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Abstract

In data mining and pattern classification, feature extraction and representation methods are a very important step
since the extracted features have a direct and significant impact on the classification accuracy. In literature, numbers
of novel feature extraction and representation methods have been proposed. However, many of them only focus on
specific domain problems. In this article, we introduce a novel distance-based feature extraction method for various
pattern classification problems. Specifically, two distances are extracted, which are based on (1) the distance between
the data and its intra-cluster center and (2) the distance between the data and its extra-cluster centers. Experiments
based on ten datasets containing different numbers of classes, samples, and dimensions are examined. The
experimental results using naïve Bayes, k-NN, and SVM classifiers show that concatenating the original features
provided by the datasets to the distance-based features can improve classification accuracy except image-related
datasets. In particular, the distance-based features are suitable for the datasets which have smaller numbers of
classes, numbers of samples, and the lower dimensionality of features. Moreover, two datasets, which have similar
characteristics, are further used to validate this finding. The result is consistent with the first experiment result that
adding the distance-based features can improve the classification performance.

Keywords: distance-based features, feature extraction, feature representation, data mining, cluster center, pattern
classification

1. Introduction
Data mining has received unprecedented focus in the
recent years. It can be utilized in analyzing a huge
amount of data and finding valuable information. Parti-
cularly, data mining can extract useful knowledge from
the collected data and provide useful information for
making decisions [1,2]. With the rapid increase in the
size of organizations’ databases and data warehouses,
developing efficient and accurate mining techniques have
become a challenging problem.
Pattern classification is an important research topic in

the fields of data mining and machine learning. In particu-
lar, it focuses on constructing a model so that the input
data can be assigned to the correct category. Here, the
model is also known as a classifier. Classification techni-
ques, such as support vector machine (SVM) [3], can be
used in a wide range of applications, e.g., document classi-
fication, image recognition, web mining, etc. [4]. Most of
the existing approaches perform data classification based
on a distance measure in a multivariate feature space.

Because of the importance of classification techniques,
the focus of our attention is placed on the approach for
improving classification accuracy. For any pattern classi-
fication problem, it is very important to choose appro-
priate or representative features since they have a direct
impact on the classification accuracy. Therefore, in this
article, we introduce novel distance-based features to
improve classification accuracy. Specifically, the dis-
tances between the data and cluster centers are consid-
ered. This leads to the intra-cluster distance between
the data and the cluster center in the same cluster, and
the extra-cluster distance between the data and other
cluster centers.
The idea behind the distance-based features is to

extend and take the advantage of the centroid-based
classification approach [5], i.e., all the centroids over a
given dataset usually have their discrimination capabil-
ities for distinguishing data between different classes.
Therefore, the distance between a specific data and its
nearest centroid and other distances between the data
and other centroids should be able to provide valuable
information for classification.
This rest of the article is organized as follows. Section

2 briefly describes feature selection and several
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classification techniques. Related work focusing on
extracting novel features is reviewed. Section 3 intro-
duces the proposed distance-based feature extraction
method. Section 4 presents the experimental setup and
results. Finally, conclusion is provided in Section 5.

2. Literature review
2.1. Feature selection
Feature selection can be considered as a combination
optimization problem. The goal of feature selection is to
select the most discriminant features from the original
features [6]. In many pattern classification problems, we
are often confronted with the curse of dimensionality,
i.e., the raw data contain too many features. Therefore,
it is a common practice to remove redundant features
so that efficiency and accuracy can be improved [7,8].
To perform appropriate feature selection, the follow-

ing considerations should be taken into account [9]:

1. Accuracy: Feature selection can help us exclude
irrelevant features from the raw data. These irrele-
vant features usually have a disrupting effect on the
classification accuracy. Therefore, classification accu-
racy can be improved by filtering out the irrelevant
features.
2. Operation time: In general, the operation time is
proportional to the number of selected features.
Therefore, we can effectively improve classification
efficiency using feature selection.
3. Sample size: The more samples we have, the more
features can be selected.
4. Cost: Since it takes time and money to collect
data, excessive features would definitely incur addi-
tional cost. Therefore, feature selection can help us
to reduce the cost in collecting data.

