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Abstract

Learning overcomplete dictionaries for sparse signal representation has become a hot topic fascinated by many
researchers in the recent years, while most of the existing approaches have a serious problem that they always
lead to local minima. In this article, we present a novel augmented Lagrangian multi-scale dictionary learning
algorithm (ALM-DL), which is achieved by first recasting the constrained dictionary learning problem into an AL
scheme, and then updating the dictionary after each inner iteration of the scheme during which majorization-
minimization technique is employed for solving the inner subproblem. Refining the dictionary from low scale to
high makes the proposed method less dependent on the initial dictionary hence avoiding local optima. Numerical
tests for synthetic data and denoising applications on real images demonstrate the superior performance of the
proposed approach.
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1. Introduction
In the last two decades, more and more studies have
focused on dictionary learning, the goal of which is to
model signals as a sparse linear combination of atoms
that form a dictionary below a certain error toleration.
Sparse representation of signals under the learned dic-
tionary possesses significant advantages over the pre-
specified dictionary such as wavelet and discrete cosine
transform (DCT) as demonstrated in many literatures
[1-3] and it has been widely used in denoising, inpaint-
ing, and classification areas with state-of-the-art results
obtained [1-5]. Considering there is a signal bl ÎR

M, it
can be represented by a linear combination of a few
atoms either exactly as bl = Axl or proximately as bl ≈
Axl, where A represents the dictionary and xl denotes
the representation coefficients. Given an input matrix B
= [b1, ..., bL] in RM×L of L signals, the problem then can
be formulated as an optimization problem jointly over a
dictionary A = [a1, ..., aJ] in RM×J and the sparse repre-
sentation matrix X = [x1, ..., xJ] in RJ×L, namely

⎧⎨
⎩
min
A,X

∑L

l=1
‖xl‖0

s.t.‖bl − Axl‖2 ≤ τ , l = 1, · · · , L; ∥∥aj∥∥2
2 = 1, j = 1, · · · , J

(1)

where ||·||0 denotes the l0 norm which counts the
number of nonzero coefficients of the vector, ||·||2
stands for the Euclidean norm on RM, and τ is the toler-
able limit of error in reconstruction.
Most of the existing methods for solving Equation 1

can be essentially interpreted as different generalizations
of the K-means clustering algorithm because they
usually have two-step iterative approaches consisting of
a sparse coding step where sparse approximations X is
found with A fixed and a dictionary update step where
A is optimized based on the current X [1]. After initiali-
zation of the dictionary A those algorithms keep iterat-
ing between the two steps until either they have run for
a predefined number of alternating optimizations or a
specific approximation error is reached. Concretely, at
the sparse coding step, seeking the solution of Equation
1 with respect to a fixed dictionary A can be achieved
by optimizing over each xl individually as follows:{

min
xl

‖xl‖0
s.t.‖bl − Axl‖2 ≤ τ

(2)

* Correspondence: jhluo@sjtu.edu.cn
1College of Life Science and Technology, Shanghai Jiaotong University,
200240, Shanghai, P.R. China
Full list of author information is available at the end of the article

Liu et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:58
http://asp.eurasipjournals.com/content/2011/1/58

© 2011 Liu et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:jhluo@sjtu.edu.cn
http://creativecommons.org/licenses/by/2.0


Or equivalent form:

min
xl

λ‖xl‖0 + ‖bl − Axl‖22 (3)

where l is the regularization parameter related to τ
and it tunes the weight between the regularization term
||xl||0 and the fidelity term ‖bl − Axl‖22. Solving Equation
2 or 3 proves to be a NP-hard problem [6], one way to
solve which is greedy pursuit algorithms such as match-
ing pursuit (MP) and its variants [7,8]; another com-
monly used approach is to relax the optimization
problem convexly via basis pursuit [9] such as iterated
thresholding [10], FOCal Underdetermined System Solu-
tion (FOCUSS) [11], and LARS-Lasso algorithm [12].
At the dictionary updating step, when the optimiza-

tion problem Equation 1 is solved over bases A given
fixed coefficients X, it reduces to a least squares pro-
blem with quadratic constraints as shown in Equation 4:⎧⎨

⎩
min
A

∑L

l=1
‖bl − Axl‖22

s.t.
∥∥aj∥∥22 = 1, j = 1, . . . , J

(4)

In general, this constrained optimization problem can
be solved using several methods. One simple technique
is gradient descent such as maximum likelihood (ML)
[13,14] and maximum a posteriori (MAP) with iterative

projection [15], another is a dual version derived from
its Lagrangian proposed by Lee et al. [16], the method
of optimal directions (MOD) [17] proposed by Engan et
al. is also a common technique which solves it using the
pseudo inverse of X. For all the methods, the most
important breakthrough is the K-singular value decom-
position (K-SVD) proposed by Aharon et al. [1]. K-SVD
uses a different strategy such that the columns of A are
updated sequentially one at a time by using an SVD to
minimize the approximation error. Hence, the dictionary
updating step is to be a truly generalization of the K-
means since each patch can be represented by multiple
atoms and with different weights.
Recently, much effort has been posed on tightening or

loosening the constraint of the dictionary. Some para-
metric dictionary learning algorithms are proposed in
[18,19], which only optimize the parameters of pre-spe-
cified atoms (e.g., Gabor-like atoms) instead of the dic-
tionary itself and thus decrease the dimensionality of the
corresponding optimization problem, while these algo-
rithms depend too much on selecting a proper para-
metric dictionary experimentally in advance and only
better match to the structure of a specific class of sig-
nals. In contrast, non-parametric (Bayesian) approaches
proposed in [20,21] learn the dictionary using some
prior stochastic process, which automatically estimate
the dictionary size and make no explicit assumption on
the noise variance, while the drawback of them is the
computational load. However, little attention in the lit-
erature has been paid to making the generalized cluster-
ing ability of the dictionary more stable.
Since the traditional dictionary learning methods can

