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Abstract

Two-dimensional (2D) direction-of-arrival (DOA) estimation has played an important role in array signal processing.
In this article, we address a problem of bind 2D-DOA estimation with L-shaped array. This article links the 2D-DOA
estimation problem to the trilinear model. To exploit this link, we derive a trilinear decomposition-based 2D-DOA
estimation algorithm in L-shaped array. Without spectral peak searching and pairing, the proposed algorithm
employs well. Moreover, our algorithm has much better 2D-DOA estimation performance than the estimation of
signal parameters via rotational invariance technique algorithms and propagator method. Simulation results
illustrate validity of the algorithm.
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1. Introduction
Antenna arrays have been used in many fields, such as
radar, sonar, communications, seismic data processing,
and so on. The direction-of-arrival (DOA) estimation of
signals impinging on an array of sensors is a fundamen-
tal problem in array processing, and many DOA estima-
tion methods have been proposed for its solution [1-10].
Uniform linear arrays for estimation of wave arrival
have extensively been studied. Compared with uniform
linear array, L-shaped array can identify two-dimen-
sional (2D) DOA. 2D-DOA estimation with L-shaped
array has been received considerable attention in the
field of array signal processing [5-13], and it contains
estimation of signal parameters via rotational invariance
techniques (ESPRIT) algorithms [5-7], multiple signal
classification (MUSIC) algorithm [8], matrix pencil
methods [9,10], propagator methods [11-13], and high-
order cumulant method [14].
High-order cumulant method requires the signal sta-

tistical properties, and it needs a heavy computation
load. MUSIC algorithm is based on the noise subspace,
and has a good DOA estimation performance. However,
MUSIC requires spectral peak searching, which is com-
putationally expensive. Propagator method has low com-
plexity, but its 2D-DOA estimation performance is less

than ESPRIT algorithm. ESPRIT produces signal para-
meter estimates directly in terms of (generalized) eigen-
values, and the primary computational advantage of
ESPRIT is that it eliminates the search procedure inher-
ent. Authors of [5,6] used ESPRIT method for 2D-DOA
estimation with L-shaped array, and Zhang et al. [7]
proposed the improved ESPRIT algorithm for 2D-DOA
estimation, which had better 2D-DOA estimation per-
formance than that of [5,6]. The algorithms in [5-7]
require an extra paring within 2D-DOA estimation. Par-
ing usually fails to work in the condition of low signal-
to-noise ratio (SNR) and the large number of sources.
This study links 2D-DOA estimation problem of L-

shaped array to trilinear model, and derives a novel
blind 2D-DOA algorithm whose performance is better
DOA estimation than ESPRIT algorithms and propaga-
tor method. Furthermore, our algorithm employs well
without spectral peak searching and pairing. Bro et al.
[15] proposed a 2D-DOA algorithm for uniform squares
array using trilinear decomposition. There are some dif-
ferences between this study and that of [15] in some
aspects. First, Bro et al. [15] proposed a 2D-DOA algo-
rithm for uniform squares array, while this study is to
estimate 2D-DOA for L-shaped array. Second, the
received signal of uniform squares array can be modeled
directly with trilinear model, and then that of [15] pro-
posed joint azimuth-elevation estimation using trilinear
decomposition in uniform squares array. This article is
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to estimate 2D-DOA estimation in L-shaped array, and
the received signal of L-shaped array cannot be modeled
directly with trilinear model. We use the cross correla-
tion of received signal for constructing the trilinear
model.
The rest of the article is structured as follows. Section

2 develops a data model. Section 3 deals with algorith-
mic issues. Section 4 presents simulation results, and
Section 5 provides conclusions.

2. Data model
We consider an L-shaped array with 2M - 1 sensors at
different locations as shown in Figure 1. A uniform lin-
ear array containing M elements is located in y-axis, and
the other uniform linear array containing M elements is
located in x-axis. We suppose that there are K sources
impinge on the L-shaped array with (θk,jk), k = 1,2,...,K,
where θk,jk are the elevation and the azimuth angles of
the kth source, respectively. The received signal of M
elements in x-axis is

x(t) = Axs(t) + nx(t) (1)

where s(t) ∈ CK is the source matrix, nx(t) ∈ CM is an
M × 1 Gaussian white noise vector of zeros mean and
covariance matrix s2IM, and Ax ∈ CM×K is

Ax =

⎡
⎢⎢⎢⎣

1 1 · · · 1
e−jα1 e−jα2 · · · e−jαK

...
...