In general, there are two approaches for dimensionality
reduction, namely, feature selection and feature extraction.
In contrast to the feature selection, feature extraction per-
forms transformation or combination on the original fea-
tures [10]. In other words, feature selection finds the best
feature subset from the original feature set. On the other
hand, feature extraction projects the original feature to a
subspace where classification accuracy can be improved.
In literature, there are many approaches for dimen-

sionality reduction. principal component analysis (PCA)
is one of the most widely used techniques to perform
this task [11-13].
The origin of PCA can be traced back to 1901 [14] and

it is an approach for multivariate analysis. In a real-world
application, the features from different sources are more
and less correlated. Therefore, one can develop a more
efficient solution by taking these correlations into
account. The PCA algorithm is based on the correlation

between features and finds a lower-dimensional subspace
where covariance is maximized. The goal of PCA is to
use a few extracted features to represent the distribution
of the original data. The PCA algorithm can be summar-
ized in the following steps:

1. Compute the mean vector μ and the covariance
matrix S of the input data.
2. Compute the eigenvalues and eigenvectors of S.
The eigenvalues and the corresponding eigenvectors
are sorted according the eigenvalues.
3. The transformation matrix contains the sorted
eigenvectors. The number of eigenvectors preserved
in the transformation matrix can be adjusted by
users.
4. A lower-dimensional feature vector is obtained by
subtracting the mean vector μ from an input datum
and then multiplied by the projection matrix.

2.2. Pattern clustering
The aim of clustering analysis is to find groups of data
samples having similar properties. This is an unsuper-
vised learning method because it does not require the
category information associated with each sample [15]. In
particular, the clustering algorithms can be divided into
five categories [16], namely, hierarchical, partitioning,
density-based, grid-based, and model-based methods.
The k-means algorithm is a representative approach

belonging to the partition method. In addition, it is a sim-
ple, efficient, and widely used clustering method. Given k
clusters, each sample is randomly assigned to a cluster. By
doing so, we can find the initial locations of cluster cen-
ters. We can then reassign each sample to the nearest
cluster center. After the reassignment, the locations of
cluster centers should be updated. The previous steps are
iterated until some termination condition is satisfied.

2.3. Pattern classification
The goal of pattern classification is to predict the cate-
gory of the input data using its attributes. In particular, a
certain number of training samples are available for each
class, and they are used to train the classifier. In addition,
each training sample is represented by a number of mea-
surements (i.e., feature vectors) corresponding to a speci-
fic class. This can be called as supervised learning [15,17].
In this article, we will utilize three popular classification

techniques, namely, naïve Bayes, SVMs, and k-nearest
neighbor (k-NN), to evaluate the proposed distance-
based features.
2.3.1. Naïve Bayes
The naïve Bayes classifier is a probabilistic classifier based
on the Bayes’ theorem [15]. It requires all assumptions to
be explicitly built into models which are then used to
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derive ‘optimal’ decision/classification rules. It can be used
to represent the dependence between random variables
(features) and to give a concise and tractable specification
of the joint probability distribution for a domain. It is con-
structed using the training data to estimate the probability
of each class given the feature vectors of a new instance.
Given an example represented by the feature vector X, the
Bayes’ theorem provides a method to compute the prob-
ability that X belongs to class Ci, denoted as p(Ci|X):

P(Ci |X ) =
N∏
j=1

P(xj |Ci ) (1)

i.e., the naïve Bayes classifier learns the conditional
probability of each attribute xj (j = 1,2,...,N) of X given
the class label Ci. Therefore, the classification problem
can be stated as ‘given a set of observed features xj,
from an object X, classify X into one of the classes.
2.3.2. Support vector machines
A SVM [3] has widely been applied in many pattern
classification problems. It is designed to separate a set
of training vectors which belong to two different classes,
(x1, y1), (x2, y2),...,(xm, ym) where xi Î Rd denotes vectors
in a d-dimensional feature space and yi Î {-1, +1} is a
class label. In particular, the input vectors are mapped
into a new higher dimensional feature space denoted as
F: Rd®Hf where d <f. Then, an optimal separating
hyperplane in the new feature space is constructed by a
kernel function, K(xi, xj) which products between input
vectors xi and xj where K(xi, xj) = F(xi) F(xj).
All vectors lying on one side of the hyperplane are

labeled ‘-1’, and all vectors lying on the other side are
labeled ‘+1’. The training instances that lie closest to the
hyperplane in the transformed space are called support
vectors.
2.3.3. K-nearest neighbor
The k-NN classifier is a conventional non-parametric
classifier [15]. To classify an unknown instance repre-
sented by some feature vectors as a point in the feature
space, the k-NN classifier calculates the distances
between the point (i.e., the unknown instance) and the
points in the training dataset. Then, it assigns the point
to the class among its k-NNs (where k is an integer).
In the process of creating a k-NN classifier, k is an

important parameter and different k values will cause dif-
ferent performances. If k is considerably huge, the neigh-
bors which used for classification will make large
classification time and influence the classification accuracy.