be viewed as various extensions of the K-means cluster-
ing method, a common drawback of them is that they
are prone to local minima, i.e., the efficiency of the algo-
rithms depends heavily on either the samples type or the
initialization. Figure 1 shows a two-dimensional toy
example in which the atom identify ability of K-SVD
algorithm is investigated for two different sample types,
both of which comprise of 1,000 samples and each sam-
ple is a multiple of one of eight basis vectors plus addi-
tive noise. One type is that the dictionary’s atoms have a
uniform angular distribution in the circle, and the other
is that seven atoms have a uniform angular distribution
in half a circle except the last one. We run K-SVD over
50 times with different realizations of coefficients and
noise, and obtain the average identify ability of the two
types which is 87% for the former and almost 100% for
the latter. The main reason of this phenomenon is that
the K-SVD algorithm is sensitive to initialization and
has difficulty in updating the atom in a correct direction
when the samples distribute in a non-directional, non-
regular way. A natural way to alleviate this problem is
first updating the dictionary in a low resolution or

Table 1 The denoising results in dB for six test images
with noise power in the range [5,100] gray values

s/PSNR ’Barbara’ ’House’ ’Boat’ ’Lena’ ’Peppers’ ’Cameraman’

5/34.15 37.91 39.50 37.89 38.13 38.08 38.22

37.74 39.32 37.81 37.97 37.78 37.93

10/
28.13

34.19 36.05 33.58 34.30 34.59 34.00

33.94 35.97 33.39 34.02 34.17 33.71

15/
24.61

32.10 34.46 31.33 32.10 32.54 31.67

31.92 34.31 31.17 31.86 32.27 31.35

20/
22.11

30.63 33.35 29.78 30.58 31.03 30.27

30.55 33.18 29.65 30.38 30.76 29.97

25/
20.17

29.33 32.18 28.60 29.45 29.88 29.04

29.25 32.10 28.52 29.30 29.70 28.78

50/
14.15

24.57 27.76 24.98 25.83 26.20 25.73

24.65 27.85 24.99 25.76 26.19 25.65

75/
10.61

21.50 25.19 22.67 23.55 23.69 23.38

21.52 25.26 22.72 23.56 23.72 23.38

100/
8.13

20.19 23.46 21.66 22.02 21.90 21.70

20.26 23.40 21.67 22.01 21.86 21.72

For each test setting, two results are provided: our ALM-DL algorithm (top);
and K-SVD algorithm (bottom). The best result in each set is highlighted.
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smoothed version of the samples and then making the
smoothed samples converge asymptotically to the origi-
nal samples while refining the dictionary.
In this article, we propose a specific approach of such

multi-scale strategy, the outline of which is to transform
the constrained dictionary learning problem into the
augmented Lagrangian (AL) framework first and then
refine the dictionary from low scale to high. We name
this approach as AL-based multi-scale dictionary learn-
ing (ALM-DL) algorithm. AL is a standard and elemen-
tary tool in optimization field, it converges fast even
super-linearly when forcing its penalty parameter
updated to infinity [22,23]. A closely related algorithm is
the Bregman iterative method which was originally pro-
posed by Osher et al. [24] for total variation regulariza-
tion model, they are identical when the constraint is
linear [25]. Under the circumstance of the study pro-
posed in this article, AL is equivalent to the Bregman
iterative method. We choose to follow the AL perspec-
tive, instead of Bregman iteration, only because of the
fact that AL is popularly used in the optimization com-
munity. Usually, a “decouple” strategy (e.g., alternating
direction method–ADM) is used to solve the subpro-
blem of the AL scheme, it facilitates the AL to be imple-
mented efficiently in many inverse problems [26-29]. In
this article, we resort to a variant of this spirit. We
employ a modified majorization-minimization (MM)

technique to tackle with the subproblem, enabling its
solution accuracy and implementation efficiency.
The rest of the article is organized as follows: Section

2 describes the proposed method with two parts, i.e.,
the multi-scale dictionary learning framework and the
subproblem of inner minimization. In Section 3, we
conduct the experiments on synthetic data and compare
its ability for recovering the original dictionary with K-
SVD, MOD. Then, its ability for denoising real images is
tested and compared with K-SVD in Section 4. At last
Section 5 concludes the article with remarks.

2. The proposed method
This section introduces the ALM-DL algorithm for sol-
ving the dictionary learning problem, it is achieved by
first recasting the constrained dictionary learning pro-
blem into an AL scheme, and then updating the diction-
ary after each inner iteration of the scheme, during
which MM technique is employed for solving the inner
subproblem.

2.1 A multi-scale dictionary learning framework
In this section, l1 norm instead of l0 norm is used to
relax the minimization problem Equation 2; therefore,
the objective optimization problem over x in RJ is given
with the subscript variable l omitted for the sake of
clarity as follows
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(a)                                                                                                     (b) 
Figure 1 A two-dimensional toy example testing the atom identify ability of K-SVD algorithm for two different sample types with the
size of 1,000. Each sample is a multiple of one of eight basis vectors plus additive noise. (a) The dictionary’s atoms have a uniform angular
distribution in the circle; (b) Seven atoms have a uniform angular distribution in half a circle except the last one. A display of one run is shown
above, where the green vectors show the true atoms and the red vectors show the learned atoms.
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{
min

x
‖x‖1

s.t.‖b − Ax‖2 ≤ τ
(5)

By reformulating the feasible set {x: ||b-Ax||2 ≤ τ} as
an indicator function δ2τ (b − Ax), the constrained pro-
blem Equation 5 turns into an unconstrained one:

min
x

‖x‖1 + δ2τ (b − Ax) (6)

where δ2τ (z) =

{
0, if‖z‖2 ≤ τ

+∞, otherwise
.

