
RESEARCH Open Access

Identifying time-varying channels with aid of
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Abstract

In this paper, we consider pilot-aided channel estimation for orthogonal frequency division multiplexing (OFDM)
systems with a multiple-input multiple-output setup. The channel is time varying due to Doppler effects and can
be approximated by an oversampled complex exponential basis expansion model. We use a best linear unbiased
estimator (BLUE) to estimate the channel with the aid of frequency-multiplexed pilots. The applicability of the
BLUE, which is referred to as the channel identifiability in this paper, relies upon a proper pilot structure.
Depending on whether the channel is estimated within a single OFDM symbol or multiple OFDM symbols, we
propose simple pilot structures that guarantee channel identifiability. Further, it is shown that by employing more
receive antennas, the BLUE can combat more effectively the Doppler-induced interference and therefore improve
the channel estimation performance.
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1 Introduction
Orthogonal frequency division multiplexing (OFDM) sys-
tems have attracted enormous attention recently and have
been adopted in numerous existing communication sys-
tems. OFDM gains most of its popularity thanks to its
ability to transmit signals on separate subcarriers without
mutual interference. To further enhance the capacity of
the transmission link, OFDM systems can be combined
with multiple-input multiple-output (MIMO) features.
The fact that OFDM can transmit signals on separate

subcarriers can be mathematically represented in the fre-
quency domain by a diagonal channel matrix. This prop-
erty holds only in a situation where the channel stays
(almost) constant for at least one OFDM symbol interval.
In practice, a time-invariant channel assumption can
become invalid due to, e.g., Doppler effects resulting from
the motion between the transmitter and receiver. In such
a case, the frequency-domain channel matrix is not diago-
nal but generally full with the non-zero off-diagonal ele-
ments leading to inter-carrier interference (ICI).
To equalize such channels, the knowledge of all the ele-

ments in the channel matrix is required. In order to
reduce the number of unknown channel parameters, a

widely adopted approach is approximating the variation
of the channel in the time domain with a parsimonious
model, e.g., a basis expansion model (BEM). Conse-
quently, channel estimation boils down to estimating the
corresponding BEM coefficients. Among the various
BEMs that have been proposed, this paper will concen-
trate on the so-called oversampled complex exponential
BEM [(O)CE-BEM] [1]. By tuning the oversampling fac-
tor, the (O)CE-BEM is reported in [2] to fit time-varying
channels much tighter than its variant, the critically
sampled complex exponential BEM [(C)CE-BEM] [3,4],
and it has a steady modeling performance for a wide
range of Doppler spreads [5].
Based on a general BEM assumption, the OFDM chan-

nel is estimated in [6] utilizing pilots that are multiplexed
with data in the frequency domain. The same paper shows
that the channel estimators that view the frequency-
domain channel matrix as full, such as the (O)CE-BEM,
render a better performance than those that view the
channel matrix as diagonal [5], or strictly banded [4], such
as the (C)CE-BEM. In this paper, the results of [6] will be
extended from a single-input single-output (SISO) sce-
nario to MIMO, with a focus on channel identifiability
issues.
Estimating time-varying channels in a MIMO-OFDM

system gives rise to a number of additional challenges.
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In the first place, due to multiple transmit-receive links,
more channel unknowns need to be estimated, which
requires more pilots and thus imposes a higher pressure
on the bandwidth efficiency. To alleviate this problem,
we will employ more pilot-carrying OFDM symbols to
leverage the channel correlation along the time axis as
in [7,8]. Although this comes at a penalty of a larger
BEM modeling error, the overall channel estimation per-
formance can still be improved.
Another challenge in a MIMO-OFDM system is how to

distribute pilots in the time, frequency and spatial
domains. Barhumi et al. [9] and Minn and Al-Dhahir [10]
proposes optimal pilot schemes but only for time-invariant
channels or systems for which the time variation of the
channel within one OFDM symbol can be neglected.
Except for [7,11], much less attention has been paid to sys-
tems dealing with channels varying faster. In this paper,
we will use the channel identifiability criterion as a guide-
line to design pilot schemes. It is noteworthy that the pro-
posed pilot structures can be independent of the
oversampling factor of the (O)CE-BEM, which endows the
receiver with the freedom to choose the most suitable
oversampling factor.
Pilot structures can have a great impact on both channel

identifiability and estimation performance. The latter is,
however, difficult to tackle analytically for time-varying
channels. In this paper, we will try to establish, by means
of simulations, a guideline for designing pilots that render
a satisfactory channel estimation performance for different
channel situations.
The MIMO feature brings not only design challenges

but also performance benefits. Due to the ICI, the contri-
bution of the pilots is always mixed with the contribution
of the unknown data in the received samples. By taking
this interference explicitly into account in the channel
estimator design, [6] shows that the resulting best linear
unbiased estimator (BLUE) can cope with the interfer-
ence reasonably well, producing a performance close to
the Crámer-Rao bound (CRB). When multiple receive
antennas are deployed, we observe that the channel esti-
mation performance can even be further improved. This
is attributed to the fact that each receive antenna gets a
different copy of the same transmitted data. The interfer-
ence is therefore correlated across the receive antennas,
which can be exploited by the BLUE to suppress the
interference more effectively than in the single receive
antenna case. To our best knowledge, this effect has not
been reported before.
The remainder of the paper is organized as follows. In

Section 2, we present a general MIMO-OFDM system
model. In Section 3, we describe how the BLUE can be
used to estimate the BEM coefficients. Channel identifia-
bility is discussed in Section 4, based on which we pro-
pose a variety of pilot structures. The simulation results

are given in Section 5, where we discuss the impact of
the various pilot structures on the performance. Conclu-
sions are given in Section 6.
Notation: We use upper (lower) bold face letters to

denote matrices (column vectors). (·)*, (·)Tand (·)Hrepre-
sent conjugate, transpose and complex conjugate trans-
pose (Hermitian), respectively. [x]pindicates the pth
element of the vector x, and [X]p,q indicates the (p, q)th
entry of the matrix X. D{x} is used to denote a diagonal
matrix with x on the diagonal, and D{A0, . . . ,AN−1} is
used to denote a block-wise diagonal matrix with the
matrices A0, ..., AN-1 on the diagonal. ⊗ and † represent
the Kronecker product and the pseudo-inverse, respec-
tively. INstands for the N × N identity matrix; 1M×N for
the M × N all-one matrix, and WKfor a K-point normal-
ized discrete Fourier transform (DFT) matrix. We use

X{R,C} to denote the submatrix of X, whose row and col-
umn indices are collected in the sets R and C, respec-
tively; Similarly, we use X{R,:}(X{:,C,}) to denote the rows
(columns) of X, whose indices are collected in R (C).
The cardinality of the set S is denoted by |S|.

2 System model
Let us consider a MIMO-OFDM system with NT trans-
mit antennas and NR receive antennas, where the chan-
nel in the time domain is assumed to be a time-varying
causal finite impulse response (FIR) filter with a maxi-

mum order L. Using h(m,n)
p,l to denote the time-domain

channel gain of the lth lag at the pth time instant for
the channel between the mth transmit antenna and nth

receive antenna, we can assume that h(m,n)
p,l = 0for l <0

or l > L. Note that this channel model can take the
transmit/receiver filter, the propagation environment
and the possible synchronization errors among different
transmission links into account.
For the jth OFDM symbol that is transmitted via the

mth transmit antenna, the data symbols s(m)[j] are first
modulated on K subcarriers by means of the inverse
DFT (IDFT) matrix WH

K , then concatenated by a cyclic
prefix (CP) of length Lcp ≥ L and finally sent over the
channel. At the receiver, the received samples corre-
sponding to the CP are discarded, and the remaining
samples are demodulated by means of the DFT matrix
WK. Mathematically, we can express the received sam-
ples during the jth OFDM symbol as

y(n)[j] =
NT∑
m=1

WKH
(m,n)
c [j]WH

K︸ ︷︷ ︸
H(m,n)

d [j]

s(m)[j] + z(n)[j], (1)

where z(n)[j] represents the additive noise related to
the nth receive antenna; H(m,n)

c [j] denotes the channel
matrix between the mth transmit antenna and nth

Tang and Leus EURASIP Journal on Advances in Signal Processing 2011, 2011:74
http://asp.eurasipjournals.com/content/2011/1/74

Page 2 of 19



receive antenna in the time domain, and

H(m,n)
d [j] := WKH

(m,n)
c [j]WH

K represents its counterpart in

the frequency domain. Under the FIR assumption of
the channel and letting Lcp = L without loss of general-
ity, we can express the entries of H(m,n)

c [j] as

[H(m,n)
c [j]]p,q = h(m,n)

j(K+L)+p+L,mod(p−q,K) with mod(a, b)

standing for the remainder of a divided by b.
Obviously, if the channel stays constant within an

OFDM symbol, H(m,n)
c [j] will be a circulant matrix

(hence the subscript c). This results in a diagonal matrix

H(m,n)
d [j] (hence the subscript d), which means that the

subcarriers are orthogonal to each other. This property
is however corrupted if the time variation within an
OFDM symbol is not negligible.