2.4. Related work of feature extraction
In this study, the main focus is placed on extracting
novel distance-based features so that classification accu-
racy can be improved. The followings summarize some

related studies proposing new feature extraction and
representation methods for some pattern classification
problems. In addition, the contributions of these
research works are briefly discussed.
Tsai and Lin [18] propose a triangle area-based near-

est neighbor approach and apply it to the problem of
intrusion detection. Each data are represented by a
number of triangle areas as its feature vectors, in which
a triangle area is based on the data, its cluster center,
and one of the other clusters. Their approach achieves
high detection rate and low false positive rate on the
KDD-cup99 dataset.
Lin [19] proposes an approach called centroid-based and

nearest neighbor (CANN). This approach uses cluster cen-
ters and their nearest neighbors to yield a one-dimensional
feature and can effectively improve the performance of an
intrusion detection system. The experimental results over
the KDD CUP 99 dataset indicate that CANN can
improve the detection rate and reduce computational cost.
Zeng et al. [20] propose a novel feature extraction

method based on Delaunay triangle. In particular, a
topological structure associated with the handwritten
shape can be represented by the Delaunay triangle.
Then, an HMM-based recognition system is used to
demonstrate that their representation can achieve good
performance in the handwritten recognition problem.
Xue et al. [21] propose a Bayesian shape model for facial

feature extraction. Their model can tolerate local and glo-
bal deformation on a human face. The experimental results
demonstrate that their approach provides better accuracy
in locating facial features than the active shape model.
Choi and Lee [22] propose a feature extraction method

based on the Bhattacharyya distance. They consider the
classification error as a criterion for extracting features
and an iterative gradient descent algorithm is utilized to
minimize the estimated classification error. Their feature
extraction method performs favorably with conventional
methods over remotely sensed data.
To sum up, the limitations of much related work

extracting novel features are that they only focuses on sol-
ving some specific domain problem. In addition, they use
their proposed features to directly compare with original
features in terms of classification accuracy and/or errors, i.
e., they do not consider ‘fusing’ the original and novel fea-
tures as another new feature representation for further
comparisons. Therefore, the novel distance-based features
proposed in this article are examined over a number of
different pattern classification problems and the distance-
based features and the original features are concatenated
for another new feature representation for classification.

3. Distance-based features
In this section, we will describe the proposed method in
detail. The aim of our approach is to augment new
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features to the raw data so that the classification accu-
racy can be improved.

3.1. The extraction process
The proposed distance-based feature extraction method
can be divided into three main steps. In the first step,
given a dataset the cluster center or centroid for every
class is identified. Then, for the second step, the dis-
tances between each data sample and the centroids are
calculated. The final step is to extract two distance-
based features, which are calculated in the second step.
The first distance-based feature means the distance
between the data sample and its cluster center. The sec-
ond one is the sum of the distances between the data
sample and other cluster centers.
As a result, each of the data samples in the dataset

can be represented by the two distance-based features.
There are two strategies to examine the discrimination
power of these two distance-based features. The first
one is to use the two distance-based features alone for
classification. The second one is to combine the original
features with the new distance-based features as a longer
feature vectors for classification.

3.2. Cluster center identification
To identify the cluster centers from a given dataset, the
k-means clustering algorithm is used to cluster the
input data in this article. It is noted that the number of
clusters is determined by the number of classes or cate-
gories in the dataset. For example, if the dataset is con-
sisted of three categories, then the value of k in the k-
means algorithm is set to 3.

3.3. Distances from intra-cluster center
After the cluster center for each class is identified, the
distance between a data sample and its cluster center
(or intra-cluster center) can be calculated. In this article,
the Euclidean distance is utilized. Given two data points
A = [a1, a2,...,an] and B = [b1,b2,...,bn], the Euclidean dis-
tance between A and B is given by

dis(A,B) =
√
(a1 − b1)

2 + (a2 − b2)
2 + ... + (an − bn)

2(2)

Figure 1 shows an example for the distance between a
data sample and its cluster center, where cluster centers
are denoted by {Cj|j = 1, 2, 3} and data samples are
denoted by {Di|i = 1,2,...,8}. In this example, data point
D7 is assigned to the third cluster (C3) by the k-means
algorithm. As a result, the distance from D7 to its intra-
cluster center (C3) is determined by the Euclidean dis-
tance from D7 to C3.
In this article, we will utilize the distance between a

data sample and its intra-cluster center as a new feature,

called Feature 1. Given a datum Di belonging to Cj, its
Feature 1 is given by

Feature 1 = dis(Di, Cj) (3)

where dis(Di , Cj) denotes the Euclidean distance from
Di to Cj.

3.4. Distances from extra-cluster center
On the other hand, we also calculate the sum of the dis-
tances between the data sample and its extra-cluster
centers and use them as the second features. Let us look
at the graphical example shown in Figure 2, where clus-
ter centers are denoted by {Cj|j = 1, 2, 3} and data sam-
ples are denoted by {Di|i = 1,2,...,8}. Since the datum D6

is assigned to the second cluster (C2) by the k-means
algorithm, the distance between D6 and its extra-cluster
centers include dis(D6 , C1) and dis(D6 , C3).
Here, we define another new feature, called Feature 2,

as the sum of the distances between a data sample and
its extra-cluster centers. Given a datum Di belonging to
Cj, its Feature 2 is given by

Feature2 =
k∑
j=1

dis(Di,Cj) − Feature 1 (4)

where k is the number of clusters identified, dis(Di, Cj)
denotes the Euclidean distance from Di to Cj.