Similarly in [26,30], the resulting unconstrained pro-
blem is then converted into a different constrained pro-
blem by applying a variable splitting operation, namely:{

min
x,z

‖x‖1 + δ2τ (z)

s.t. − Ax − z + b = 0
(7)

We apply the method of AL for solving this con-
strained problem, which is replaced by solving a
sequence of unconstrained subproblems in which the
objective function is formed by the original objective of
the constrained optimization plus additional “penalty”
terms, the “penalty” terms are made up of constrained
functions multiplied by a positive coefficient (for more
details of AL scheme, see [22]), i.e.,

{xk+1, zk+1} = argmin
x,z

Lβ(x, z) (8)

where

yk+1 = yk +
1
2β

(−Axk+1 − zk+1 + b).

yk+1 = yk +
1
2β

(−Axk+1 − zk+1 + b) (9)

where 〈·,·〉denotes the usual duality product.
For conventional dictionary learning approach, dic-

tionary is updated after achieving the optimal minimiza-
tion of Equations 8 and 9 and the whole learning
procedure loops in an alternative way until satisfying
some conditions. In contrast, here we update dictionary
after inner iteration of Equations 8 and 9, i.e., taking the
derivative of functional Lb with respect to A we get the
following gradient descent update rule:

Ak+1 = Ak − μ

[
−Yk +

1
2β

(AkXk+1 + Zk+1 − B)
]
(Xk+1)T

= Ak + μYk+1(Xk+1)T
(10)

A merit of the AL methodology is its superior conver-
gence property: Axk ® Ax* = b - z* [22], where each
iterative variable “Axk“ can be viewed as a low-resolution
or smoothed version of the true image patches “Ax*“.

Suppose that each iterative step is regarded as a scale,
then the dictionary updating, via summing the multipli-
cation of primal and dual variables (i.e., Equation 10),
can be seemed as a refinement process from the low
scale to the high one. As discussed in the introduction,
this method can avoid local optima problems because
only the main features of the image patches exist at the
initial stage of the iteration and we list the proposed
method ALM-DL in Diagram 1.
Diagram 1. The general description of the ALM-DL
algorithm
1: initiation: X0 = 0; A0

2: while stop-criterion not satisfied

3: for l = 1, ..., L, {xk+1l , zk+1l } = argmin
xl,zl

Lβ(xl, zl)

Where

Lβ(xl, zl)
�= ‖xl‖1 + δ2τ (zl) − 〈

ykl ,Akxl + zl − bl
〉
+

1
4β

‖Axl + zl − bl‖22

4: Yk+1 = Yk +
1
2β

(−AXk+1 − Zk+1 + B)

5: Ak+1 = Ak + μYk+1 (Xk+1)T

6: end while

2.2 The sub-problem of inner minimization
From the pseudocode of the proposed algorithm
depicted in Diagram 1, it is obvious that the speed and
accuracy of the proposed method depend heavily on
how the subproblem over variables x and z is solved, so
a simple and efficient method should be developed to
enable the efficiency of the whole algorithm. Ideally, the
minimization of Equation 8 with respect to z can be
computed analytically and z can be eliminated:

min
z

{
‖x‖1 + δ2τ (z) −

〈
yk,Ax + z − b

〉
+

1
4β

‖Ax + z − b‖22
}

= ‖x‖1 + min
z

{
δ2τ (z) +

1
4β

∥∥∥Ax + z − b − 2βyk
∥∥∥2
2

}

= ‖x‖1 + min
z

{
δ2τ (z) +

1
4β

‖z − b1‖22
} (11)

= ‖x‖1 +
1
4β

∥∥THτ (b1)
∥∥2
2 (12)

Denoting b1 = -Ax + b + 2byk, then the minimization
of the second and third terms in Equation 11 with
respect to z is obtained:

z =

⎧⎨
⎩

τ

‖b1‖2
b1, if‖b1‖2 ≥ τ

b1, otherwise

THτ (b1) = b1 − z =

⎧⎨
⎩

‖b1‖2 − τ

‖b1‖2
b1, if‖b1‖2 ≥ τ

0, otherwise
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Moreover, it follows that

yk+1 = yk +
1
2β

(−Axk+1 − zk+1 + b)

=
1
2β

[
−zk+1 + (−Axk+1 + b + 2βyk)

]

=
1
2β

THτ

[
2βyk + (b − Axk+1)

]

The next most crucial problem is how to determine x.
It is hard to minimize Equation 11 which is nonlinear
with respect to variable x, so we develop an iterative
procedure to find the approximate solution. In the
developed method, z is replaced by its last state zm and
MM technique is employed to add an additional proxi-
mal-like penalty at each inner step so as to cancel out
the term ||Ax||2 (for more details of MM technique, see
[31-33]). Since both of the variables x and z are updated
at each inner step, it seems justified to conclude that a
satisfied solution will be obtained after just a few steps.
The experimental verification is presented in Section
4.3.

xm+1 = argmin
x

{
4β‖x‖1 +

∥∥zm − b1
∥∥2
2 + (x − xm)T(γ I − ATA)(x − xm)

}
= argmin

x

{
4β‖x‖1 +

∥∥∥Ax − b − 2βyk + zm
∥∥∥2
2
+ (x − xm)T(γ I − ATA)(x − xm)

}

= argmin
x

{∥∥∥∥x −
[
xm +

1
γ
AT(b + 2βyk − zm − Axm)

]∥∥∥∥
2

2
+
4β

γ
‖x‖1

}

= argmin
x

{
‖x‖1 +

γ

4β

∥∥∥∥x −
[
xm +

1
γ
AT(b + 2βyk − zm − Axm)

]∥∥∥∥
2

2

}

= Shrink(xm + 2β
/
γA

Tym, 2β
/
γ )

(13)

where g ≥ eig(AT A) and the Shrink operator is

defined as Shrink(f ,μ) =

⎧⎪⎨
⎪⎩
f − μ, f ≥ μ

0, − μ ≤ f < μ

f + μ, f < −μ

.