3 Channel estimation
For the ease of analysis, we will differentiate between
two cases throughout the whole paper. The first case is
based on a single OFDM symbol, which means that the
channel will be estimated for each OFDM symbol indi-
vidually. The other case employs multiple OFDM sym-
bols. Because these two cases are characterized by some
unique properties, we treat them separately.

3.1 Single OFDM symbol
3.1.1 Data model and BEM based on a single OFDM symbol
Let us use a BEM to model the time variation of the chan-
nel within one OFDM symbol: for the channel between the
mth transmit antenna and the nth receive antenna, the lth
lag during the jth OFDM symbol can be approximated as⎡⎢⎢⎣

h(m,n)
j(K+L),l
...

h(m,n)
j(K+L)+K−1,l

⎤⎥⎥⎦ ≈ [u0, . . . ,uQ]︸ ︷︷ ︸
U

⎡⎢⎢⎣
c(m,n)
0,l [j]

...

c(m,n)
Q,l [j]

⎤⎥⎥⎦ , (2)

where uqdenotes the qth basis function of a BEM and

c(m,n)
q,l [j] the corresponding BEM coefficient. Under a CE-

BEM assumption,

uq := [1, e
−j

2π
κ(K+L) q, . . . , e

−j
2π

κ(K+L) q(K−1)
]T , (3)

where � stands for the oversampling factor with
κ = K

K+L used for the (C)CE-BEM and κ > K
K+L for the

(O)CE-BEM.
Assuming that the BEM inflicts a negligible modeling

error, the K(L+1) channel taps within the jth OFDM sym-
bol will be uniquely represented by the (L + 1)(Q + 1) BEM

coefficients c(m,n)
q,l [j]. As a result, the frequency-domain

channel matrix H(m,n)
d [j] given in (1) can be rewritten in

terms of the BEM as

H(m,n)
d [j] =

Q∑
q=0

WKD{uq} C(m,n)
q [j] WH

K ,

where C(m,n)
q [j] is a circulant matrix with

[c(m,n)T
q [j],01×(K−L−1)]T as its first column. Here,

c(m,n)
q [j] := [c(m,n)

q,0 [j], . . . , c(m,n)
q,L [j]]T. Due to its circularity,

we can express C(m,n)
q [j] as

C(m,n)
q [j] = WH

K D{VLc
(m,n)
q [j]}WK , (4)

where VLdenotes the matrix that consists of the first L +

1 columns of
√
KWK. Accordingly,H

(m,n)
d [j] can be written

as

H(m,n)
d [j] =

Q∑
q=0

WKD{uq}WH
KD{VLc

(m,n)
q [j]}. (5)

Because we will only concentrate on a single OFDM
symbol in this section, we drop the index j for the sake
of simplicity.
Let us now use p(m) to denote the pilots sent by the mth

transmit antenna, whose subcarrier positions are con-
tained in the set P (m), and d(m) to denote the data sent by
the mth transmit antenna, whose subcarrier positions are
contained in the set D(m). Because in this paper we focus
on frequency-domain multiplexed pilots, this implies that
P (m) ⋂D(m) = ∅ and P (m) ⋃D(m) = {0, . . . ,K − 1}.
Further, we assume that the pilots are grouped in G clus-

ters, each of length P + 1 : p(m) = [p(m)T
0 , . . . ,p(m)T

G−1 ]
T. For

the gth pilot cluster p(m)
g , the positions of its elements are

collected in the set P (m)
g = {P(m)

g , . . . ,P(m)
g + P} with P(m)

g

standing for its starting position. Corresponding to the

positions of p(m)
g , let us consider the observation samples

at the receiver, whose indices are collected in the set

O(m)
g =

{
P(m)
g +

D
2

− �, . . . ,P(m)
g + P − D

2
+ �

}
. (6)

It can be seen from the above that the number of

observation samples in O(m)
g , given by P - D + 2ℓ + 1, is

controlled by the two parameters D and ℓ. To under-
stand the physical meaning of D, we know that for a
small Doppler spread, the ICI is mostly limited to the
neighboring subcarriers, which is equivalent to the
assumption that the frequency-domain channel matrix
has most of its power located on the main diagonal, the
D/2 sub- and D/2 super-diagonals for an appropriate
value of D. In an ideal case where the channel matrix is
strictly banded, we should choose

O(m)
g =

{
P(m)
g +

D
2
, . . . ,P(m)

g + P − D
2

}
, (7)
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such that the resulting observation samples will depend

exclusively on the pilots p(m)
g . However, such a strictly

banded assumption is not true, and the channel matrix is
full in nature especially at high Doppler spreads. This
implies that there is always a power leakage outside the
band, which is accounted for in (6) by adding an addi-

tional parameter ℓ. The relationship between p(m)
g and

the corresponding observation samples is illustrated in
Figure 1. As shown in [6], the choice of ℓ can have a
great impact on the channel estimation performance.
The above analysis is based on a single transmit

antenna. For a MIMO scenario, every receiver ‘sees’ a
superposition of OFDM symbols from all the transmit

antennas. This implies that the gth observation cluster
Og must be a union of all the individual observation
clusters related to the transmit antennas:

Og = O(0)
g

⋃
· · ·

⋃
O(NT−1)

g . (8)

As a result, we can use the input-output relationship
given in (1) to express y(n){Og} as

y(n){Og} =
NT−1∑
m=0

(H
(m,n){Og ,P(m)}
d p(m) +H

(m,n){Og, D(m)}
d d(m)) + z(n){Og}.(9)

where H
(m,n){Og,P(m)}
d

and H
(m,n){Og,D(m)}
d

represent sub-

matrices of H(m,n)
d

, which are schematically depicted in

y(𝑛){𝒪𝑔}

𝑃 + 1

p(𝑚)
𝑔p

(𝑚)
0 p

(𝑚)
𝐺−1

y(𝑛){𝒪𝐺−1}

y(𝑛){𝒪0}

H
(𝑚,𝑛){𝒪𝑔 ,𝒟(𝑚)}
𝑑

𝐷
2
+ 1

ℓ

ℓ

H
(𝑚,𝑛){𝒪𝑔 ,𝒫(𝑚)}
𝑑

𝑃 +𝐷 − 2ℓ+ 1

d(𝑚)

Figure 1 The partitioning of the frequency-domain channel matrixH(m,n)
d

. Its rows correspond to the positions of the received samples; its
columns to the positions of the pilots and data. Note thatH(m,n)

d
is in principle a full matrix, but with most of its energy concentrated around

the diagonal. This effect is represented in the figure by the different shades.
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Figure 1. As a consequence of the full matrix H(m,n)
d

, we

can see from (9) that y(n){Og} depends not only on p(m)
g ,

but also on the data d(m) as well as the other pilot clusters.
We repeat the relationship in (9) for each cluster g =