3.5. Theoretical analysis
To justify the use of the distance-based features, it is
necessary to analyze their impacts on classification

C1 
C2 

C3 

D1 D2 

D3 

D4 
D5 

D6 

D7 

D8 

Figure 1 The distance between the data sample and its intra-
cluster center.
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accuracy. For the sake of simplicity, let us consider the
results when the proposed features are applied to two-
category classification problems. The generalization of
these results to multi-category cases is straightforward,
though much more involved. The classification accuracy
can readily be evaluated if the class-conditional densities{
p (x |Ck )

}2
k=1

are multivariate normal with identical

covariance matrices, i.e.,

p (x |Ck ) ∼ N(μ(k),�), (5)

where x is a d-dimensional feature vector, μ(k) is the
mean vector associated with class k, and ∑ is the covar-
iance matrix. If the prior probabilities are equal, it fol-
lows that the Bayes error rate is given by

P (e) =
1√
2π

∫ ∞

r/2
e−u2/2du, (6)

where r is the Mahalanobis distance:

r =
√(

μ(1) − μ(2)
)T

�−1
(
μ(1) − μ(2)

)
. (7)

In case d features are conditionally independent, the
Mahalanobis distance between two means can be simpli-
fied to

r =

√√√√√ d∑
i=1

(
μ
(1)
i − μ

(2)
i

)2

σ 2
i

, (8)

where μ
(k)
i

denotes the mean of the ith feature belong-

ing to class k, and σ 2
i denotes the variance of the ith

feature. This shows that adding a new feature, whose
mean values for two categories are different, can help to
reduce error rate.
Now we can calculate the expected values of the pro-

posed features and see what the implications of this
result are for the classification performance. We know
that Feature 1 is defined as the distance between each
data point and its class mean, i.e.,

Feature 1 =
(
x − µ(k)

)T (
x − µ(k)

)

=
d∑
i=1

(
xi − μ

(k)
i

)2
.

(9)

Thus, the mean of Feature 1 is given by

E [Feature 1] =
d∑
i=1

E
[(

xi − μ
(k)
i

)2
]

= Tr
(
�(k)

)
.

(10)

This reveals that the mean value of Feature 1 is deter-
mined by the trace of the covariance matrix associated
with each category. In practical applications, the covar-
iance matrices are generally different for each category.
Naturally, one can expect to improve classification accu-
racy by augmenting Feature 1 to the raw data. If the
class-conditional densities are distributed more differ-
ently, then the Feature 1 will contribute more to redu-
cing error rate.
Similarly, Feature 2 is defined as the sum of the dis-

tances from a data point to the centroids of other cate-
gories. Given a data point x belonging to class k, we
obtain

Feature 2 =
∑
��=k

(
x − μ(�)

)T (
x − μ(�)

)

=
∑
��=k

(
x − μ(k) + μ(k) − μ(�)

)T (
x − μ(k) + μ(k) − μ(�)

)

=
∑
��=k

{(
x − μ(k)

)T (
x − μ(k)

)
+ 2

(
x − μ(k)

)T (
μ(k) − μ(�)

)

+
(
μ(k) − μ(�)

)T (
μ(k) − μ(�)

)}

(11)

This allows us to write the mean of Feature 2 as

E [Feature 2] = (K − 1) Tr
(
�(k)

)
+

∑
��=k

∥∥∥μ(k) − μ(�)
∥∥∥2,(12)

where K denotes the number of categories and ||·||
denotes the L2 norm. As mentioned before, the first
term in Equation 12 usually differs for each category.
On the other hand, the distances between class means

C1 
C2 

C3 

D1 D2 

D3 

D4 
D5 

D6 

D7 

D8 

Figure 2 The distance between the data sample and its extra-
cluster center.
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are unlikely to be identical in real-world applications
and thus the second term in Equation 12 tends to be
different for different classes. So, we may conclude that
Feature 2 also contributes to reducing the probability of
classification error.