. . .
...

e−j(M−1)α1 e−j(M−1)α2 · · · e−j(M−1)αK

⎤
⎥⎥⎥⎦ (2)

where ak = 2πd cosθk sin jk / l (k = 1, ..., K), d is the
element spacing, and l is the wavelength. d ≤ l/2 is
required in the array.
The received signal of M elements in y-axis is denoted as

y(t) = Ays(t) + ny(t) (3)

where ny(t) is an M × 1 Gaussian white noise vector
of zeros mean and covariance matrix s2IM, and
Ay ∈ CM×K is

Ay =

⎡
⎢⎢⎢⎣

1 1 · · · 1
e−jβ1 e−jβ2 · · · e−jβK

...
...

. . .
...

e−j(M−1)β1 e−j(M−1)β2 · · · e−j(M−1)βK

⎤
⎥⎥⎥⎦ (4)

where bk = 2πd sinθk sin jk / l, k = 1, ..., K. Ax and
Ay are Vandermonde matrices. x(t) ∈ CM, y(t) ∈ CM,

Ax ∈ CM×K and Ay ∈ CM×K are denoted as

x(t) =
[
x1(t)
xM

]
=

[
x1

x2(t)

]
(5)

y(t) =
[
y1(t)
yM

]
=

[
y1

y2(t)

]
(6)

Ax =
[
Ax1

axM

]
=

[
ax1
Ax2

]
(7)

Ay =
[
Ay1
ayM

]
=

[
ay1
Ay2

]
(8)

where x1 and xM are first and last rows of x(t), respec-
tively. y1 and yM are first and last rows of the y(t),
respectively. ax1 and axM are first and last rows of the
matrix Ax, respectively. ay1 and ayM are first and last
rows of the matrix Ay, respectively.
According to Equations 5-8, we construct the follow-

ing matrices

C1 = E{x1(t)y1(t)H} = Ax1RSAH
y1 +N1 (9)

C2 = E{x2(t)y1(t)H} = Ax1�xRSAH
y1 +N2 (10)

C3 = E{x1(t)y2(t)H} = Ax1RS�
H
y A

H
y1 +N3 (11)

C4 = E{x2(t)y2(t)H} = Ax1�xRS�
H
y A

H
y1 +N4 (12)

where �x = diag(e−jα1 , e−jα2 , . . . , e−jαK ),E{.} is the

expectation, �y = diag(e−jβ1 , e−jβ2 , . . . , e−jβK ),RS = E{s(t)s
(t)H} is the source correlation matrix. For independent
sources, RS should be a diagonal matrix with main diag-
onal vector r = [r1 r2 ... rK]. N1, N2, and N4 are shown
as follows.

N1 =

⎡
⎢⎢⎢⎣

σ 2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎦ ∈ RK×K

1 2, ,...,M

1 2, ,...,M

k

k

Figure 1 The structure of L-shaped array.
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N2 = N3 = N4 =

⎡
⎢⎢⎢⎣
0 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎦ ∈ RK×K

We define the matrix Ω as

� =

⎡
⎢⎢⎣

r1
r1e−jα1

r1ejβ1

r1e−j(α1−β1)

r2
r2e−jα2

r2ejβ2

r2e−j(α2−β2)

· · ·
· · ·
· · ·
· · ·

rK
rKe−jαK

rKejβK

rKej(αK−βK)

⎤
⎥⎥⎦ (13)