0, ..., G - 1, and for each receive antenna n = 0, ..., NR

- 1, and stack the results in one vector
�y = [y(0){O}T, . . . , y(NR−1){O}T]T, with
O = O0

⋃ · · · ⋃OG−1. It follows that

�y = D{A(0), . . . ,A(NR−1)}︸ ︷︷ ︸
A

c + i + z,
(10)

where z is similarly defined as �y, and

c = [c(0,0)T0 , . . . , c(0,0)TQ , . . . , c(NT−1,NR−1)T
Q ]T . (11)

From (5), it can be shown that each diagonal block of
A can be expressed as

A(n) =
[
A(0,n)
c , . . . ,A(NT−1,n)

c

]
D

{
A(0)
d , . . . ,A(NT−1)

d

}
, (12)

with

A(m,n)
c = W{O,:}

K [D{u0}, . . . ,D{uQ}](IQ+1 ⊗ W{P(m),:}H
K ),

A(m)
d = IQ+1 ⊗ D{p(m)}V{P(m),:}

L .
(13)

The interference due to data is represented in (10) by
i, which can be expressed as i = Bd with

B =

⎡⎢⎢⎣
H(0,0){O,D(0)}

d · · · H(NT−1,0){O,D(NT−1)}
d

...
. . .

...

H(0,NR−1){O,D(0)}
d · · · H(NT−1,NR−1){O,D(NT−1)}

d

⎤⎥⎥⎦ ,

d = [d(0)T , . . . ,d(NT−1)T]T .

(14)

A detailed derivation of (12)-(14) for the SISO case
can be found in [6]. The extension to the MIMO case is
rather straightforward.
3.1.2 Best linear unbiased estimator based on a single
OFDM symbol
From (10), c can be estimated by diverse channel esti-
mators. Due to space restrictions, this paper will not list
all the possible channel estimators, but will only focus
on the BLUE.
The BLUE is a compromise between the linear mini-

mum mean-square error (LMMSE) and the least-square
(LS) estimator: it treats c as a deterministic variable, thus
avoiding a possible error in calculating channel statistics,
which are necessary for the LMMSE estimator; at the
same time, it leverages the statistics of the data symbols
and noise, which are easier to attain, such that the inter-
ference and the noise can still be better suppressed than
with the LS estimator. Simulation results in [6] show that
the BLUE is able to yield a performance close to that of

the LMMSE estimator, even if the latter is equipped with
perfect knowledge of the channel statistics.
In a nutshell, the BLUE uses a linear filter F to pro-

duce an unbiased estimate ĉ = Fy, whose mean squared-
error (MSE) w.r.t. c is minimized:

FBLUE = arg min
{F}

Ed,z{||Fy − c||2}, s.t. Ed,z{Fy} = c.

Let us assume that the data sent from all the transmit
antennas are zero-mean white with variance σ 2

d , and the
noise perceived by all the receive antennas is zero-mean
white with variance σ 2

z . By comprising the interference i
and noise z in a single disturbance term, we can follow
the steps given in [[12], Appendix 6B] to derive the
BLUE as:

FBLUE = (AHR−1(c)A)−1AHR−1(c), (15)

where R(c) denotes the covariance matrix of the dis-
turbance with c taken as a deterministic variable. Con-
form the assumptions on the data and noise statistics
and taking (14) into account, we can show that:

R(c) = Ed{iiH} + Ez{zzH},
= σ 2

d BB
H + σ 2

z INR|O|.
(16)

Clearly, (15) cannot be resolved in closed-form since
the computation of R(c) entails the knowledge of c itself
(contained in B). As a remedy, we apply a recursive
approach. Suppose at the kth iteration, an estimate of c
has been attained, which is denoted as ĉ[k]. Next, we uti-
lize this intermediate estimate to update the covariance
matrix R(c), which in turn is used to produce the BLUE
for the subsequent iteration and so on:

F[k+1]BLUE = (AHR−1(ĉ[k])A)−1AHR−1(ĉ[k]),

ĉ[k+1] = F[k+1]BLUEy.
(17)

Note that a similar idea is adopted in [13] though in a
different context. To initialize the iteration, we can set

ĉ[0] = 0, which results in the following expression for the
first iteration:

FMLE = F[1]BLUE = (AH A)−1AH. (18)

The above expression is actually the maximum likeli-
hood estimator [12] that is obtained by ignoring the
interference i.
Using the symbol Γ[k] to denote the normalized differ-

ence in energy between the estimates from the present
and previous iterations:

�[k] :=
|c[k] − c[k−1]|2

|c[k−1]|2 , (19)
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we can halt the iterative BLUE if Γ[k] is smaller than a
predefined value or the number of iterations K is higher
than a predefined value.
In the previous section, we have mentioned that a dif-

ferent choice of ℓ in (9) will have an impact on the
channel estimator. For the BLUE in the SISO scenario,
it is shown in [6] that the best performance is attained
when the whole OFDM symbol is employed for channel
estimation.

3.2 Multiple OFDM symbols
In the previous section, the channel is estimated for
each block separately. To improve the performance, we
will exploit more observation samples in this section. It
is nonetheless noteworthy that in the context of time-
varying channels, the channel coherence time is rather
short, which means that we cannot utilize an infinite
number of OFDM symbols to enhance the estimation
precision.
Considering J consecutive OFDM symbols, out of

which there are V OFDM symbols carrying pilots, we
use the symbol V to denote the set that contains the
indexes of all the pilot OFDM symbols:

V = {j0, . . . , jV−1}, (20)

where jvstands for the position of the vth pilot OFDM
symbol. Further, the symbol P (m)[jv], as analogously
introduced in the previous section, represents the set of
pilot subcarriers within the vth pilot OFDM symbol that
is used by the mth transmit antenna. Similar extensions
hold for D(m)[jv], O(m)[jv] and O[jv]. An interesting topic
when utilizing multiple OFDM symbols is how to distri-
bute the pilots along the time as well as frequency axis.
To differentiate between various pilot patterns, let us
borrow the terms used in [14] to categorize two pilot
placement scenarios.a

Comb-type This scheme is adopted in [15-17], in
which pilots occupy only a fraction of the subcarriers,
but such pilots are carried by each OFDM symbol. In
other words, we have |V | = J and |P (m)[jv]| < K. This is
equivalent to the pilot scheme that we discussed in the
previous section, but now extended to multiple OFDM
symbols. An example of the comb-type scheme with
two transmit antennas is sketched in the left and middle
plot of Figure 2.
Block-type This scheme is considered in [18-20], in

which the pilots occupy the entire OFDM symbol, and
such pilot OFDM symbols are interleaved along the
time axis with pure data OFDM symbols. In mathe-
matics, |V | = J and |P (m)[jv]| < K. An example of the
Block-type scheme with two transmit antennas is
sketched in the right plot of Figure 2.