4. Experiments
4.1. Experimental setup
4.1.1. The datasets
To evaluate the effectiveness of the proposed distance-
based features, ten different datasets from UCI Machine
Learning Repository http://archive.ics.uci.edu/ml/index.
html are considered for the following experiments. They
are Abalone, Balance Scale, Corel, Tic-Tac-Toe End-
game, German, Hayes-Roth, Ionosphere, Iris, Optical
Recognition of Handwritten Digits, and Teaching Assis-
tant Evaluation. More details regarding the downloaded
datasets, including the number of classes, the number of
data samples, and the dimensionality of feature vectors,
are summarized in Table 1.
4.1.2. The classifiers
For pattern classification, three popular classification
algorithms are applied, which are SVM, k-NN, naïve
Bayes. These classifiers are trained and tested by tenfold
cross validation. One research objective is to investigate
whether different classification approaches could yield
consistent results. It is worth noting that the parameter
values associated with each classifier have a direct
impact on the classification accuracy. To perform a fair
comparison, one should carefully choose appropriate
parameter values to construct a classifier. The selection
of the optimum parameter value for these classifiers is
described below.
For SVM, we utilized the LibSVM package [23]. It has

been documented in the literature that radial basis func-
tion (RBF) achieves good classification performances in
a wide range of applications. For this reason, RBF is
used as the kernel function to construct the SVM classi-
fier. In RBF, five gamma (’g’) values, i.e., 0, 0.1, 0.3, 0.5,
and 1 are examined, so that the best SVM classifier,

which provides the highest classification accuracy, can
be identified.
For the k-NN classifier, the choice of k is a critical

step. In this article, the k values from 1 to 15 are exam-
ined. Similar to SVM, the value of k with the highest
classification accuracy is used to compare with SVM
and naïve Bayes.
Finally, the parameter values of naïve Bayes, i.e., mean

and covariance of Gaussian distribution, are estimated
by maximum likelihood estimators.

4.2. Pre-test analyses
4.2.1. Principal component analysis
Before examining the classification performance, PCA
[24] is used to analyze the level of variance (i.e., discri-
mination power) of the proposed distance-based fea-
tures. In particular, the communality, which is the
output of PCA, is used to analyze and compare the dis-
crimination power of the distance-based features (also
called variables here). The communality measures the
percent of variance in a given variable explained by all
the factors jointly and may be interpreted as the reliabil-
ity of the indicator. In this experiment, we use the Eucli-
dean distance to calculate the distance-based features.
Table 2 shows the analysis result.
Regarding Table 2, adding the distance-based features

can improve the discrimination power over most of the
chosen datasets, i.e., the average of communalities of
using the distance-based features is higher than the one
of using the original features alone. In addition, using
the distance-based features can provide above 0.7 for
the average of communalities.
On the other hand, as the PCA result of Feature 1 is

lower than the one of Features, on average standard
deviation using distance-based features is slightly higher
than using the original features alone. However, since
using the two distance-based features can provide a
higher level of variance over most of the datasets, they
are all together considered in this article as the main
research focus.

Table 1 Information of the ten datasets

Dataset Number of classes Number of features Number of data samples

Abalone 28 8 4177

Balance scale 3 4 625

Corel 100 89 9999

Tic-Tac-Toe Endgame 2 9 958

German 2 20 1000

Hayes-Roth 3 5 132

Ionosphere 2 34 351

Iris 3 4 150

Optical recognition of handwritten digits 10 64 5620

Teaching assistant evaluation 3 5 151
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4.2.2. Class separability
Furthermore, class separability [25] is considered before
examining the classification performance. The class
separability is given by

Tr{S−1
W SB} (13)

where

SW =
k∑
j=1

∑
i∈Cj

(Di − Dj)(Di − Dj)
T (14)

and Nj is the number of samples in class Cj, C is the
mean of the total dataset. The class separability is large
when the between-class scatter is large and the within-
class scatter is small. Therefore, it can be regarded as a
reasonable indicator of classification performances.
Besides examining the impact of the proposed dis-

tance-based features using the Euclidean distance on the
classification performance, the chi-squared and Mahala-
nobis distances are considered. This is because they
have quite natural and useful interpretation in discrimi-
nant analysis. Consequently, we will calculate the pro-
posed distance-based features by utilizing the three
distance metrics for the analysis.

For the chi-squared distance, given n-dimensional vec-
tors a and b, the chi-squared distance between them
can be defined as

disx21(a, b) =
(a1 − b1)

2

a1
+ ... +

(an − bn)
2

an
(16)

or

disx22(a, b) =
(a1 − b1)

2

a1 + b1
+ ... +

(an − bn)
2

an + bn
(17)

On the other hand, the Mahalanobis distance from Di

to Cj is given by

disMah(Di,Cj) =

√
(Di − Cj)

T
∑−1

j
(Di − Cj) (18)

where ∑j is the covariance matrix of the jth cluster. It
is particularly useful when each cluster has an asym-
metric distribution.
In Table 3, the effect of using different distance-based

features is rated in terms of class separability. It is noted
that for the high-dimensional datasets, we encounter the
small sample size problem and it results in the singular-
ity of the within-class scatter matrix SW [26]. For this
reason, we cannot calculate the class separability from

