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Abstract

This article employs adaptive rank-order morphological filter to develop a pattern classification algorithm for fault
diagnosis in benchmark chemical process: Tennessee Eastman process. Rank-order filtering possesses desirable
properties of dealing with nonlinearities and preserving details in complex processes. Based on these benefits, the
proposed algorithm achieves pattern matching through adopting one-dimensional adaptive rank-order
morphological filter to process unrecognized signals under supervision of different standard signal patterns. The
matching degree is characterized by the evaluation of error between standard signal and filter output signal. Initial
parameter settings of the algorithm are subject to random choices and further tuned adaptively to make output
approach standard signal as closely as possible. Data fusion technique is also utilized to combine diagnostic results
from multiple sources. Different fault types in Tennessee Eastman process are studied to manifest the effectiveness
and advantages of the proposed method. The results show that compared with many typical multivariate statistics

process

based methods, the proposed algorithm performs better on the deterministic faults diagnosis.
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1. Introduction

The last decades have been witnessing the modern
large-scale processes developing toward high complexity
and multiplicity in industries such as chemical, metallur-
gical, mechanical, logistics, and etc. These processes are
generally characterized by a long-process flow with large
operation scales and complicated mechanisms. The typi-
cal features are highly nonlinear, long-time delay, and
heavily correlated among measurements [1]. Process
monitoring, aiming to ensure that the operations satisfy
the performance specifications and indicating anomalies,
becomes a major challenge in practice. First, the
requirements of process expertise for model-based
methods often pose difficulties for operators not specia-
lizing in this realm; secondly, the system identification
theory based methods need to postulate specified math-
ematical models, which are incapable of capturing varied
nonlinearities. In addition, due to the growing number
of sensors installed in processes, quantity of data con-
stantly generated under different conditions soars by a
few orders of magnitude or more compared to small-
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scale processes [2]. The fundamental dilemma for pro-
cess monitoring is deficient knowledge to establish rela-
tive accurate mathematical process description while
incomplete methodology to exploit abundant data to
reveal process mechanisms and operational statuses. In
large-scale processes, standard PI (proportional-integral)
or PID (proportional-integral-derivative) closed-loop
control schemes are often adopted to compensate for
variable disturbances and outliers. However, excessive
compensation may easily cause controllers overburden
and a trivial glitch could eventually develop to cata-
strophic fault(s). Based on the considerations of practical
limits, demands of safety operation, cost optimization as
well as business opportunities in technical development,
the problem of how to more effectively utilize mass
amount of process data to meet the increasing demand
of system reliability has received intensive attention of
academics and practitioners in related areas. Among all
the tasks, data-driven fault diagnosis, involving the use
of data to detect and identify faults, is one of the most
interesting research domains.

In previous extensively cited literature, Venkatasubra-
manian once proposed classical three subclasses of
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diagnostic techniques: quantitative model-based meth-
ods, qualitative model-based methods, and process his-
tory based method [3-5]. From a new perspective to
further investigate Venkatasubramanian’s classification,
data-driven based fault diagnosis not only includes a
large part of techniques in process history based
method, but also some belonging to qualitative model-
based methods. To view data-driven methods as an inte-
grated type, we can re-divide fault diagnosis methods
into three subclasses, namely analytical model-based
methods, qualitative knowledge-based methods, and
data-driven based methods (DDBM), where DDBM can
be further divided into data transform based methods
(DTBM) and data reasoning based methods (DRBM).
Figure 1 illustrates the proposed classification. In gen-
eral, DDBM are associated with the methods with insuf-
ficient information available to form mechanism model.
These kinds of methods employ process data in dynamic
system to perform fault detection, diagnosis, identifica-
tion, and location. DTBM, to be more specifically, high-
lights the adoption of linear or nonlinear mathematical
transforms to map original data to data in another form
and the transforms are often reversible. The transformed
data may be without clear physical meanings, but with
more practicality. The key concept of data transform
lies in two attributes: deterministic transform paradigm
and realization of data compression. With this concept,
the scope of DTBM is smaller and more concentrating
compared to DDBM; the purpose for data utilization is
more specific. DTBM also needs no in-depth knowledge
about system structure as well as experience accumula-
tion and reasoning knowledge which are necessary to
DRBM. Besides, the implementation of DTBM algo-
rithms are easily understood and realized, but the
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drawback may be less robust than model based meth-
ods. Dimension transformation (often dimension reduc-
tion), filtering, decomposition and nonlinear mapping
are recognized as common tools for data transform.