Equations 9-12 can be denoted by

Cl = Ax1Dl(�)AH
y1 +Nl, l = 1, 2, ..., 4 (14)

where Dl(.) is to extract the lth row of its matrix and
construct a diagonal matrix out of it. Now, the noiseless
signal in (14) can be denoted as a trilinear model
[16-20], which is shown as

xm,n,l =
∑K

k=1
am,kbn,khl,k, m = 1, . . . ,M − 1, n = 1, . . . ,M − 1, l = 1, . . . , 4 (15)

where am, k is the (m,k) element of the matrix Ax1, hl,
k stands for the (l,k) element of the matrix Ω, bn, k

represents the (n,k) element of the matrix A∗
y1. We

hereby consider the signal in (15) as slicing the trilinear
model along a direction, within which the symmetry
characteristics allow other matrix system rearrange-
ments

Ym = A∗
y1Dm(Ax1)�

T, m = 1, . . . ,M − 1 (16)

Zn = �Dn(A∗
y1)A

T
x1 n = 1, . . . ,M − 1 (17)

3. Blind 2D DOA estimation
In this section, we utilize the trilinear decomposition for
blind 2D-DOA estimation in L-shaped array, where the
received signal has been reconstructed with trilinear
model. We use trilinear decomposition for obtaining the
direction matrices Âx1 and Ây1, and then DOAs are esti-
mated according to least square (LS) principle.

3.1 Trilinear decomposition
Since trilinear alternating LS (TALS) algorithm is a
common data detection method for trilinear model [19],
it can be discussed in detail as follows. According to
(14), we construct the following matrix in this form

C =

⎡
⎢⎢⎣
C1

C2

C3

C4

⎤
⎥⎥⎦ = [� � Ax1]A

H
y1 +

⎡
⎢⎢⎣
N1

N2

N3

N4

⎤
⎥⎥⎦ (18)

where ⊙ stands for Khatri-Rao product. LS fitting is
given by

min
�,Ax1,Ay1

∥∥∥C − [� � Ax1]A
H
y1

∥∥∥
F

(19)

LS update for Ay1 can be shown as

Â
H
y1 = [� � Ax1]

+C (20)

Similarly, from the second way of slicing, we have
Ym = A∗

y1Dm(Ax1)�
T, m = 1, . . . ,M − 1, which can be

rewritten as

Y =

⎡
⎢⎢⎢⎣

Y1
Y2
...

YM−1

⎤
⎥⎥⎥⎦ = [Ax1 � A∗

y1 ]�
T (21)

and the LS update for Ω is

�̂
T
= [Ax1 � A∗

y1 ]
+Ỹ (22)

where Ỹ is the noisy signal. Finally, from the third way
of slicing, we have
Zn = �Dn(A∗

y1)A
T
x1 , n = 1, . . . ,M − 1, which can be

rewritten as

Z =

⎡
⎢⎢⎢⎣

Z1

Z2
...

ZM−1

⎤
⎥⎥⎥⎦ = [A∗

y1 � �]AT
x1 (23)

and the LS update for Ax1 is

AT
x1 = [A∗

y1 � �]+Z̃ (24)

where Z̃ is the noisy signal.
According to (20), (22), and (24), the matrices Ay1, Ω,

and Ax1 are continually updated with conditional LSs,
respectively, until convergence. TALS algorithm has sev-
eral advantages: it is quite easy to implement, guarantee
to converge, and comparatively simple to be expanded
to the higher-order data. In this article, we use the com-
plex-valued parallel factor analysis model (COMFAC)
algorithm [17] for trilinear decomposition. COMFAC
algorithm is essentially a fast implementation of TALS,
and it can speed up the LS fitting.
For the blind 2D-DOA estimation algorithm that we

have investigated, trilinear decomposition has been
adopted for obtaining the estimated matrices, and then
2D-DOA estimation is correspondingly shown.