Table 2 The average of communalities of the original and distance-based features

Dataset Original features Original features + the distance-based features

Average Std deviation Average (+/-) Std deviation

Abalone 0.857 0.149 0.792 (-0.065) 0.236

Balance scale 0.504 0.380 0.876 (+0.372) 0.089

Corel 0.789 0.111 0.795 (+0.006) 0.125

Tic-Tac-Toe Endgame 0.828 0.066 0.866 (+0.038) 0.093

German 0.590 0.109 0.860 (+0.27) 0.112

Hayes-Roth 0.567 0.163 0.862 (+0.295) 0.175

Ionosphere 0.691 0.080 0.912 (+0.221) 0.034

Iris 0.809 0.171 0.722 (-0.087) 0.299

Optical recognition of handwritten digits 0.755 0.062 0.821 (+0.066) 0.135

Teaching assistant evaluation 0.574 0.085 0.831 (+0.257) 0.124

Table 3 Results of class separability

Dataset Original ’+2D’ (Euclidean) ’+2D’ (chi-square 1) ’+2D’ (chi-square 2) ’+2D’ (Mahalanobis)

Abalone 2.5273 2.8020 3.1738 3.7065 N/A*

Balance Scale 2.0935 2.1123 2.1140 2.1368 2.8583

Tic-Tac-Toe Endgame 0.0664 1.1179 9.4688 12.8428 9.0126

German 0.3159 0.4273 0.3343 0.4196 1.6975

Hayes-Roth 1.6091 1.6979 1.7319 1.6982 2.7219

Ionosphere 1.6315 2.2597 2.7730 1.6441 N/A*

Iris 32.5495 48.2439 49.7429 53.8480 54.1035

Teaching assistant evaluation 0.3049 0.3447 0.3683 0.3798 0.6067

*Covariance matrix is singular.

The best result for each dataset is highlighted in italic.
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the high-dimensional datasets. ‘Original’ denotes the ori-
ginal feature vectors provided by the UCI Machine
Learning Repository. ‘+2D’ means that we add Features
1 and 2 to the original feature.
As shown in Table 3, the class separability is consis-

tently improved over that in the original space by add-
ing the Euclidean distance-based features. For the chi-

squared distance metric, the results of using disx21 and

disx22 are denoted by ‘chi-square 1’ and ‘chi-square 2’,

respectively. Evidently, the classification performance
can always be further enhanced by replacing the Eucli-
dean distance with one of the chi-squared distances.
Moreover, reliable improvement can be achieved by
augmenting the Mahalanobis distance-based feature to
the original data.

4.3. Classification results
4.3.1. Classification accuracy
Table 4 shows the classification performance of naïve
Bayes, k-NN, and SVM based on the original features, the

combined original and distance based features, and the dis-
tance-based features alone, respectively, over the ten data-
sets. The distance-based features are calculated using the
Euclidean distance. It is noted that in Table 4, ‘2D’ denotes
that the two distance-based features are used alone for clas-
sifier training and testing. For the column of dimensions,
the numbers in the parentheses mean the dimensionality of
the feature vectors utilized in a particular experiment.
Regarding Table 4, we observe that using the distance-

based features alone yields the worst results. In other
words, classification accuracy cannot be improved by
utilizing the two new features and discarding the origi-
nal features. However, when the original features are
concatenated with the new distance-based features, on
average the rate of classification accuracy is improved. It
is worth noting that the improvement is observed across
different classifiers. Overall, these experimental results
agree well with our expectation, i.e., classification accu-
racy can be effectively improved by including the new
distance-based features into the original features.

Table 4 Classification accuracy of naïve Bayes, k-NN, and SVM over the ten datasets

Datasets Dimensions Classifiers

Naïve Bayes k-NN SVM

Abalone Original (8) 22.10% 26.01% (k = 9) 25.19% (g = 0.5)

+2D (10) 22.84% 25.00% (k = 8) 25.74% (g = 0.5)

2D 16.50% 19.92% (k = 15) 19.88% (g = 0.5)

Balance scale Original (4) 86.70% 88.46% (k = 14) 90.54% (g = 0.1)

+2D (6) 88.14% 92.63% (k = 14) 90.87% (g = 0.1)

2D 50.96% 43.59% (k = 14) 49.68% (g = 0.1)

Corel Original (89) 14.34% 16.50% (k = 11) 20.30% (g = 0)

+2D (91) 14.47% 5.88% (k = 1) 5.79% (g = 0)

2D 3.24% 2.10% (k = 13) 2.27% (g = 0)

German Original (20) 72.97% 69.00% (k = 6) 69.97% (g = 0)

+2D (22) 73.07% 68.80% (k = 14) 69.97% (g = 0)

2D 69.47% 69.80% (k = 12) 69.97% (g = 0)

Hayes-Roth Original (5) 45.04% 46.97% (k = 10) 38.93% (g = 0)

+2D (7) 35.11% 45.45% (k = 10) 40.46% (g = 0)

