Pattern Anal Machine Intell. 28(3), 481-487 (2006)

52. F Torkamani-Azar, KE Tait, Image recovery using the anisotropic diffusion
equation. IEEE Trans Image Process. 5(11), 1573-1578 (1996). doi:10.1109/
83.541427

53. R Whitaker, G Gerig, Geometrically-Driven Diffusion in Computer Vision,
(Kluwer, Norwell, MA, 1994)

54. ) Weickert, Anisotropic diffusion in image processing (University of
Kaiserslautern, Germany, 1996)

55.J Weickert, Coherence-Enhancing Diffusion Filtering. Int J Comput Vision.
31(2-3), 111-127 (1999)

56. E Bayram, G Yaorong, CL Wyatt, Confidence-based anisotropic filtering of
magnetic resonance images. IEEE Eng Med Biol Mag. 21(5), 156-160 (2002).
doi:10.1109/MEMB.2002.1044187

57. E Bayram, CL Wyatt, Y Ge, Automatic scale selection for medical image
segmentation, in Medical Imaging 2001: Image Processing, vol. 4322. (San
Diego, CA, USA, 2001), pp. 1399-1410

58.  http://www.biomecardio.com/matlab/evar.html

59. G Gilboa, N Sochen, YY Zeevi, Image Sharpening by Flows Based on Triple
Well Potentials. J Math Imaging Vision. 20(1), 121-131 (2004)

60. M Welk, G Gilboa, J Weickert, Theoretical Foundations for Discrete Forward-
and-Backward Diffusion Filtering, in Lecture Notes in Computer Science. 5567,
527-538 (2009). doi:10.1007/978-3-642-02256-2_44

61. E Ardizzone, R Pirrone, R Gallea, O Gambino, Noise Filtering Using Edge-
Driven Adaptive Anisotropic Diffusion, in IEEE International Symposium on
Computer-Based Medical Systems (CBMS 2009), New Mexico, USA, 2008, pp.
29-34

62. DG Lowe, Object recognition from local scale-invariant features, in
Proceedings of the International Conference on Computer Vision. 2, 1150-1157
(1999)

63. K Chen, Adaptive smoothing via contextual and local discontinuities. IEEE
Trans Pattern Anal Machine Intell. 27(10), 1552-1567 (2005)

64. N Thomos, NV Boulgouris, MG Strintzis, Optimized transmission of JPEG2000
streams over wireless channels. IEEE Trans Image Process. 15(1), 54-67
(2006)

65. X Li, J Cai, Robust transmission of JPEG2000 encoded images over packet
loss channels, in Proceedings of IEEE International Conference on Multimedia
and Expo 2007, Beijing, China, 2007, pp. 947-950

66. Z Wang, AC Bovik, A Universal Image Quality Index. IEEE Signal Process Lett.
9(3), 81-84 (2002). doi:10.1109/97.995823

67. F Vodi, S Eiho, N Sugimoto, H Sekibuchi, Estimating the gradient in the
Perona-Malik equation. IEEE Signal Process Mag. 21(3), 39-65 (2004)

68.  MJ Black, G Sapiro, Edges as outliers: Anisotropic smoothing using local
image statistics, in Proceedings of the Scale-Space Conference, Berlin,
Germany, 1999, pp. 259-270

69. R Kwan, A Evans, G Pike, An extensible MRI simulator for post-processing
evaluation, in Visualization in Biomedical Computing. 1131, 135-140 (1996).
doi:10.1007/BFb0046947

70.  RKS Kwan, AC Evans, GB Pike, MRI simulation-based evaluation of image-
processing and classification methods. IEEE Trans Med Imaging. 18(11),
1085-1097 (1999). doi:10.1109/42.816072

71, http://mouldy.bic.mni.mcgill.ca/brainweb/

72. Z Wang, AC Bovik, HR Sheikh, EP Simoncelli, Image Quality Assessment:
From Error Visibility to Structural Similarity. [EEE Trans Image Process. 13(4),
600-612 (2004). doi:10.1109/TIP.2003.819861

doi:10.1186/1687-6180-2011-22

Cite this article as: Wang et al.: A scale-based forward-and-backward
diffusion process for adaptive image enhancement and denoising.
EURASIP Journal on Advances in Signal Processing 2011 2011:22.

Page 19 of 19

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.ncbi.nlm.nih.gov/pubmed/16526434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18290074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18290074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12405071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12405071?dopt=Abstract
http://www.biomecardio.com/matlab/evar.html
http://www.ncbi.nlm.nih.gov/pubmed/16237991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16435536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16435536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10661326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10661326?dopt=Abstract
http://mouldy.bic.mni.mcgill.ca/brainweb/
http://www.ncbi.nlm.nih.gov/pubmed/15376593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15376593?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Recent work on anisotropic diffusion
	3. Scale-based forward-and-backward diffusion scheme
	3.1 Local scale-based classification map
	3.2 Scale-based forward-and-backward diffusion coefficient
	3.3 Edge orientation driven discretization scheme (EODDS)
	3.4 SFABD algorithm

	4. Experiments
	4.1 General images
	4.2 Medical images

	5. Conclusion
	Algorithm 1. Scale-based forward-and-backward diffusion
	Acknowledgements
	Author details
	Competing interests
	References