3.2 Identifiablity
In this section, we discuss the sufficient and necessary
conditions for uniqueness of trilinear decomposition.
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Theorem 1 [19]: Considering Cl = Ax1Dl(�)AH
y1 +Nl, l

= 1,2, ...,4, where Ax1 ∈ C(M−1)×K, Ay1 ∈ C(M−1)×K, and

� ∈ C4×K. Concerning that matrix, Ax1 and Ay1 have
been provided with Vandermonde characteristics that
the identifiability condition satisfies

k� + 2(M − 1) ≥ 2K + 2 (25)

where kΩ is the kth rank [18] of the matrix Ω, the
matrices Ay1, Ω, and Ax1 are unique up to permutation
and scaling of columns.
When the matrix � ∈ C4×K is full kth rank, Equation

25 becomes

min(4,K) + 2(M − 1) ≥ 2K + 2

If K ≥ 4, then min(4,K) = 4 and hence, the identifiabil-
ity is K ≤ M. If K ≤ 4, then min(4,K) = K and hence, the
identifiability in practice becomes K ≤ 2M - 4.
For the received noisy signal, we use trilinear decom-

position for obtaining the estimated matrices Âx1, �̂, and

Ây1, which are related to Ay1, Ω, and Ax1 via

Âx1 = Ax1��1 + V1 (26a)

Ây1 = Ay1��3 + V3 (26b)

�̂ = ���2 + V2 (26c)

where ∏ is a permutation matrix, Δ1, Δ2, Δ3 are diago-
nal scaling matrices satisfying Δ1, Δ2, Δ3 = IK, V1, V2,
and V3 are estimation error matrices. Within trilinear
decomposition, permutation and scale ambiguities are
inherent. Notably, the scale ambiguity can be resolved
by means of normalization.

3.3 DOA estimation for L-shaped array

The direction matrices Âx1 and Ây1 are obtained with tri-
linear decomposition, and then angles are estimated. ax1
(θk, jk) is the kth column of Ax1, and it is

ax1(θk,φk) = [1, e−jαk , . . . , e−j(M−2)αk ]T

and then the following vector is obtained by

gx = −angle( ax1(θk,φk)) = [0,αk, . . . , (M − 2)αk]T(27)

where angle(.) is get the phase angles, for each ele-
ment of complex array. Thereafter, LS principle is
adopted for estimating sin jk cos θk. The estimated
array steer vector âx1(θk,φk) (the kth column of the esti-
mated matrix Âx1) is processed through normalization,
which also resolves the scale ambiguity, and then nor-
malized sequence is processed for attaining ĝx according
to (27). LSs’ fitting is Pw = ĝx, where

P =

⎡
⎢⎢⎢⎣
1
1
...
1

0
2πd/λ

...
(M − 2)2πd/λ

⎤
⎥⎥⎥⎦ ,

w = [w0,wx]
T, in which wx is the estimated value of sin

jk cos θk, and w0 is the other estimation parameter. The
LS solution to w is

ŵ =
[
ŵ0

ŵx

]
= (PTP)−1PTĝx (28)

Similarly, ay1(θk,φk) = [1, e−jβk , . . . , e−j(M−2)βk ]T is the
kth column of Ay1, and then the corresponding vector is
gy = -angle(ay1(θk, jk)) = [0, bk,...,(M-2) bk]T. We use Ây1

and LS principle to obtain ŵy, which is the estimation of
sin jk sin θk. The 2D-DOAs are estimated via

φ̂k = sin−1
(√

ŵ2
x + ŵ2

y

)
(29)

θ̂k = tan−1(ŵy/ŵx) (30)

Up to now, as deducted above, we have proposed the
trilinear decomposition-based 2D-DOA estimation for
L-shaped array in this section. The algorithmic steps in
detail are shown as follows:
Step 1. We collect L snapshots to construct the

matrices Ci, i = 1,2,...,4.
Step 2. According to the symmetry characteristics of

trilinear model, we obtain Ym, m = 1,...,M - 1, and Zn n
= 1, ...,M-1.
Step 3. Initialize randomly for the matrices Ay1, Ω and

Ax1.
Step 4. LS update for the source matrix Ay1 according

to (20).
Step 5. LS update for the source matrix Ω according

to (22).
Step 6. LS update for the channel matrix Ax1 accord-

ing to (24).
Step 7. Repeat Steps 4-6 until convergence.
Step 8. Estimate 2D-DOA according to the estimated

matrices and LSs principle.
It is noted that our algorithm can obtain automatically

paired 2D-DOA estimation. In our algorithm, we
employ trilinear decomposition for obtaining the esti-
mated direction matrices Âx1 = Ax1��1 + V1,

Ây1 = Ay1��3 + V3, which suffer from the same column

permutation ambiguity, i.e., the ith column of Âx1 corre-

sponds to the ith column of Ây1. So, our algorithm can
estimate 2D-DOA estimation without extra pairing.
It is also noted that for the coherent source, spatial

smoothing technique is used for attaining full-rank
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source matrix, followed by our algorithm to estimate
coherent DOA. However, the spatial smoothing
decreases the array aperture and the identifiable number
of targets.