3.2.1 Data model and BEM based on multiple OFDM
symbols
The biggest difference between the multiple and single
OFDM symbol case is that we need here to use a larger
BEM to approximate the time-varying channel that
spans several OFDM symbol intervals. More specifically,
we need to model J(K +L) consecutive samples of the
lth channel tap between the mth transmit antenna and

the nth receive antenna, i.e., [h(m,n)
0,l , . . . , h(m,n)

(J−1)(K+L)−1,l]
T

as ⎡⎢⎢⎣
h(m,n)
0,l
...

h(m,n)
(J−1)(K+L)−1,l

⎤⎥⎥⎦ =
[
u0, . . . ,uQ

]︸ ︷︷ ︸
U

⎡⎢⎢⎣
c(m,n)
0,l
...

c(m,n)
Q,l

⎤⎥⎥⎦ . (21)

Here, uqstands for the qth BEM function that spans J

(K +L) time instants, and c(m,n)
q,l for the corresponding

BEM coefficient. In comparison with (3), we design the
CE-BEM as

uq := [1, e
−j

2π
κJ(K+L) q, . . . , e

−j
2π

κJ(K+L) q(J(K+L)−1)
]T . (22)

Hence, for the jth OFDM symbol in particular, we
obtain⎡⎢⎢⎣

h(m,n)
j(K+L)+L,l

...

h(m,n)
(j+1)(K+L)−1,l

⎤⎥⎥⎦ = [u0[j], . . . ,uQ[j] ]︸ ︷︷ ︸
U[j]

⎡⎢⎢⎣
c(m,n)
0,l
...

c(m,n)
Q,l

⎤⎥⎥⎦ , (23)

where uq[j] is a selection of rows j(K +L)+L through
(j +1)(K +L) - 1 from uq. By defining the BEM in this
way, the resulting channel matrix of the jth OFDM sym-
bol in the frequency domain will admit a slightly differ-
ent expression than in (5) defined for the single OFDM
symbol case:

H(m,n)
d [j] =

Q∑
q=0

WKD{uq[j]}WH
KD{VLc

(m,n)
q }. (24)

Where c(m,n)
q := [c(m,n)

q,0 , . . . , c(m,n)
q,L ]T. Note that in (24),

each OFDM symbol is associated with a different BEM
sequence uq[j], but with common BEM coefficients

c(m,n)
q . This is in contrast to (5), where each OFDM sym-

bol is associated with a common BEM, but with differ-
ent BEM coefficients.
For each pilot OFDM symbol, we will follow the same

strategy for choosing the observation samples as in the
single OFDM symbol case. By iterating the I/O relation-
ship in (10) for each pilot OFDM symbol jv= j0, ..., jV-1,
and stacking the results in one vector, we obtain
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ỹ : =
[
y(0){O[j0]}T[j0], . . . , y(NR−1){O[j0]}T[j0], . . . ,

y(0){O[jV−1]}T[jV−1], . . . , y(NR−1){O[jV−1]}T[jV−1]
]T (25)

which can also be concisely expressed as

ỹ = [AT[j0], . . . ,AT[jV−1]]
T︸ ︷︷ ︸

Ã

c + ĩ + z̃,
(26)

where A[jv] is defined as in (12) with the OFDM sym-
bol index added, and ĩ and z̃ are similarly defined as ỹ.
Further, the interference term ĩ in (26) can be written as

ĩ := [iT[j0], . . . , iT[jV−1]]T ,

=

⎡⎢⎣B[j0]
. . .

B[jV−1]

⎤⎥⎦
⎡⎢⎣ d[j0]

...
d[jV−1]

⎤⎥⎦ ,
(27)

where B[jv] and d[jv] are defined as in (14) with the
OFDM symbol index added.
3.2.2 Best linear unbiased estimator based on multiple
OFDM symbols
We notice that (26) admits an expression analogous to
(10). Hence, it is not difficult to understand that a simi-
lar iterative BLUE can be applied for channel estimation
based on multiple pilot OFDM symbols. The BLUE at
the (k + 1)st iteration can thus be expressed as

F̃
[k+1]
BLUE = ( Ã

H
R̃

−1
( c̃[k]) Ã)−1 Ã

H
R̃

−1
(ĉ[k]), (28)

where R̃(c) denotes the covariance matrix of the dis-
turbance based on multiple pilot OFDM symbols.
Assuming further that the data and noise from different

OFDM symbol intervals are uncorrelated, we can show
that

R̃(c) = Ed[j0],...,d[jV−1]{ ĩ ĩ
H} + E z̃{ z̃ z̃H},

= D{R[j0], . . . ,R[jV−1]},
(29)

where R[jv] is defined as in (16) with the OFDM sym-
bol index added.
The above derivations can be directly applied for the

comb-type pilots. For the Block-type pilots which
occupy the entire OFDM symbol, the corresponding
channel estimators are not subject to data interference,
i.e., ĩ = 0. In this case, the BLUE in (28) reduces to an
LS estimator:

F̃BLUE = ( Ã
H
Ã)−1 Ã

H
, (30)

which can be attained in just one shot.

4 Channel identifiability
In this paper, we define channel identifiability in terms
of the uniqueness of the BLUE. From (17) and (28), we
understand that the BLUE is unique when A or Ã is of
full column-rank, and R or R̃ is non-singular.
Normally speaking, the non-singularity of R or R̃ can

be easily satisfied in a noisy channel. In contrast, the rank
condition of A or Ã is often difficult to examine, because
its composition depends on the choice of the BEM and
the pilot structure. Especially for the latter, it turns out to
be very hard to give an analytical formulation for a gen-
eral pilot structure. In this paper, we will adopt a specific
pilot structure for each pilot OFDM symbol, which is
similar to the frequency-domain Kronecker Delta
(FDKD) scheme proposed in [7]. Note that for a general
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Figure 2 Overview of the pilot schemes studied. The left subplot depicts the Comb-type I pilot structure; the middle subplot the Comb-type
II pilot structure, and the right subplot the Block-type pilot structure. Each rectangle corresponds to one OFDM symbol interval and contains
OFDM symbols from each transmit antenna. Inside the rectangle, the zero pilots are represented by circles; the non-zero pilots by crosses, and
the data symbols by squares.
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BEM assumption as taken in [6], the FDKD scheme
always yields a good performance experimentally.
The basic pilot structure adopted in this paper can be

summarized as follows:
Pilot Design Criterion 1. We group the pilots from

one transmit antenna into G (cyclically) equi-distant
clusters, where each cluster contains only one non-zero
pilot. The entire set of pilots sent by the mth transmit
antenna during the vth pilot OFDM symbol can there-
fore be expressed in a Kronecker form as

p(m)[jv] = p̄(m)[jv] ⊗ [01×(	(m)[jv]−1), 1,01×(P−	(m)[jv])]
T , (31)

where p̄(m)[jv]contains all the non-zero pilots sent by
the mth transmit antenna during the vth pilot OFDM
symbol, and Δ(m)[jv] gives the position of the non-zero
pilot within the cluster.
Further, the following assumption is adopted through-

out the remainder of the paper.
Assumption 1. All the subcarriers of the pilot OFDM

symbol will be used for channel estimation, i.e.,

|O(m)[jv] = K. (32)

This assumption is shown in [6] to maximize the per-
formance of the BLUE. In addition, it will greatly sim-
plify the derivation of the channel identifiability
conditions.
As in the previous sections, in order to derive the

channel identifiability conditions, we find it instrumental
to first explore the rank condition on A for the single
OFDM symbol case and then extend the results to mul-
tiple pilot OFDM symbols.

4.1 Single OFDM symbol
The full column-rank condition of A is related to the
full column-rank condition of A(n) defined in (10) for an
arbitrary receive antenna n. Hence, we need to examine
whether

Rank{ A(n)} = NT(L + 1)(Q + 1). (33)

Following Pilot Design Criterion 1, [7] shows condi-
tions to ensure that the columns of A(n) are orthonor-
mal under a (C)CE-BEM assumption. However, these
conditions are not suitable for an (O)CE-BEM assump-
tion as adopted in this paper, and we need to impose
more restrictions, especially on the pilot design across
the transmit antennas. They are summarized in the fol-
lowing theorem (see Appendix A for a proof).
Theorem 1. With the pilots following Pilot Design Cri-

terion 1, the channel will be identifiable under an (O)
CE-BEM assumption and Assumption 1 if

K
NT(Q + 1)

≥ G ≥ L + 1, (34)

and

|μ(m′) − μ(m)| >
KQ

κ(K + L)
for m′ �= m, (35)

where μ(m) denotes the position of the first non-zero
pilot sent by the mth transmit antenna.
The following remarks are in order at this stage.
Remark 1. For the ‘optimal’ pilot structure proposed in

[7], each OFDM symbol contains G = L + 1 pilot clus-
ters, with each pilot cluster satisfying (up to a scale)

p(m)
opt = 1(L+1)×1 ⊗ [01×[m(Q+1)−1], 1,01×[(NT+1−m)(Q+1)−1]]T . (36)

Such a pilot structure complies with (34) and (35) with
a (C)CE-BEM assumption, i.e., κ = K

K+L.
We observe in (36) that the FDKD pilot structure con-

tains a certain number of zeros, which are not specified in
Theorem 1. These zeros are beneficial to combat the ICI,
but not necessary for the rank condition. Later on, we will
show that the total number of zeros within the pilot clus-
ter plays a more significant role at high SNR where the
ICI becomes more pronounced.
Remark 2. Viewing a time-invariant channel as a

special case of a time-varying channel with a trivial Q
= 0, we can establish the relationship between the con-
ditions given in (34) and (35), and the conditions given
for time-invariant channels. For instance, the pilot
structure given in [9] requires the number of non-zero
pilots per transmit antenna to be no fewer than L + 1.
Further, the non-zero pilots from different transmit
antennas must occupy different subcarriers, i.e., μ(m’) -
μ(m) > 0 for m’ ≠ m.