In Figure 1, signal processing is categorized as a data
transform methodology which covers a wide range of
different techniques. Typical ones are primarily filtering
and multilayer signal decomposition, both requiring pre-
set models and carefully selected parameters, like Wave-
let Analysis, Hilbert-Huang Transform, etc.
Morphological signal processing, however, gives a differ-
ent viewpoint. It derives from rank-order based data
sorting technique and modifies signal geometry shape to
achieve filtering [6]. This feature may provide more
advantages of noise reduction and detail preservation
than linear tools when treating measurements in com-
plex processes [7]. Moreover, Salembier [8] analyzed
that how the performance of rank-order based filter can
be adaptively optimized in terms of the filter mask and
rank value. Based on the investigations above, morpho-
logical signal processing as a nonlinear data transform
tool may be suitable for constructing feature extractor
for pattern matching.

In our previous work (unpublished work), we devel-
oped Salembier’s idea [8] to adaptively adjust flat struc-
turing element and rank parameter for each sample
rather than adopting uniform ones for all the samples in
a sampled sequence. Based on this idea, we designed a
signal geometry matching approach: pattern classifica-
tion using one-dimensional adaptive rank-order mor-
phological filter for fault diagnosis, named PC1DARMF
approach. The proposed method belongs to DTBM with
major parameters capable of being randomly chosen,
which is superior to those DTBM which need
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predefined parameters. This article applies PCIDARMF
approach to a more complex and challenging applica-
tion: Tennessee Eastman process (TEP). TEP is a classic
model of an industrial chemical process widely studied
in literature for validating new developed control or
process monitoring strategies. It is a typical large-scale
process characterized by features described previously.
The fact that many data-driven diagnostic methods have
been performed on TEP also provides chances to evalu-
ate their performances in comparisons with method
proposed in this article.

The remainder of this article is organized as follows:
Section 2 expounds the derivation of pattern classifica-
tion method using adaptive rank-order morphological
filter. Key implementation issues are also discussed. An
example is given to build a step-by-step realization of
the method, making it easier for readers to understand.
Section 3 gives an essential introduction to TEP and
reviews the previous TEP fault diagnosis methods. Sec-
tion 4 shows the diagnosis results for different TEP
simulated faults with detailed analysis. Comparisons
between the proposed method and typical multivariate
statistics based approaches are made to highlight the
advantages and features of PC1IDARMEF. The last part
finally presents the conclusion and discussions.

2. Signal geometry matching based on adaptive
rank-order morphological filter

2.1. One-dimensional adaptive rank-order morphological
filter (1IDARMF)

Adaptive rank-order morphological filter is derived from
a nonlinear signal processing tool referred as the rank-
order based filter (ROBF). ROBF firstly reads a certain
number of input values, then sorts the values in ascend-
ing order and determines the output value according to
the predefined rank parameter in the sorted set. The
basic definition of one-dimensional (1D) ROBF is firstly
given in [9]: let x; be discrete sampled signal defined on
a 1D space Z and M be a 1D mask containing N points
(]JM]= N and | | is the set cardinality). Define j as an
index belonging to the mask M and r as the normalized
rank parameter of the filter (0 < r <1). Given the rank-
order operator denoted by f, y/[x;], the output of ROBF
y; can be then formulated as (1):