In summary, the proposed ALM-DL algorithm con-
sists of a two-level nested loop; the outer loop updates
the dual variables and the dictionary while the inner
loop minimizes the primal variables at the same time to
enable the accuracy of the algorithm. The detailed
description of the algorithm is listed in Diagram 2, the
initial dictionary A0 in line 1 can be any predefined
matrix (e.g., the redundant DCT dictionary); the opera-
tor THτ (Y) in line 4 implies to deal with each column
of the matrix Y individually.
Diagram 2. The detailed description of the ALM-DL
algorithm
1: initiation: X0 = 0; A0

2: while stop-criterion not satisfied (loop in k):
3: while stop-criterion not satisfied (loop in m):

4: Ym+1 =
1
2β

THτ [2βCk − (AkXk,m − B)]

5: Xk,m+1 = shrink(Xk,m + 2β
/
γA

T
k Y

m+1, 2β
/
γ )

6: end while

7: Ck+1 = Ym+1; Xk+1, 0 = Xk, m+1

8: Ak+1 = Ak + μCk+1 (Xk+1, 0)T

9: end while

2.3 An hybrid method for improving performance
At first glance, it seems that our proposed iterative
scheme of xm+1 is very similar to the iterative shrinkage/
thresholding algorithm (ISTA), which has been inten-
sively studied in the fields of compressed sensing and
image recovery [10,11,25,26,28,29,32,34]. To improve
the efficiency of the ISTA, various techniques have been
applied to Equation 13. The most simple and fast
approaches in recently years include FPC [35], SpaRSA
[36], FISTA [34]. In fact, as noted in [32,34], the MM
technique we employ in Section 2.2 can lead to ISTA
(for details one can also see our derivation in the
Appendix 1), the main novelty in our work is that we
accelerate the ISTA algorithm with regard to variable
xm+1 by using up-to-date zm. i.e. at each inner ISTA
iteration of x, xm+1 benefits from the latest value zm.
Seen from Diagram 2, by using up-to-date zm, the con-
vergence of variables both x and y are accelerated, there-
fore the corresponding update of dictionary A, Ak+1 = Ak

+ μYk+1 (Xk+1, 0)T, are also accelerated accordingly.
After this paper was submitted for publication we

recently became awarea of some very recent studies by
Yang [29] and Ganesh [37], the ADM framework
adopted by these authors is very similar to ours, i.e. they
first introduce auxiliary variables to reformulate the ori-
ginal problem into the form of AL scheme, and then
apply alternating minimization to the corresponding AL
functions. The main differences between these method
and ours lie on the fact that the application field is dif-
ferent, the ultimate goal of Ganesh’s and Yang’s meth-
ods in compressed sensing field pursues the sparest
coefficient x under predefined transform or dictionary,
while our method is devoted to obtain the optimal dic-
tionary A.
Keep this awareness in mind, we can find the major

distinction between our method and Ganesh’s and
Yang’s methods. Firstly, in Yang’s study they apply the
basic ISTA to solve the inner minimization with respect
to variable x [[29], p. 6]. Secondly, in Ganesh’s study
they apply FISTA, an accelerated technique of ISTA, to
solve the inner minimization with respect to variable x
[[37], pp.15-16]. Both Ganesh’s and Yang’s methods try
to find sparest solution under fixed transform or dic-
tionary [29,37]. Finally, in our work we aim to obtain
optimal dictionary and its corresponding update form is
Ak+1= Ak + μYk+1 (Xk+1, 0)T in the iterative process. This
indicates that the convergence of updating A depends
on both x and y. So we modified the naïve ISTA with
respect to variable xm+1 by taking advantage of up-to-
date zm. Under these circumstances, both x and y are
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accelerated thereby the update of dictionary A is accel-
erated. As by-products, through this modification the
variable z is omitted and implicitly updated in the itera-
tive scheme. Thus the whole iterative procedure deduces
to a very simple and compact iterative fashion. It is
worth noting that since the number of training samples
is very big for dictionary learning problem (the number
adopted in the experiment of Section 4 is 62001), a sim-
ple iteration formula is essential.
For comparison purpose, we modify and extend

Yang’s and Ganesh’s method for dictionary learning
problem by adding dictionary update stage, i.e. we
update dictionary A the same as we have done in
Equation 10 of Section 2.1. We call the extended
Yang’s method as ADM-ISTA-DL and Ganesh ’s
method as ADM-FISTA-DL. The detailed description
of the two methods is presented in Diagrams 3 and 4
in the Appendix 2 respectively. Furthermore, since
both of our’s and Ganesh’s methods can be viewed as
accelerated techniques for ISTA, we can integrate
them into a unified framework for our dictionary
learning problem. Diagram 5 shows the pseudocode of
the hybrid algorithm. As can be seen from the Dia-
gram, lines 5 and 6 come from our method which pur-
sues accelerating variables x and y; on the other hand,
lines 7 and 8 belonging to FISTA aim to accelerating

variable x. Compared with ADM-FISTA-DL shown in
the Appendix 2, the proposed hybrid algorithm has
more simple formation and faster convergence of x
and y. Compared with our ALM-DL shown in Diagram
2, it inherits the strength of FISTA. To conclude, the
hybrid algorithm would perform better than both, and
its computational cost between our ALM-DL and
ADM-FISTA-DL, the numerical comparison of the
three approaches will be conducted in Section 4.3. As
for real application of dictionary learning such as
image denoising, we still choose the primary ALM-DL
because of its simple and compact formation.
Diagram 5. The detailed description of the hybrid algorithm
1: initiation: X0 = 0; A0