4.2 Multiple OFDM symbols
In many practical situations, Theorem 1 can be harsh to
satisfy due to practical constraints. For instance, if the
Doppler spread and/or the delay spread of the channel
are large, the lower- and upper-bound in (34) will
approach each other, making it harder to find a suitable
G. Fortunately, these constraints can be loosened by
employing multiple pilot OFDM symbols.
One important issue of channel estimation based on

multiple pilot OFDM symbols is how to distribute the
pilots along the time axis. Prior to proceeding, let us
introduce two possible schemes.
Pilot Design Criterion 2. The positions of the equi-

distant pilots sent by the same transmit antenna are dis-
parate for each OFDM symbol, i.e.,

P (m)[jv] �= P (m)[jv′ ] for v �= v′. (37)
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Adopting the above design criterion leads to the fol-
lowing theorem.
Theorem 2. With the pilots following Pilot Design Cri-

terion 1 and Pilot Design Criterion 2, then for the nth
receive antenna, the corresponding

Ã
(n)

=
[
A(n)T[j0], . . . ,A(n)T[jV−1]

]Twill have a full col-

umn-rank under an (O)CE-BEM assumption and
Assumption 1 if

K
NT(Q + 1)

≥ G ≥ L + 1
V

, (38)

and

|μ(m′) − μ(m)| >
KQ

κV(K + L)
for m′ �= m. (39)

The proof is given in Appendix B.
Remark 3. We observe here again that the right

inequality in (38) is identical to the channel identifiabil-
ity condition in [9] for the time-invariant MIMO chan-
nel based on multiple OFDM symbols.

Remark 4. For realistic system parameters, KQ
κV(K+L) < 1

holds in most cases. From (39), it is hence sufficient if
μ(m’) ≠ μ(m)for m’≠ m: this implies that the transmitter
can be transparent to the oversampling factor used by
the receiver.
An alternative way of designing the pilots is given by

the following construction.
Pilot Design Criterion 3. The values and positions of

the equi-distant pilots sent by the same transmit
antenna are identical for each OFDM symbol, which
implies that

p̄(m)[j0] = · · · = p̄(m)[jV−1],

P (m)[j0] = · · · = P (m)[jV−1].
(40)

Adopting the above design criterion leads to the fol-
lowing theorem.
Theorem 3. With the pilots following Pilot Design

Criterion 1 and Pilot Design Criterion 3, then for
the nth receive antenna, the corresponding

Ã
(n)

=
[
A(n)T[j0], . . . ,A(n)T[jV−1]

]Twill have a full col-

umn-rank under an (O)CE-BEM assumption and
Assumption 1 if

K
NT

≥ G ≥ L + 1,

V ≥ Q + 1,
(41)

and

|μ(m) − μ(m′)| > 0 for m′ �= m. (42)

The proof is given in Appendix C.
Remark 5. Theorem 3 enables the transmitter to be

completely transparent to the choice of the oversampling
factor at the receiver.
If there is only one transmit antenna, the conditions

given in Theorem 3 can be relaxed as stated in the fol-
lowing corollary.
Corollary 1. With the pilots following Pilot Design Criter-

ion 1 and Pilot Design Criterion 3, if there is only one trans-
mit antenna, the matrix Ã

(n)
=

[
A(n)T[j0], . . . ,A(n)T[jV−1]

]T
will have full column-rank under an (O)CEBEM assump-
tion and Assumption 1 if

KV
(Q + 1)

≥ G ≥ L + 1. (43)

The proof is given in the last part of Appendix C. This
property has been explored in [21] where a SISO sce-
nario is considered.

5 Simulations and discussions
For the simulations, we generate time-varying channels
conform Jakes’ Doppler profile [22] using the channel
generator given in [23]. The channel taps are assumed
to be mutually uncorrelated with a variance of
σ 2
l = 1/

√
L + 1. The variation of the channel is charac-

terized by the normalized Doppler spread υD = fcv/c,
where fc is the carrier frequency; v is the speed of the
vehicle parallel to the direction between the transmitter
and the receiver, and c is the speed of light.
We consider an OFDM system with 64 subcarriers.

The pilots and data symbols are multiplexed in the fre-
quency domain by occupying different subcarriers. The
data symbols are modulated by quadrature phase-shift
keying (QPSK). Further, we set the average power of the
pilots to be equal to the average power of the data
symbols.
To qualify the channel estimation performance, we

use the normalized mean-square error (NMSE), which is
defined as

NMSE =
1

NTNRKJ

J−1∑
j=0

NT∑
m=1

NR∑
n=1

L∑
l=0

||

⎡⎢⎢⎣
h(m,n)
j(K+L),l
...

h(m,n)
j(K+L)+K−1,l

⎤⎥⎥⎦ − U[j]

⎡⎢⎢⎣
c(m,n)
0,l [j]

...

c(m,n)
Q,l [j]

⎤⎥⎥⎦ ||2. (44)

Note that in the above criterion, the true channel

h(m,n)
k,l is used, which implies that we actually take also

the BEM modeling error into account.
For all the numerical examples below, we adopt the

stop criterion that halts the iterative BLUE if either Γ[k],
which is defined in (19) as the normalized difference in
energy between the previous and current estimates, is
smaller than 10-6 or the number of iterations K is higher
than 30.
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Study Case 1: Single OFDM Symbol
The pilots used in this study case are grouped in G = 4
clusters, each containing seven zero pilots and one non-
zero pilot, i.e., P + 1 = 8. The non-zero pilot is located
within the pilot cluster at the [3(m + 1) - 1]st position,
where m corresponds to the transmit antenna index.
Because we will use an (O)CE-BEM with Q = 2 and � = 4
to fit a slower time-varying channel (υD = 8e-4) and a faster
time-varying channel (υD = 4e-3), this pilot structure satis-
fies the ‘optimal’pilot structure in (36) as well as Theorem
1 for a channel of length L = 3, which is assumed for this
study case. The performance of the BLUE is given in Fig-
ure 3. We observe that the performance degrades when
the number of transmit antennas is increased from one to
two. But more interestingly, this performance degradation
can be alleviated by using more receive antennas, espe-
cially for the faster channels (the right plot). We will dis-
cuss this effect in more detail later on.
In the subsequent study cases, we will focus on pilots

carried by multiple OFDM symbols. We compare three
different pilot structures as summarized in Table 1,
where we use Vato denote the number of pilot OFDM
symbols that satisfy Pilot Design Criterion 2, and Vbto

denote the number of pilot OFDM symbols that satisfy
Pilot Design Criterion 3. The positions of the zero and
non-zero pilots and data symbols of the three pilot
structures are schematically given in Figure 2. Note also
that the, optimal’ pilot structure in (36) is carried by all
the OFDM symbols in Comb-type I.