3.4 Complexity analysis and Cramer-Rao lower bounds
(CRLB)
In contrast to ESPRIT algorithms in [6,7], our algorithm
has a heavy computational load. For our algorithm, the
complexity of each TALS iteration is O(3K3 + 12(M - 1)
2K) [16], only a few iterations of this algorithm with
COMFAC are usually required to achieve convergence.
The total complexity of our algorithm is O{4L(M - 1)2 +
n(3K3 + 12(M - 1)2K)}, where L is the number of snap-
shots, and n is the number of iterations. The algorithm
in [6] requires O(4L(M - 1)2 + 36(M - 1)3 + 2K3), and
the ESPRIT algorithm in [7] needs O(4L(M - 1)2 + 80
(M - 1)3 + 2K3).
We define the matrix A

A =
[
Ax

Ay2

]
∈ C(2M−1)×K

which is also denoted by A = [a1 a2 ... aK], where aK is
the kth column of the matrix A. According to [21], we
derive the CRLB for angle estimation in L-shaped array,

CRLB =
σ 2

2L

{
Re

[
(DH
⊥

AD) ⊕ PT]}−1 (31)

where ⊕ stands for Hadamard product.


⊥
A = I2M−1−A(AHA)−1AH,P =

1
L

∑L

l=1
s(tl)sH(tl),D = [d1,d2, · · · ,dK , f1, f2, · · · , fK],dk = ∂ak/∂φk, fk = ∂ak/∂θk.

4. Simulation results
We present Monte Carlo simulations that are to assess
2D-DOA estimation performance of the proposed algo-
rithm. The number of Monte Carlo trials is 1000. There
are two signals impinging on L-shaped array with (30°,
30°) and (40°, 40°), respectively. We consider the L-
shaped array with 2M - 1 sensors, and a half wavelength
of the incoming signals is used for the spacing between
the adjacent elements in each uniform linear array. L =
300 snapshots are used in the simulations.

Let RMSE =
1
K

∑K

k=1

√
1

1000

∑1000

n=1
[(φ̂k,n − φk)

2
+ (θ̂k,n − θk)

2
],

where θ̂k,n is the estimate of the elevation angle θn of
the nth Monte Carlo trial. φ̂k,n is the estimation of the
azimuth angle jk of the nth Monte Carlo trial.
We first investigate the convergence performance of

our proposed algorithm in this simulation. The sum of
squared residuals (SSR) in the trilinear fitting is defined
as

SSR =
M−1∑
m=1

M−1∑
m=1

4∑
l=1

[x̃m,n,l −
∑K

k=1
âm,kb̂n,kĥl,k]

2

where x̃m,n,l is the noisy data. Define DSSR = SSRi -
SSR0, where SSRi is the SSR of the ith iteration, SSR0 is
the SSR in the convergence condition. Figure 2 shows
the algorithmic convergence performance of COMFAC
with 13-antenna-array and SNR = 15 dB. From Figure 2,
we find that COMFAC needs few iterations to achieve
convergence.
Figure 3 shows 2D-DOA estimation of the proposed

algorithm at SNR = 15 dB, and Figure 4 shows 2D-
DOA estimation of our algorithm at SNR = 24 dB. The
L-shaped array with 13 antennas is used in Figures 3
and 4. From Figures 3 and 4, we find that our proposed
algorithm employs well.
We compare our algorithm against ESPRIT algorithms

[6,7], propagator method, and CRLB. Their DOA esti-
mation performance comparison is shown in Figure 5,
where the L-shaped array with 13 antennas is used.
From Figure 5, we find that our algorithm has much
better DOA estimation performance than ESPRIT algo-
rithms and propagator method.
Figure 6 shows 2D-DOA estimation performance of

our algorithm with different array configurations. It is
seen from Figure 6 that 2D-DOA estimation perfor-
mance of our algorithm is improved with the number of
antennas increasing. When the number of antennas
increases, our algorithm has higher received diversity.