2: while stop-criterion not satisfied (loop in k):
3: W1 = Xk; Q1 = Xk; t1 = 1
4: while stop-criterion not satisfied (loop in m):

5: Ym+1 =
1
2β

THτ [2βCk − (AkQm − B)]

6: Wm+1 = shrink(Qm + 2β
/
γA

T
k Y

m+1, 2β
/
γ )

7: tm+1 =
1
2

(
1 +

√
1 + 4t2m

)
8: Qm+1 = Wm+1 +

tm − 1
tm+1

(Wm+1 − Wm)

9: end while
10: Ck+1 = Ym+1; Xk+1 = Wm+1

11: Ak+1= Ak + μCk+1 (Xk+1, 0)T

12: end while)

3. Synthetic experiments
To evaluate the proposed method, ALM-DL, we first try
it on artificial data to test its ability for recovering the
original dictionary and then compare it with the other
two methods: K-SVD and MOD.

3.1 Test data and comparison criterion
The experiment described in [1] is repeated, first a basis
Aorig Î RM×J is generated, consisting of J = 50 basis vec-
tors of dimension M = 20, and then 1,500 data signals
{b1,b2, ..., b1500} are produced, each obtained by a linear
combination of three basis vectors with uniformly dis-
tributed independent identically distributed (i.i.d.) coeffi-
cients in random and independent locations. We add
Gaussian noise with varying SNR to the resulting data,
so that we finally get the test data.
For the comparison criterion, the learned bases were

gained by applying the K-SVD, MOD, and ALM-DL to
the data. As in [1], we compare the learned basis with
the original basis using the maximum overlap between

each original basis vector aorigj and the learned basis vec-

tor alearnj , i.e., whenever max
j

(
1 −

∣∣∣aorigj alearnj

∣∣∣) is smaller

than 0.01, we count this as a success [1].

Table 2 The denoising results in dB for six test images
and a noise power in the range [5,100] gray values

sn ’Barbara’ ’House’ ’Boat’ ’Lena’ ’Peppers’ ’Cameraman’

5/34.15 37.86 39.40 37.75 38.07 38.08 38.02

37.63 39.36 37.48 37.77 37.67 37.69

10/
28.13

34.29 36.10 33.61 34.28 34.54 33.92

34.08 36.07 33.34 33.93 34.16 33.41

15/
24.61

32.10 34.47 31.30 32.22 32.61 31.64

31.99 34.46 31.16 32.04 32.39 31.29

20/
22.11

30.61 33.31 29.75 30.62 31.12 30.15

30.53 33.23 29.68 30.48 30.95 29.94

25/
20.17

29.27 32.31 28.62 29.41 29.89 29.07

29.25 32.39 28.58 29.39 29.84 28.91

50/
14.15

24.82 28.20 25.07 25.83 26.29 25.70

24.90 28.11 25.11 25.80 26.26 25.65

75/
10.61

21.80 25.24 22.76 23.46 23.52 23.61

21.71 25.20 22.74 23.45 23.49 23.58

100/
8.13

20.24 23.78 21.73 22.22 21.65 21.80

20.24 23.66 21.69 22.14 21.63 21.72

For each test setting, two results are provided: our ALM-DL algorithm (top);
and K-SVD algorithm (bottom). The best among each two results is
highlighted.
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3.2 The parameter of the algorithm
The impact of parameter b on the ALM-DL algorithm is
investigated in this section. In the case of SNR = 10, we
set b = 0.22, 0.44, 0.66, 0.88, respectively, and run the
algorithm for 180 iterations. With the process of itera-
tions, we investigate the evolution of detected atom num-
bers and the root mean square error (RMSE) which is

defined as RMSE = 1
/√

ML
∥∥∥B − AkX

k
∥∥∥
2
. As can be seen

from Figure 2, the RMSE increases but the number of
successfully detected atoms (NSDA) decreases with
increasing b, and an interesting phenomenon is that the
larger the value of b, the less stable the NSDA, it seems
that the NSDA increases more gradually and stably when
b is very small. However, when the value of b is very
small the algorithm needs more iterations. Thus, in prac-
ticable implement the parameter b should be given a
relatively small value. As for the experiments conducted
below, the parameter b is set as 0.45 and the number of
iteration k is set as 100. For a fair comparison, the num-
ber of learning iterations of K-SVD and MOD is also set
to be 100, which is bigger than that in [1].

3.3 Comparison results
The ability of recovering the original dictionary is tested for
three methods, namely, K-SVD, MOD, and ALM-DL, and
the comparison results are given in this section. We repeat
this experiment 50 times with a varying SNR of 10, 20, 30,

40, and 50 dB. As in [1], for each noise level, we sort the 50
trials according to the number of successfully learned basis
elements and order them in groups of 10 experiments. Fig-
ure 3 shows the results of K-SVD, MOD, and ALM-DL. As
can be seen, our algorithm outperforms both of them, espe-
cially when the noise level is low, ALM-DL recovers the
atoms much more accurately. We know that not only the
test dictionary, but also the coefficients are generated in
random and independent locations, the specific distribution
of the sample data widens the performance gap between
our proposed ALM-DL and K-SVD. This indicates that our
method has better performance on images with irregular
objectives and this advantage will also be validated for real
applications as shown in the next section.