Study Case 2: Short Channels
In this study case, we again examine channels with υD =
8e-4 and υD = 4e-3. To fit the time variation of the chan-
nel for J = 6 consecutive OFDM symbols, we use at the
receiver an (O)CE-BEM with Q = 2 and � = 3 if υD =
8e-4 and with Q = 4 and � =1.5 if υD = 4e-3. Further, we
focus on a channel with length L = 3 and compare the
performance of the pilot structures listed in Table 1.
The results are given in Figure 4, where we observe that
Comb-type I renders a much better performance than
the other two, especially when the channel varies faster
(the right plot). This can be attributed to the zeros in
the pilot cluster that protect the non-zero pilots from
the interference much more effectively.
Again, we observe that the channel estimation perfor-

mance degrades with more transmit antennas, but
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Figure 3 Channel estimation performance based on a single OFDM symbol for a short channel L = 3. Left plot νD = 8e-4; right plot νD = 4e-3.
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improves with more receiver antennas especially at high
SNR. In contrast, this does not happen to the Block-
type scheme. We understand that the interference
induced by the Doppler spread to the channel estimator
becomes the dominant nuisance at high SNR. At the
same time, this interference is a function of the trans-
mitted data and hence strongly correlated among differ-
ent receive antennas. The BLUE is able to exploit this
correlation to combat the interference better. The fol-
lowing heuristic analysis enables a better insight into
this effect.
It can be shown that the variance of the BLUE

equals the trace of ( Ã
H
R̃

−1
Ã)−1, where R̃, as defined

in (29), expresses the correlation of the interference as
well as the noise. Because R̃ is a block diagonal matrix
with R[jv] as its vth diagonal block, we focus further

on R[jv]. From its definition in (16), and by applying
the matrix inversion lemma in [24], its inverse can be
written as

R−1[jv] = σ−2
z I − σ−2

z B[jv]

(
σ 2
z

σ 2
d

I + BH[jv]B[jv]

)−1

BH[jv],

→ σ−2
z I − σ−2

z B[jv](BH[jv]B[jv])−1BH[jv],

(45)

where the last is attained at high SNR when σ 2
d

σ 2
z

→ ∞.

The presence of B[jv] in (45) is associated with the inter-
ference. We observe that the NRK × NRK matrix R-1[jv]
lies in the noise subspace of B[jv], i.e., R

-1[jv]B[jv] = 0.
Suppose the NRK × NT (K - G(P + 1)) matrix B[jv] has
full column-rank NT (K - G(P + 1)). We then have

Rank{ R̃−1} = V · Rank{R−1[jv]} = VNRK − VNT(K − G(P + 1)). (46)

The above suggests that the rank of R̃
−1 increases with

the number of receive antennas, the number of pilot
OFDM symbols as well as the number of pilots within
the OFDM symbol, but decreases with the number of
transmit antennas. A higher rank of R̃

−1 is beneficial to
the condition of the matrix Ã

H
R̃

−1
Ã, which is in turn

Table 1 Pilot structure

G P + 1 Va Vb J

Comb-type I 4 8 6 1 6

Comb-type II 16 2 1 6 6

Block-type 16 4 1 3 6
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Figure 4 Channel estimation performance based on multiple OFDM symbols for a short channel L = 3. Left plot νD = 8e-4; right plot νD
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related to the trace of ( Ã
H
R̃

−1
Ã)−1. Following such a

reasoning, it is not difficult to understand that increas-
ing the number of receive antennas is beneficial to the
performance just as increasing the number of pilots or
decreasing the number of transmit antennas. To the
best of our knowledge, this effect of the number of
receive antennas on the channel estimation performance
is not widely recognized. The main reason is that most
works are based on a scenario where the interference is
absent at the receiver, e.g., for time-invariant channels,
or in the case of the Block-type scheme, where the
pilots occupy the whole OFDM symbol and there is no
interference either.
Note that the rank of R̃

−1 also increases with the
number of pilot OFDM symbols. Comparing Figure 4
with 3, we can indeed observe a performance improve-
ment. However, for faster fading channels, multiple
OFDM symbols work only better at low-to-moderate
SNR, but suffer from a noise floor at high SNR, where
the BEM modeling error plays a dominant role. The
BEM modeling error will become larger if more OFDM
symbols are considered and/or the channel varies faster.

Increasing the BEM order Q can enhance the BEM
modeling performance at the penalty that more channel
unknowns need to be estimated. An alternative is not to
estimate the channel of all the OFDM symbols, but only
the middle part, e.g., the 3rd and 4th symbols. This
means that the channel estimator will work like an over-
lapping sliding window, an approach that is adopted in
[25].

Study Case 3: Long Channels
We examine now a much longer channel with length
L = 15, for which the results are given in Figure 5. Note
that in this figure, we do not list the performance of
Comb-type I because it failed in the simulation. We will
explore the reason later on. Figure 5 shows that Comb-
type II performs in general better than the Block-type,
especially when the channel varies faster. Note that the
channels where the data are located are not estimated
directly in the Block-type scheme, but actually result
from an implicit interpolation of the channels estimated
at the pilot OFDM symbols. The resulting interpolation
error gives rise to a performance penalty.
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Figure 5 Channel estimation performance based on multiple OFDM symbols for a long channel L = 15. Left plot νD = 8e-4; right plot νD
= 4e-3.
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The channel equalization performance based on the
estimated channels is given in Figure 6, where the bit
error rate (BER) is used as the performance measure.
The results in Figure 6 follow similar trends as shown
in Figure 5 except for the MISO case with NT = 2 and
NR = 1. In this case, the equalizer fails because there are
more unknowns than observation samples.

Study Case 4: Why Comb-type I Fails for Long Channels
For channels with a long delay spread, it is not possible for
Comb-type I to satisfy Theorem 1. Although by using
multiple symbols, Theorem 2 can still be met, the condi-
tion number of Ã drastically increases once the channel
order L + 1 supersedes the number of pilot clusters G.
Here, we define the condition number of a non-square
matrix Ã as

max
0≤n≤(L+1)(Q+1)−1

|λn( Ã)|

min
0≤n≤(L+1)(Q+1)−1

|λn( Ã)|
,

where λn( Ã) stands for the nth singular value of Ã. A
condition number equal to infinity means that the matrix
is rank deficient. In Figure 7, we depict the condition
number as a function of the channel length for the SISO

case NT = 1 and NR = 1, where one can observe that the
condition number of Ã rapidly increases for Comb-type
I, once the channel length becomes larger than the num-
ber of pilot clusters. In contrast, with a sufficient number
of pilot clusters, the condition number for Comb-type II
and Block-type stays constant.
The condition number of Ã is important to the var-

iance of the BLUE, which is given before as the trace of

( Ã
H
R̃

−1
Ã)−1. An ill-conditioned Ã makes the BLUE

more sensitive to the interference and noise. In the
worst case, the adaptive BLUE will be unable to even
converge to a local minimum. In Figure 8, we show the
channel estimation performance of all three pilot struc-
tures at SNR = 40 dB for the SISO case, where the
results exhibit the same tendency as the corresponding
condition numbers.

Study Case 5: Convergence performance
As mentioned at the beginning of this section, we have
adopted a stopping criterion that halts the BLUE if either
Γ[k] < 10-6 or K ≥ 31. The actual number of iterations is
dependent on several factors such as the channel, the
SNR, the number of transmit/receive antennas. As an
example, we show in this case the convergence
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Figure 6 Channel equalization performance based on multiple OFDM symbols for a long channel L = 15. Left plot νD = 8e-4; right plot
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performance for the Comb-type II pilots over the channel
with L = 15 and υD = 4e-3. Figure 9 shows the average
number of iterations versus SNR required for different
MIMO setups, where the MISO case NT = 2 and NR = 1
requires the most iterations especially at high SNR. In this
case, Ã has obviously a larger condition number than the
other two cases, although it still retains full column-rank.
We have learned from Study Case 4 that when the SNR
increases, the condition number of Ã plays a more pro-

nounced role in the trace of ( Ã
H
R̃

−1
Ã)−1, which in turn

influences the convergence behavior of the BLUE, and
thus explains the large discrepancy in the number of itera-
tions at high SNR. Figure 10 shows the average value of
Γ[k] during each iteration. With the adopted stopping cri-
terion, we can conclude from this figure that the BLUE
halts after around six iterations in most cases.