5. Conclusion
This article links the L-shaped array 2D-DOA estima-
tion problem to the trilinear model. To exploit this link,

1 2 3 4 5 6 7 8
10-10

10-5

100

105

iteration number

D
S

S
R

COMFAC

Figure 2 Algorithmic convergence performance.
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we have proposed trilinear decomposition-based DOA
estimation in L-shaped array. Without spectral peak
searching and pairing, the proposed algorithm employs
well. Furthermore, the proposed algorithm has much
better 2D-DOA estimation performance than conven-
tional ESPRIT algorithms and propagator method.

Notations
Bold symbols denote matrices or vectors. Operators (.)*,
(.)T, (.)H, (.)-1, (.)+ , and ||.||F denote the complex conju-
gation, transpose, conjugate-transpose, inverse, pseudo-
inverse, and Forbenius norm, respectively. IP denotes a
P × P identity matrix. 1N×1 is an N × 1 vector of ones.
diag(v) stands for diagonal matrix whose diagonal is the
vector v. ⊙ and ⊕ stand for Khatri-Rao and Hadamard
product, respectively. E{.} denotes statistical expectation.

Acknowledgements
This study was supported by the China NSF Grants (60801052), Aeronautical
Science Foundation of China (2009ZC52036), Nanjing University of
Aeronautics & Astronautics Research Funding (NS2010114, NP2011036) and
the Graduate Innovative Base Open Funding of Nanjing University of
Aeronautics & Astronautics.

Competing interests
The authors declare that they have no competing interests.

Received: 2 March 2011 Accepted: 30 August 2011
Published: 30 August 2011

References
1. X Zhang, Theory and application of array signal processing (National Defense

Industry Press, Beijing, 2010)
2. X Zhang, D Xu, Improved coherent DOA estimation algorithm for uniform

linear arrays. Int J Electron. 96(2), 213–222 (2009). doi:10.1080/
00207210802526810

3. H Chen, B Huang, Y Wang, Direction-of-arrival estimation based on direct
data domain (D3) method. J Syst Eng Electron. 20(3), 512–518 (2009)

4. X Zhang, X Gao, D Xu, Multi-invariance ESPRIT-based blind DOA estimation
for MC-CDMA with an antenna array. IEEE Trans Veh Technol. 58(8),
4686–4690 (2009)

25 30 35 40 45
28

30

32

34

36

38

40

42

elevation angle estimation/deg

az
im

ut
h 

an
gl

e 
es

tim
at

io
n/

de
g

Figure 3 2D-DOA estimation performance at SNR = 15 dB.

25 30 35 40 45
28

30

32

34

36

38

40

42

elevation angle estimation/deg

az
im

ut
h 

an
gl

e 
es

tim
at

io
n/

de
g

Figure 4 2D-DOA estimation performance at SNR = 24 dB.

10 15 20 25 30
10

-2

10-1

100

10
1

10
2

SNR/dB

R
M

S
E

/d
eg

Propagator method
ESPRIT algorithm in [6]
ESPRIT algorithm in [7]
Our algorithm
CRLB

Figure 5 Angle estimation performance comparison.

10 15 20 25 30
10

-2

10-1

100

10
1

SNR/dB

R
M

S
E

/d
eg

array with 9 antennas
array with 13 antennas
array with 17 antennas

Figure 6 Angle estimation performance with different array.