4. Numerical experiments of image denoising
This section presents the dictionary learned by ALM-DL
algorithm and demonstrates its behavior and properties
in comparison with K-SVD algorithm. We have tested
our method for various denoising tests on a set of six 8-
bit grayscale standard images shown in Figure 4, which
are “Barbara”, “House”, “Boat”, “Lena”, “Peppers”, and
“Cameraman”. In the experiment, the whole process
involves the following steps:
• Let Î be a corrupted version of the image I (256 ×

256), after the addition of white zero-mean Gaussian
noise with power sn, data examples {b1,b2, ..., b62001} of
8 × 8 pixels are extracted from the noisy images Î, some

Table 3 The computation time of the four methods for running 34 iterations

ADM-ISTA-DL ADM-FISTA-DL ALM-DL The hybrid method

Boat, s = 15, m = 4 174.08s 205.45s 168.48s 188.12s

Boat, s = 15, m = 7 273.39s 330.63s 279.12s 316.61s

Lena, s = 15, m = 4 174.25s 207.13s 168.54s 188.29s

Lena, s = 15, m = 7 271.75s 329.27s 278.75s 313.31s
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(a)                                                                                         (b) 
Figure 2 The evolution of RMSE (a) and the NSDA (b) with various b. The target RMSE is 0.1063.
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initial dictionary A0 is specially chosen for both of the
training algorithms.
• In the sparse coding stage of learning procedure,

each patch is extracted and sparse-coded. For ALM-DL
we set m = 7, b = 100 and target error τ = C

√
Mσn with

the default value C = 1.15. The iteration is repeated
until the error has been satisfied. Meanwhile, error-con-
strained orthogonal MP (OMP) implementation is used
in the K-SVD algorithm [2,38] (the K-SVD codes are
available at http://www.cs.technion.ac.il/~elad/software/)
to solve Equation 1 with the same target error as men-
tioned above and K-SVD runs ten iterations. To enable
a fair comparison, the data samples are sparse-coded
using OMP under the learned dictionary for both algo-
rithms after the learning procedure, these implementa-
tions lead to approximate patches with reduced noise

{b̃1, b̃2, · · · , b̃62001}.
• The output image Ĩ is obtained by adding the

patches {b̃1, b̃2, · · · , b̃62001} in their proper locations and
averaging the contributions in each pixel, the implemen-
tation is the same as in [2].

4.1 The learned dictionary
We investigate the sensitivity of dictionaries generated
by ALM-DL and K-SVD to initialization, respectively, in
this section. First two dictionaries are chosen as the
initializations, one is the redundant DCT dictionary
(Figure 5a) and the other is a random matrix whose
atom is randomly chosen from the training data (Figure
5b). Both of the dictionaries consist of J = 256 atoms
and each atom is shown as an 8 × 8 pixel image. Then
ALM-DL and K-SVD are used for denoising the image
“Cameraman” with s = 10, and at last two sequences of
dictionaries generated by the two methods are shown in
Figures 6 and 7, respectively, from each top line of
which it can be seen that the ALM-DL drastically
changes the dictionary while K-SVD does not, thus the
proposed algorithm has a good ability to recover the
main prototypes at the first few stages. Moreover, these
figures also show that the ALM-DL has another well-
posed property, i.e., it is insensitive to initialization
because the final learned dictionaries are very similar to
each other regardless of the atom location (seen from
Figures 6e and 7e), while K-SVD depends too much on
the initialization. Thus, our proposed method avoids lar-
gely getting trapped into some local optima.

4.2 Denoised results
In this section, ALM-DL is compared with K-SVD for
the image denoising applications. In fact, the six test
images in Figure 4 can be classified into two categories
based on their overlapped patches’ distributions, which
can be distinguished by patches’ standard covariance
and principal components. The first three images (i.e.,
“Barbara”, “House”, “Boat”), typically characterized by
regular textures or edges, are classified as the regular
one, while the latter three images (i.e., “Lena”, “Peppers”,
“Cameraman”), typically characterized by irregular
objectives, are classified as the irregular one. Figure 8a-b
shows the standard covariance matrix of the 62,001
patch examples extracted from “Barbara” and “Camera-
man”, respectively, with standard deviation s = 20. The
entries of the 64 × 64 matrix are between 0 and 1. As
can be seen, the coordinates in 64-dimensional space of
the image “Barbara” are connected more closely than
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Figure 3 Comparison results of K-SVD, MOD, and ALM-DL with
respect to the reconstruction of the original basis on synthetic
signals. For each of the tested algorithms and for each noise level,
50 trials were conducted and their results were sorted. The graph
labels represent the mean number of successfully learned basis
elements (out of 50) over the ordered tests in groups of ten
experiments.

Figure 4 The six images used for the various denoising tests ("Barbara”, “House”, “Boat”, “Lena”, “Peppers”, and “Cameraman”).
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those of the image “Cameraman”. The first two-dimen-
sional projection of these patch examples (through PCA
transform) presented in Figure 8c-d also demonstrates
the different distribution forms.
We now present denoising results obtained by our

ALM-DL approach and the K-SVD method with noise
level in the range of [5,100]. Every reported result is an
average of over five experiments, having different reali-
zations of the noise. In Table 1, the PSNRs for six test
images using our ALM-DL approach are compared with
the K-SVD when redundant DCT is chosen as the initial
dictionary, and the best result gained by this two meth-
ods are highlighted, from which we can get a conclusion
that our method is better than K-SVD for all the noise
levels lower than s = 25, and from Table 2 it can be
seen that the conclusion is still valid when the initial
dictionary is a random matrix. In order to better visua-
lize their comparison, Figure 9 describes the difference

between the denoising results of the ALM-DL and K-
SVD. It can be seen that our proposed approach outper-
forms K-SVD for almost all the noise levels especially
for the second type of images. No matter what the
initial dictionary is, the PSNR value obtained by the
ALM-DL gives an average advantage of 0.2 dB over K-
SVD for all the noise levels lower than s = 25, but as
the noise increases, the advantages of our approach is
gradually weakened, and this will be a future research
direction. Figure 10 plots the initial dictionary, the dic-
tionary trained by K-SVD and our ALM-DL algorithm,
and the corresponding denoised results of image “Cam-
eraman” with s = 15. To facilitate the visual assessment
of images quality, in Figure 10d-f small regions of the
physical image are boxed, in which we clearly observe
the differences of the edge and the noise those images
contain. It can be seen that Figure 10e shows the edge
blurred but the proposed method still keeps most part
of the edge. What’s more, the small boxes of Figure
10e-f also show that the K-SVD has some noise while
our method does not.
The above experiments are conducted under the fixed

number (i.e., J = 256) of dictionary elements, now we
consider four different number of elements: 64, 128,
256, and 512. Figure 11 shows the PSNR values of
image “House” and “Peppers”. As can be seen, the
denoising ability of ALM-DL and K-SVD improves as
the number of dictionary elements increase, while the
gap of the PSNR value obtained by the two methods is
bigger when the elements number is very small, which
indicates that our proposed method is more robust.