6 Conclusions
In this paper, we have discussed how to design pilots to
estimate time-varying channels in a MIMO-OFDM sys-
tem. We underline that the proposed pilot design criteria
can be made (almost) independent of the oversampling
factor of the (O)CE-BEM such that each receiver can inde-
pendently choose the best (O)CE-BEM.
We have compared the performance of three different

pilot structures, all conform the proposed design criteria.
By means of simulations, we have shown that

• Each pilot OFDM symbol should contain as few
pilot clusters as possible provided there are more
than the channel order.
• Comb-type pilots can estimate the time-varying
channel better than the Block-type pilots because
they suffer from a smaller interpolation error.
• For comb-type pilots, it is possible to improve the
channel estimation performance by employing more
receive antennas, which combats the interference
more effectively.

Appendices
A Proof of Theorem 1
Because each pilot cluster now contains only one non-zero
pilot, we can express the positions of the equi-spaced non-
zero pilots sent by transmit antenna m as

P̄ (m) = μ(m) + {0,X, . . . ,X(G − 1)}, (47)

with X = K/G. Since the zero pilots have no contribu-
tion, we can rewrite A(n), defined in (12), in the following
form

A(n) = Ā
(n)
c Ā

(n)
d ,

Ā
(n)
c = WK[D{u0}, . . . ,D{uQ}][IQ+1 ⊗ W{P̄(0),:}H

K , . . . , IQ+1 ⊗ W{P̄(NT−1),:}H
K ],

Ā
(n)
d =

⎡⎢⎢⎣
IQ+1 ⊗ D{p̄(0)}V{P̄(0),:}

L
. . .

IQ+1 ⊗ D{p̄(NT−1)}V{P̄(NT−1),:}
L

⎤⎥⎥⎦ .

(48)
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Compared to (13), we keep here only the rows/col-
umns that correspond to the positions of the non-zero
pilots, which are represented by P̄ (m). In addition, we
have dropped the observation sample index O in the
above as a result of Assumption 1.

The following two lemmas determine the rank of Ā
(n)
c

and Ā
(n)
d
.

Lemma 1. If K/[NT(Q +1)] ≥ G, and
μ(m+1) − μ(m) > KQ

κ(K+L), the matrix Ā
(n)
c
has full column-rank

NTG(Q + 1).

Proof. Let us first examine the mth submatrix of Ā
(n)
c
:

Ā
(m,n)
c := WK[D{u0}, . . . ,D{uQ}]IQ+1 ⊗ W{P̄(m),:}H

K . (49)

Given the property that Ā
(n)
c

contains equi-distant ele-

ments, we can express W{P̄(m),:}
K

as

W{P̄(m),:}
K =

1√
X

θμ(m)T ⊗ WGD{ξμ(m)}, (50)

with θ := [e−j
2π
X 0, . . . , e−j

2π
X (X−1)]T and ξ := [e−j

2π
GX 0, . . . , e−j

2π
GX (G−1)]T.

The rank of Ā
(m,n)
c

will not change if we left-multiply it

with WH
K , and right-multiply it with (IQ+1 ⊗ WH

G), which
leads to

WH
K Ā

(m,n)
c (IQ+1 ⊗ WH

G) =
1√
X
[D{u0}, . . . ,D{uQ}](IQ+1 ⊗ θ−μ(m) ⊗ D{ξ−μ(m) }).(51)

The above matrix is obviously a stack of X × (Q+1)
submatrices, each being diagonal of size G. To be more
specific, the (x, q)th submatrix
[WH

K Ā
(m,n)
c (IQ+1 ⊗ WH

G)]
{xG:(x+1)G−1,qG:(q+1)G−1} admits an expres-

sion as

[WH
K Ā

(m,n)
c (IQ+1 ⊗ WH

G)]
{xG:(x+1)G−1,qG:(q+1)G−1} = ej

2π
X μ(m)x D{uq,x}D{ξ−μ(m) }.ð52Þ

In the above, we have down-sampled the BEM
sequence uqinto length-G subsequences with the xth

subsequence being uq,x :=
[
[uq]xG, . . . , [uq](x+1)G−1

]T
for x = 0,

..., X - 1.
In order to obtain a better perception of its rank, we

apply an row-permutation and column-permutation on

WH
K Ā

(m,n)
c (IQ+1 ⊗ WH

G), which renders a new-block diag-

onal matrix

�G WH
K Ā

(m,n)
c (IQ+1 ⊗ WH

G)�̄
H
G =

⎡⎢⎢⎣
�

(m)
0

. . .

�
(m)
G−1

⎤⎥⎥⎦ , (53)
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where ΠGand �̄G are both depth-G interleave matrices
with appropriate dimensions;b and

�
(m)
g :=

1√
X
ej

2π
GXμ(m)gD{θ−μ(m) }

⎡⎢⎢⎢⎢⎣
[u0]g · · · [uQ]g
[u0]G+g · · · [uQ]G+g

...
. . .

...
[u0](X−1)G+g · · · [uQ](X−1)G+g

⎤⎥⎥⎥⎥⎦ . (54)

With uqdefined as the qth basis of the (O)CE-BEM

given in (3), we can rewrite �
(m)
g after some algebra as

�
(m)
g =

1√
X

�̄
(m)

ej
2π
K gμ(m)D

{
[e

−j
2π

κ(K+L) g0, . . . , e
−j

2π
κ(K+L) gQ]

T
}
,

�̄
(m)

:=

⎡⎢⎢⎢⎣
e
−j

2π
κX(K+L)0(K0−μ(m)κ(K+L)) · · · e

−j
2π

κX(K+L)0(KQ−μ(m)κ(K+L))

...
. . .

...

e
−j

2π
κX(K+L) (X−1)(K0−μ(m)κ(K+L)) · · · e

−j
2π

κX(K+L) (X−1)(KQ−μ(m)κ(K+L))

⎤⎥⎥⎥⎦ .

ð55Þ

With Ā
(n)
c = [Ā

(0,n)
c , . . . , Ā

(NT−1,n)
c ], we apply the proce-

dure from (49) until (55) on all the submatrices Ā
(m,n)
c

for

m = 0, ..., NT - 1. It is not difficult to realize the rank of

Ā
(n)
c

is determined by the rank of the matrix

[�̄
(0)

, . . . , �̄
(NT−1)

]multiplied by G. It is tall if X = K/G ≥

NT(Q + 1). Besides, it contains distinctive columns of a lar-
ger �X(K + L)-point DFT matrix if μ(m+1)�(K + L) >μ(m)�
(K + L) + KQ, which is hence of full column-rank. □
Lemma 2. If G ≥ (L + 1), the matrix Ā

(n)
d

has full col-

umn-rank NT(L + 1)(Q + 1).

Proof. Expressing Ā
(n)
d

in the form of

Ā
(n)
d = D{Ā(0,n)

d , . . . , Ā
(NT−1,n)
d }, we can see that the rank

of its mth submatrix

Ā
(m,n)
d := IQ+1 ⊗ D{p̄(m)}V{P̄(m),:}

L
(56)

is determined by the rank of V{P̄(m),:}
L

. The latter is a

submatrix of the Vandermonde matrix WK, and is thus
of full column-rank L+1 if G ≥ L+1.

In this case, the matrix Ā
(n)
d

is of full column-rank NT

(L + 1). □
For the matrix product A(n) = Ā

(n)
c Ā

(n)
d
, the rank

inequality [24] reads

Rank{Ā(n)
c }+Rank{Ā(n)

d }−NTG(Q+1) ≤ Rank{A(n)} ≤ min{Rank{Ā(n)
c }, Rank{Ā(n)

d }}.ð57Þ
Combining Lemma 1 and Lemma 2 concludes the

proof.

B Proof of Theorem 2

Similar to (48), we can express Ã
(n) as Ã

(n)
:= ˜̄A(n)

c
˜̄A(n)

d
with

˜̄A(n)

c :=

⎡⎢⎢⎣
Ā
(n)
c [j0]

. . .