2D 31.30% 46.97% (k = 2) 36.64% (g = 0)

Ionosphere Original (34) 81.71% 86.29% (k = 7) 92.57% (g = 0)

+2D (36) 80.86% 90.29% (k = 5) 93.14% (g = 0)

2D 72% 84.57% (k = 2) 78.29% (g = 0)

Iris Original (4) 95.30% 96.00% (k = 8) 96.64% (g = 1)

+2D (6) 94.63% 94.67% (k = 5) 95.97% (g = 1)

2D 81.88% 85.33% (k = 11) 85.91% (g = 1)

Optical recognition of handwritten digits Original (64) 91.35% 98.43% (k = 3) 73.13% (g = 0)

+2D (66) 91.37% 98.01% (k = 1) 57.73% (g = 0)

2D 32.37% 31.71% (k = 13) 31.11% (g = 0)

Teaching assistant evaluation Original (5) 52% 64.00% (k = 1) 62% (g = 1)

+2D (7) 53.33% 70.67% (k = 1) 63.33% (g = 1)

2D 38% 68.00% (k = 1) 58.67% (g = 1)

Tic-Tac-Toe Endgame Original (9) 71.06% 81.84% (k = 5) 91.01% (g = 0.3)

+2D (11) 78.16% 85.39% (k = 3) 93.10% (g = 0.3)

2D 77.95% 94.78% (k = 5) 71.47% (g = 0.3)

The best result for each dataset is highlighted in italic.
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In addition, the results indicate that the distance-based
features do not perform well in high-dimensional image-
related datasets, such the Corel, Iris, and Optical Recog-
nition of Handwritten Digits datasets. This is primarily
due to the curse of dimensionality [15]. In particular,
the demand for the amount of training samples grows
exponentially with the dimensionality of feature space.
Therefore, adding new features beyond a certain limit
would have the consequence of insufficient training. As
a result, we have worse rather than better performance
on the high-dimensional data sets.
4.3.2. Comparisons and discussions
Table 5 compares different classification performances
using the original features and the combined original
and distance-based features. It is noted that the classifi-
cation accuracy by the original features is the baseline
for the comparison. This result clearly shows that con-
sidering the distance-based features can provide some
level of performance improvements over the chosen
datasets except the high-dimensional ones.
We also calculate the proposed features using different

distance metrics. By choosing a fixed classifier (1-NN),

we can evaluate the classification performance of differ-
ent distance metrics over different datasets. The results
are summarized in Table 6. Once again, we observe that
the classification accuracy is generally improved by con-
catenating the distance-based features to the original
feature. In some cases, e.g., Abalone, Balance Scale, Ger-
man, and Hayes-Roth, the proposed features have led to
significant improvements in classification accuracy.
Since we observe consistent improvement across three

different classifiers over five datasets, which are the Bal-
ance Scale, German, Ionosphere, Teaching Assistant
Evaluation, and Tic-Tac-Toe Endgame datasets, the rela-
tionship between classification accuracy and these data-
sets’ characteristics is examined. Table 7 shows the five
datasets, which yield classification improvements using
the distance-based features. Here, another new feature is
obtained by adding the two distance-based features
together. Thus, we use ‘+3D’ to denote that the original
feature has been augmented with the two distance-based
features and their sum. It is noted that the distance-
based features are calculated using the Euclidean
distance.

Table 5 Comparisons between the ‘original’ feature and the ‘+2D’ features

Datasets Classifiers

naïve Bayes k-NN SVM

Abalone +0.74% -1.01% +0.55%

Balance Scale +1.44% +4.17% +0.33%

Corel +0.13% -10.62% -14.51%

German +0.1% -0.2% +0%

Hayes-Roth -9.93% -1.52% +1.53%

Ionosphere -0.85% +4% +0.57%

Iris -0.67% -1.33% -0.67%

Optical recognition of handwritten digits +0.02% -0.42% -15.4%

Teaching assistant evaluation +1.33% +6.67% +1.33%

Tic-Tac-Toe Endgame +7.1% +3.55% +2.09%

Table 6 Comparison of classification accuracies obtained using different distance metrics

Datasets Distance metrics

Original Euclidean (+2D) Chi-square 1 (+2D) Chi-square 2 (+2D) Mahalanobis (+2D)

Abalone 20.37% 50.95% 48.17% 56.26% N/A*

Balance scale 58.24% 64.64% 85.12% 78.08% 76.16%

Corel 16.63% 5.45% 3.5% 1.86% N/A*

German 61.3% 99.9% 84.5% 79.8% 61.3%

Hayes-Roth 37.12% 68.18% 50.76% 43.94% 41.67%

Ionosphere 86.61% 84.05% 86.61% 71.79% N/A*

Iris 96% 98% 95.33% 95.33% 94%

Teaching assistant evaluation 58.94% 66.23% 64.9% 65.56% 64.9%

Tic-Tac-Toe Endgame 22.55% 99.58% 86.22% 86.22% 86.64%

*Covariance matrix is singular.