          
(a)                                               (b) 

Figure 5 Two initial dictionary. DCT (a) and a random matrix
chosen from the training data (b).

 (a)                                   (b)                               (c)                                  (d)                                (e) 

 (f)                                   (g)                               (h)                                  (i)                                 (j) 
Figure 6 The dictionary learning process with DCT as initialization. From left to right: the first row: the learned dictionaries generated by
ALM-DL after 2, 6, 11, 17, 20 iterations; the second row: the learned dictionaries generated by K-SVD after 1, 3, 6, 8, 10 iterations.
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4.3 The inner sub-problem solving and its computational
load
As mentioned in Section 2.2, the inner sub-problem is
essential to our algorithm, so we test ALM-DL with three
different inner iterations (i.e., m = 1,4,7). Figure 12 shows

the difference of the three denoising results of ALM-DL
compared with those of K-SVD, which appears as a zero
straight reference line. These comparisons are presented
for images ‘Boat’ and ‘Lena’. As can be seen, the number
of iterations affects the accuracy of solution very much for

          (a)                                   (b)                               (c)                                  (d)                                (e) 

         (f)                                   (g)                               (h)                                  (i)                                (j) 
Figure 7 The dictionary learning process with a random matrix as initialization. From left to right: the first row: the learned dictionaries
generated by ALM-DL after 2, 6, 11, 17, 20 iterations; the second row: the learned dictionaries generated by K-SVD after 1, 3, 6, 8, 10 iterations.

(a)                                         (b) 

(c)                                             (d) 
Figure 8 An illustration of overlapped patches’ distributions from different images. Top: the standard covariance matrix of the 62001
examples extracted from “Barbara” (a) and “Cameraman” (b), and s = 20. Each entry of the matrix is between 0 (black) and 1 (white). Bottom:
The first two dimension projection of the 62001 examples extracted from “Barbara” (c) and “Cameraman” (d), and s = 20.
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(a)                                                                                         (b) 
Figure 9 The difference of the denoising results between the ALM-DL and K-SVD with two initial dictionaries. The initial dictionary
whose atom is as DCT (a) and randomly chosen from the training data (b), respectively.

     (a)                                                               (b)                                                            (c)   

                     (d)                                                               (e)                                                            (f)   
Figure 10 The denoised result of image “Cameraman” with s = 15. Top plots: (a) the initial dictionary, (b) the dictionary trained by K-SVD,
and (c) the dictionary trained by ALM-DL algorithm. Bottom plots (d) the reference image, (e) denoised image by K-SVD and (f) our ALM-DL
algorithm.
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noise levels lower than s = 25, i.e., the larger the number
of iterations, the better the denoising result; and again we
get the conclusion that our proposed method outperforms
K-SVD much more for noise levels lower than s = 25 as
demonstrated in Section 4.2. So, in practical implementa-
tion of the proposed algorithm, better results are often
produced with more iterations because the approximation
is more accurate. However, on the other hand, more accu-
rate approximates need more inner iterations and, thus,
more computations. Therefore, an appropriate value of m
should be selected to trade off between accuracy and

efficiency. We suggest that selecting m = 7 as the inner
iterations is a nice balance.
As we have analyzed in Section 2.3, our proposed

method is very similar to Yang’s [29] and Ganesh’s [37]
methods regardless of different application fields, hence
we have extended them in Appendix 2 and named them
as ADM-ISTA-DL and ADM-FISTA-DL, respectively,
we compare them with our ALM-DL and the conse-
quent hybrid algorithm. We evaluate the four methods
from three criteria: RMSE, average L1 norm (ALN), and
the computation time, the evolution of RMSE and ALN
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Figure 11 Effect of changing the number of dictionary elements on denoising. (a) Denoising the image “House” with s = 15 and DCT as
the initial dictionary; (b) Denoising the image “Peppers” with s = 10 and a random matrix as the initial dictionary.
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Figure 12 The difference of the denoising results between the ALM-DL with iterations 1, 4, 7 and K-SVD of image “Boat” (a) and
“Lena” (b). The initiation dictionary is set to DCT.
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reflect the algorithm’s effectiveness while computation
time measures the algorithm’s efficiency.
Figures 13 and 14 show the RMSE and ALN of image

“Boat” in the case of m = 4 and m = 7, respectively.
First, compared with ADM-ISTA-DL, both ADM-
FISTA-DL and our ALM-DL exhibit faster convergence,
with the iterative process, ADM-FISTA-DL behaves
slower increase of ALN since they use FISTA in the
inner minimization such that has quicker reduction of
ALN under the predefined iteration number; our ALM-
DL behaves faster decrease of RMSE due to the acceler-
ated update of variables z and y. Second, the hybrid
method outperforms the ADM-ISTA-DL, ADM-FISTA-
DL, and ALM-DL. Figures 15 and 16 show the RMSE

and ALN of image “Lena” in the case of m = 4 and m =
7, respectively, similar phenomenon is observed. Finally,
from the viewpoint of computation time, Table 3 shows
that our method possesses the minimum amount of
time in the case of m = 4, when increasing the number
of inner iteration from m = 4 to m = 7, the computation
cost of our method is a litter bigger than that of ADM-
ISTA-DL. Considering all the three criteria, it concludes
that our proposed approach is a very promising method.