Ā
(n)
c [jV−1]

⎤⎥⎥⎦ ,

˜̄A(n)

d :=
[
Ā
(n)T
d [j0], . . . , Ā

(n)T
d [jV−1]

]T
,

(58)

where Ā
(n)T
c [jv] and Ā

(n)T
d [jv] are defined in (48) but

with the symbol index jvadded.
We first prove the full column-rank condition of

Ā
(n)
c [jv] by following the same steps as in Lemma 1

except for (55), where we need to plug in the (O)CE-
BEM that is based on multiple blocks as defined in (22).
As a result, we obtain after some algebra that

�
(m)
g [jv] =

1√
X

�̄
(m)

ej
2π
K gμ(m)D

{[
e−j 2π

K ′ (jv(K+L)+L+g)0, . . . , e−j 2π
K ′ (jv(K+L)+L+g)Q

]T
}
,

�̄
(m)

:=

⎡⎢⎢⎢⎣
e−j 2π

XK ′ 0(K0−μ(m)K ′) · · · e−j 2π
XK ′ 0(KQ−μ(m)K ′)

...
. . .

...

e−j
2π
XK ′ (X−1)(K0−μ(m)K ′) · · · e−j

2π
XK ′ (X−1)(KQ−μ(m)K ′)

⎤⎥⎥⎥⎦ .

ð59Þ

with K’ := �V(K + L). Like in Lemma 1, the rank of

Ā
(n)
c [jv] is determined by the rank of [�̄

(0)
, . . . , �̄

(NT−1)
]

multiplied by G. It is tall if X = K / G ≥ NT(Q + 1).
Besides, if μ(m+1)K’ >μ(m)K’ + KG, this matrix contains
distinctive columns of a larger XK’-point DFT matrix,
and is in that case of full column-rank.

To check the rank of ˜̄A(n)

d
, we permute its rows, which

admits an expression as

(�NT(Q+1) ⊗ IG) ˜̄A(n)

d = D
{
IQ+1 ⊗ D{ ˜̄p(0)}V{ ˜̄P

(0)
,:}

L , . . . , IQ+1 ⊗ D{ ˜̄p(NT−1)}V{ ˜̄P(NT−1)
,:}

L

}
,ð60Þ

where

˜̄p(m)
:=

[
p̄(m)T[j0], . . . , p̄(m)T[jV−1]

]T
,

˜̄P(m)
:= P̄ (m)[j0]

⋃
· · ·

⋃
P̄ (m)[jV−1].

Because ˜̄P (m) contains VG distinctive elements,

V{ ˜̄P
(m)

,:}
L

is a tall Vandermonde matrix if VG ≥ L + 1.

Since ˜̄A(n)

c
and ˜̄A(n)

d
are both of full column-rank, we

can utilize the rank inequality in [24] to conclude the
proof.

C Proof of Theorem 3 and Corollary 1
The identical pilot assumption implies that

Ā
(n)
d [j0] = · · · = Ā

(n)
d [jV−1] and therefore

Ã
(n)

= [Ā
(n)T
c [j0], . . . , Ā

(n)T
c [jV−1]]T Ā

(n)
d [j0],

where Ā
(n)T
c [jv] and Ā

(n)T
d [jv] are defined in (48) with

the symbol index jvadded. Obviously, Ā
(n)
d [j0] is of full

column-rank if G ≥ NT(L + 1). To prove the full col-

umn-rank condition of [Ā
(n)T
c [j0], . . . , Ā

(n)T
c [jV−1]]T, we
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can follow similar steps as in Appendices A and B,
which lead eventually to the full column-rank condition
of a larger matrix⎡⎢⎢⎣

�
(0)
g [j0] · · · �

(NT−1)
g [j0]

...
. . .

...

�
(0)
g [jV−1] · · · �

(NT−1)
g [jV−1]

⎤⎥⎥⎦ , (61)

where �
(m)
g [jv] is defined in (59). If the above is not of

full column-rank, then there should exist a vector
[aT0, . . . , a

T
NT−1]

T, which contains at least one non-zero
element, such that⎡⎢⎢⎣

�
(0)
g [j0] · · · �

(NT−1)
g [j0]

...
. . .

...

�
(0)
g [jV−1] · · · �

(NT−1)
g [jV−1]

⎤⎥⎥⎦
⎡⎢⎣ a0

...
aNT−1

⎤⎥⎦ = 0VX×1. (62)

With (59) taken into account, the above can be
equivalently rewritten as ΘΓ = 0X×V, with

� =
∑
m

�̄
(m)D{ej 2π

K gμ(m)
am},

� =

⎡⎢⎢⎢⎣
e−j 2π

K ′ 0(j0(K+L)+L+g) · · · e−j 2π
K ′ 0(jV−1(K+L)+L+g)

...
. . .

...

e−j 2π
K ′ Q(j0(K+L)+L+g) · · · e−j 2π

K ′ Q(jV−1(K+L)+L+g)

⎤⎥⎥⎥⎦ .

Γ has a full row-rank if V ≥ Q + 1, and therefore in
order for (62) to hold, Θ must be an all-zero matrix.
Based on the definition of �̄

(m) in (59), the qth column
of Θ can be expressed as

�{:,q} =

⎡⎢⎢⎢⎣
e−j 2π

XK ′ 0(Kq−μ(0)K ′) · · · e−j 2π
XK ′ 0(Kq−μ(NT−1)K ′)

...
. . .

...

e−j 2π
XK ′ (X−1)(Kq−μ(0)K ′) · · · e−j 2π

XK ′ (X−1)(Kq−μ(NT−1)K ′)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ej
2π
K gμ(0)

[a0]q
...

ej
2π
K gμ(NT−1)

[aNT−1]q

⎤⎥⎥⎥⎦ .ð63Þ

The first matrix on the right-hand-side of the above
will have a full column-rank if X ≥ NT and μ(m) �= μ(m′).
This means that there exists at least one column in Θ
that is not all-zero. Hence, (62) cannot hold, and the
matrix in (61) has a full column-rank. This concludes
the proof of Theorem 3.
If there is only one transmit antenna NT, we only need

to prove the full column-rank condition of the following
matrix [c.f. (61)]

[
�

(0)T
g [j0], . . . ,�

(0)T
g [jV−1]

]T
=

1√
X
ej

2π
GXμ(m)gD{1V×1 ⊗ θ−μ(m)}⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
−j 2π

κV(K+L)0[j0(K+L)+0G+g] · · · e
−j 2π

κV(K+L)Q[j0(K+L)+0G+g]

...
. . .

...

e
−j 2π

κV(K+L)0[j0(K+L)+(X−1)G+g] · · · e
−j 2π

κV(K+L)Q[j0(K+L)+(X−1)G+g]

...

e
−j 2π

κV(K+L)0[jV−1(K+L)+0G+g] · · · e
−j 2π

κV(K+L)Q[jV−1(K+L)+0G+g]

...
. . .

...

e
−j 2π

κV(K+L) 0[jV−1(K+L)+(X−1)G+g] · · · e
−j 2π

κV(K+L)Q[jV−1(K+L)+(X−1)G+g]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The rightmost matrix on the RHS of the above is of
dimension VX × (Q + 1) and is obviously a submatrix
carved out of a larger �V(K + L)-point DFT matrix.
Hence, it will have full column-rank if VX ≥ (Q + 1).
This completes the proof of Corollary 1.

Endnotes
aA third pilot placement scenario, referred to as the

mixed-type, is considered in [8,26]. It can be succinctly
described by |V | = J and |P (m)[jv]| < K . Because the
channel estimation and identifiability condition based
on this pilot scheme will be exactly identical to the
comb-type, we will not treat it separately in this paper.

bFor instance, with a vector a = [a0, a1, ...]
T, we have

ΠGa = [a0, aG, ...]
T, and with a vector b = [b0, b1, ...]

T,

bT�̄
H
G = [b0, bG, . . .].
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