The best result for each dataset is highlighted in italic.
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Among these five datasets, the number of classes is
smaller than or equal to 3; the dimension of the original
features is smaller than or equal to 34; and the number
of samples is smaller than or equal to 1,000. Therefore,
this indicates that the proposed distance-based features
are suitable for the datasets whose numbers of classes,
numbers of samples, and the dimensionality of features
are relatively small.

4.4. Further validations
Based on our observation in the previous section, two
datasets are further used to verify our conjecture, which
have similar characteristics to these five datasets. These
two datasets are the Australian and Japanese datasets,
which are also available from the UCI Machine Reposi-
tory. Table 8 shows the information of these two
datasets.
Table 9 shows the rate of classification accuracy

obtained by naïve Bayes, k-NN, and SVM using the ‘ori-
ginal’ and ‘+2D’ features, respectively. Similar to the
finding in the previous sections, classification accuracy
is improved by concatenating the original features to the
distance-based features.

5. Conclusion
Pattern classification is one of the most important
research topics in the fields of data mining and machine
learning. In addition, to improve classification, accuracy
is the major research objective. Since feature extraction
and representation have a direct and significant impact
on the classification performance, we introduce novel
distance-based features to improve classification accu-
racy over various domain datasets. In particular, the

novel features are based on the distances between the
data and its intra- and extra-cluster centers.
First of all, we show the discrimination power of the

distance-based features by the analyses of PCA and class
separability. Then, the experiments using naïve Bayes, k-
NN, and SVM classifiers over ten various domain data-
sets show that concatenating the original features with
the distance-based features can provide some level of
classification improvements over the chosen datasets
except high-dimensional image related datasets. In addi-
tion, the datasets, which produce higher rates of classifi-
cation accuracy using the distance-based features, have
smaller numbers of data samples, smaller numbers of
classes, and lower dimensionalities. Two validation data-
sets, which have similar characteristics, are further used
and the result is consistent with this finding.
To sum up, the experimental results (see Table 7)

have shown the applicability of our method to several
real-world problems, especially when the dataset sizes
are certainly small. In other words, our method is very
useful for the problems whose datasets contain about 4-
34 features and 150-1000 data samples, e.g., bankruptcy
prediction and credit scoring. However, it is the fact
that many other problems contain very large numbers
of features and data samples, e.g., text classification. Our
proposed method can be applied after performing fea-
ture selection and instance selection to reduce their
dimensionalities and data samples, respectively. In other
words, this issue will be considered for our future study.
For example, given a large-scale dataset some feature
selection method, such as genetic algorithms, can be
employed to reduce its dimensionality. When more
representative features are selected, the next stage is to

Table 7 Classification accuracy versus the dataset’s characteristics

Datasets Number of classes Dimension Number of samples Naïve Bayes k-NN SVM

Balance scale original 3 4 625 86.70% 88.46% 90.54%

+3D 7 88.14% 92.63% 90.87%

Tic-Tac-Toe Endgame original 2 9 958 71.06% 81.84% 91.01%

+3D 12 78.16% 85.39% 93.10%

German original 2 20 1000 72.97% 69.00% 69.97%

+3D 23 73.07% 68.80% 69.97%

Ionosphere original 2 34 351 81.71% 86.29% 92.57%

+3D 37 80.86% 90.29% 93.14%

Teaching assistant evaluation original 3 5 151 52% 64.00% 62%

+3D 8 53.33% 70.67% 63.33%

The best result for each dataset is highlighted in italic.

Table 8 Information of the Australian and Japanese datasets

Dataset Number of classes Number of features Number of data samples

Australian 2 14 690

Japanese 2 15 653
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extract the proposed distance-based features from these
selected features. Then, the classification performances
can be examined using the original dataset, the dataset
with feature selection, and the dataset with the combi-
nation of feature selection, and our method.
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Table 9 Classification accuracy of naïve Bayes, k-NN, and SVM over the Australian and Japanese datasets

Datasets Number. of classes Dimension Number of samples Naïve Bayes k-NN SVM

Australian Original 2 14 690 67.34% 71.59% (k = 9) 55.73% (g = 0)

+2D 16 65.02% 72.75% (k = 7) 56.02% (g = 0)

2D 2 62.12% 71.88% (k = 14) 62.70% (g = 0)

Japanese Original 2 15 653 67.18% 69.02% (k = 5) 55.83% (g = 0)

+2D 17 64.88% 69.63% (k = 5) 55.52% (g = 0)

2D 2 61.81% 68.40% (k = 9) 62.58% (g = 0)

The best result for each dataset is highlighted in italic.
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