5. Conclusions
In this article, we have developed a primal-dual-based
dictionary learning algorithm under the AL framework.
The dictionary is updated by summing the
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Figure 13 The RMSE (a) and average L1 norm (ALN) (b) of four methods for image “Boat” with s = 15. The initiation dictionary is set to
DCT and m = 4.
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Figure 14 The RMSE (a) and average L1 norm (ALN) (b) of four methods for image “Boat” with s = 15. The initiation dictionary is set to
DCT and m = 7.
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multiplication of primal and dual variables after each
iteration of the AL scheme. The ultimate advantage of
this strategy is that the proposed algorithm does not
depend on the initialization too much, so it largely
avoids getting trapped into some local optima. Experi-
ments on image denoising application show that (1)
our proposed approach outperforms the traditional
alternating approaches especially for the “Cameraman"-
like images whose composite patches are distributed in
a non-directional, irregular way; (2) our proposed
approach is more tolerant to the number of dictionary
elements, which is often unknown for signal/image
processing applications.

There are several research directions that we are con-
sidering currently. For instance, as proved in [22], the
parameter b of the AL scheme updates in a non-increas-
ing way, including the case of b to be a constant, can
guarantee its convergence. However, an automatic selec-
tion of parameter b will certainly accelerate the conver-
gence, and how to achieve it remains an open question.

Appendix 1
In the appendix, we prove that the iterative scheme (13)
derived by employing MM technique is essential to be
an ISTA [25,32]. As mentioned in [25], the standard for-
mula of ISTA for solving the general L1-minimization
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Figure 15 The RMSE (a) and average L1 norm (ALN) (b) of four methods for image “Lena” with s = 25. The initiation dictionary is set to
DCT and m = 4.
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Figure 16 The RMSE (a) and average L1 norm (ALN) (b) of four methods for image “Lena” with s = 25. The initiation dictionary is set to
DCT and m = 7.
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problem of the form:

min
x

{
μ‖x‖1 +H(x)

}
is

xm+1 = argmin
x

{
μ‖x‖1 +

1
2δ

∥∥x − (xm − δ∇H(xm))
∥∥2}

Setting μ = 4β ; H(x) =
∥∥∥Ax − b − 2βyk + zm

∥∥∥2
2
; and δ

= 1/2g, then we give the iterative scheme (13) as fol-
lows:

xm+1 = argmin
x

{
4β‖x‖1 + γ

∥∥∥∥x −
[
xm +

1
γ
AT(b + 2βyk − zm − Axm)

]∥∥∥∥
2

2

}

(13)
This is the same as we have obtained in Section 2.2.

Appendix 2
In this appendix, we modify and extend Yang’s [29] and
Ganesh’s [37] methods for dictionary learning problem
by adding dictionary updating stage. We are grateful to
a referee for pointing out to us Yang’s [29] and Ganesh’s
[37] studies. The ADM framework adopted by these
authors is very similar to ours, i.e., they first introduce
auxiliary variables to reformulate the original problem
into the form of AL scheme, and then apply alternating
minimization to the corresponding AL functions. Parti-
cularly, in Yang’s study they apply ISTA to solve the
inner minimization with respect to variable x [[29], p.
6], while in Ganesh’s study they apply an accelerated
FISTA for solving the inner minimization instead [[37],
pp. 15-16]. Although both of them try to find sparest
solution under fixed dictionary, we can modify and
extend them to our dictionary learning problem for
comparison purpose, i.e., we update dictionary A the
same as we have done in Equation 10. We call the
extended Yang’s method as ADM-ISTA-DL and
Ganesh’s method as ADM-FISTA-DL. The detailed
description of the two methods is presented in Diagrams
3 and 4, respectively.

Diagram 3. The detailed description of the ADM-ISTA-DL
algorithm
1: initiation: X0 = 0; A0

2: while stop-criterion not satisfied (loop in k):

3: zk+1 =

⎧⎨
⎩

τ

‖b1‖2
b1, if‖b1‖2 ≥ τ

b1, otherwise
; b1 = −Akx

k + b + 2βyk

4: while stop-criterion not satisfied (loop in m):
5: Xk,m+1 = shrink(Xk,m + 1/

γA
T
k (−Zk+1 − AkX

k,m + B + 2βYk), 2β
/
γ )

6: end while

7: Xk+1 = Xk, m+1; Yk+1 = Yk +
1
2β

(−Zk+1 − AkXk+1 + B)

8: Ak+1= Ak + μYk+1 (Xk+1)T

9: end while

Diagram 4. The detailed description of the ADM-FISTA-DL
algorithm
1: initiation: X0 = 0; A0

2: while stop-criterion not satisfied (loop in k):

3: zk+1 =

⎧⎨
⎩

τ

‖b1‖2
b1, if‖b1‖2 ≥ τ

b1, otherwise
; b1 = -Ak xk + b +

2byk

4: W1 = Xk; Q1 = Xk; t1 = 1
5: while stop-criterion not satisfied (loop in m):
6: Wm+1 = shrink(Qm + 1/

γA
T
k (−Zk+1 − AkQ

m + B + 2βYk), 2β
/
γ )

7: tm+1 =
1
2

(
1 +

√
1 + 4t2m

)
8: Qm+1 = Wm+1 +

tm − 1
tm+1

(Wm+1 − Wm)

9: end while

10: Xk+1 = Wm+1; Yk+1 = Yk +
1
2β

(−Zk+1 − AkXk+1 + B)

11: Ak+1= Ak + μYk+1 (Xk+1)T

12: end while

Endnote
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