Xiaofei et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:50
http://asp.eurasipjournals.com/content/2011/1/50

Page 6 of 7



5. Y Dong, Y Wu, G Liao, A novel method for estimating 2-D DOA. J Xidian
Univ. 30(5), 369–373 (2003)

6. J Chen, S Wang, X Wei, New method for estimating two-dimensional
direction of arrival based on L-shape array. J Jilin Univ (Eng Technol Edition)
36(4), 590–593 (2006)

7. X Zhang, X Gao, W Chen, Improved blind 2d-direction of arrival estimation
with L-shaped array using shift invariance property. J Electromag Waves
Appl. 23(5), 593–606 (2009). doi:10.1163/156939309788019859

8. Y Hua, A pencil-MUSIC algorithm for finding two-dimensional angles and
polarizations using crossed dipoles. IEEE Trans Antennas Propag. 41(3),
370–376 (1993). doi:10.1109/8.233122

9. JE Fern’andez del R’ıo, MF C’atedra-P’erez, The matrix pencil method for
two-dimensional direction of arrival estimation employing an L-shaped
array. IEEE Trans Antennas Propag. 45(11), 1693–1694 (1997). doi:10.1109/
8.650082

10. P Krekel, E Deprettre, A two dimensional version of matrix pencil method
to solve the DOA problem, in Proceedings of European Conference on Circuit
Theory and Design 435–439 (1989)

11. N Tayem, HM Kwon, L-shape-2-D arrival angle estimation with propagator
method. IEEE Trans Antennas Propag. 53(5), 1622–1630 (2005)

12. P Li, B Yu, J Sun, A new method for two-dimensional array signal
processing in unknown noise environments. Signal Process. 47(3), 319–327
(1995). doi:10.1016/0165-1684(95)00118-2

13. Y Wu, G Liao, HC So, A fast algorithm for 2-D direction-of-arrival estimation.
Signal Process. 83(8), 1827–1831 (2003). doi:10.1016/S0165-1684(03)00118-X

14. B Tang, X Xiao, T Shi, A novel method for estimating spatial 2-D direction
of arrival. Acta Electonica Sinica 27(3), 104–106 (1999)

15. R Bro, ND Sidiropoulos, GB Giannakis, Optimal joint azimuth-elevation and
signal-array response estimation using parallel factor analysis, in Proceedings
of 32nd Asilomar Conference Signals, System, and Computer, 1594–1598
(1998)

16. SA Vorobyov, Y Rong, ND Sidiropoulos, Robust iterative fitting of multilinear
models. IEEE Trans Signal Process. 53(8), 2678–2689 (2005)

17. R Bro, ND Sidiropoulos, GB Giannakis, A fast least squares algorithm for
separating trilinear mixtures, in Proceedings of International Workshop ICA
and BSS , 289–294, (1999)

18. ND Sidiropoulos, GB Giannakis, R Bro, Blind PARAFAC receivers for DS-
CDMA systems. IEEE Trans Signal Process. 48(3), 810–823 (2000).
doi:10.1109/78.824675

19. ND Sidiropoulos, X Liu, Identifiability results for blind beamforming in
incoherent multipath with small delay spread. IEEE Trans Signal Process.
49(1), 228–236 (2001). doi:10.1109/78.890366

20. X Zhang, G Feng, J Yu, Angle-frequency estimation using trilinear
decomposition of the oversampled output. Wireless Pers Commun. 51,
365–373 (2009). doi:10.1007/s11277-008-9652-5

21. P Stoica, A Nehorai, Performance study of conditional and unconditional
direction-of-arrival estimation. IEEE Trans Signal Process. 38, 1783–1795
(1990). doi:10.1109/29.60109

doi:10.1186/1687-6180-2011-50
Cite this article as: Xiaofei et al.: Novel two-dimensional DOA estimation
with L-shaped array. EURASIP Journal on Advances in Signal Processing
2011 2011:50.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Xiaofei et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:50
http://asp.eurasipjournals.com/content/2011/1/50

Page 7 of 7

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Data model
	3. Blind 2D DOA estimation
	3.1 Trilinear decomposition
	3.2 Identifiablity
	3.3 DOA estimation for L-shaped array
	3.4 Complexity analysis and Cramer-Rao lower bounds (CRLB)

	4. Simulation results
	5. Conclusion
	Notations

	Acknowledgements
	Competing interests
	References