Vi = frmlxi] = Rank, {x;_;|j € M} (1)

where elements of set X are sorted in ascending order
and Rank,{X} denotes the nth ordered value in X (u is
the nearest integer value of (N - 1)r + 1), x;; denote all
the points which belong to the range of mask M centered
oni(eg.,ifj=-3,-2,-1,0123,i-j=i-3,.,i+3). This
operation is the essentials of both median filter and mor-
phological filter with flat structuring element [8,9].
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However, its drawback is that the selections of filter
mask and rank parameter heavily rely on practical experi-
ence and intuition. With understanding the feature of
ROBE, its adaptive form named adaptive rank-order mor-
phological filter was then proposed [8,9]. It is optimized
as adapting filter mask and rank parameter in order to
minimize a criterion such as the MAE (mean absolute
error) or the MSE (mean squared error). The problem of
designing adaptive rank-order morphological filter can be
briefly stated as follows: assume that x; and d; are given as
noised signal and desired signal, respectively, when ROBF
[ is adopted, the aim is to find the best rank parameter
r and filter mask M which minimizes a cost function C
between output y; and d; using iterative learning. In order
to expound the procedure of building IDARMEF for bet-
ter understanding, how to formulate the operation of
ROBEF is to be introduced at the beginning.

First, in order to overcome the optimization difficulty for
dealing with the discrete nature of parameters, the rank
parameter r can be optimized in continuous normalized
manner and let # in Rank, {X} be the nearest integer value
of (N - 1)r + 1. Secondly, for filter mask M optimization
problem, a search area A which is selected to be larger
than the optimum mask is introduced and a continuous
value m" is assigned for Vj € A. New filter mask in next
iterative step is thus determined by comparing the set of
continuous values associated with the current filter mask
against a preset value (denoted as threshold thm_M). If
the assigned value for any j € A is greater than the thresh-
old, the location associated to that j belongs to the filter
mask. With introduction of search area A and the continu-
ous values assignments, the optimization problem of filter
mask M is successfully converted from the binary values
modification of the mask (belong or not belong) to contin-
uous values 7% modification.

On the basis of realizing parameters updating continu-
ously, we proceed to find a way to establish a mathema-
tical relationship involving filter input, output, and the
parameters all together. Let us define S the sum of signs
of (x;;-y;) for all j. It can be expressed by

S= Z sgn (xi—j — ¥i) (2)

jeM

It is easy to find out that if » = 0, y; is the minimum
of {x;; | j € Mjand S is then equal to N - 1; if r = 0.5, y;
is the median value of {x;; | j € M} and S = 0; if r = 1,
¥; is the maximum of {x,; | j € M}, S = - (N - 1). Based
on the mapping relations between S and r above, if they
were assumed to be linearly related, the general expres-
sion of S with respect to r is given as

S=—(2r—1)(N-1) 3)
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In case of thm_AM being set 0, we obtain if (sgn(m" -
thm_M)+1)/2 = 1, then m"” > thm_M, which means j €
M and else if (sgn(m(j)-thm_M)+1/2) = 0, then m" <
thm M5 ¢ M Notice all j is selected from A and let
(sgn(m(j)—thm_M)+1/2) (i.e., (sgn(m(/))+1)/2) be the
weight, combing (2) and (3) gives

s=y ;(sgn (m®) + 1)sgn (xij — i) = —(2r = D[Y_ (sgn (m0)) + 1)/2 - 1] (4)

jeA jeA

Fn, s ym) = 3 ) (sgn (n0) + Dlsgn (ug— ) +2r = 1]+ 1-2r=0  (5)
jeA
Thus, the output of ROBF is successfully expressed by
the implicit function F(m(j),xi_j,y,,r). As will be stated
later, this implicit function is applied to take derivatives
of y; with respect to m and r to develop iterative formu-
lae for parameter updates.
In [8], an iterative algorithm similar to the LMS (least
mean squares) algorithm was suggested to update the m
¥ and r in the case of MSE optimization:

ayi

m(next,j) — m(j) + 2(x(di - %) am()

VieA (6)

8 .
r("@xt) =7+ 2ﬁ(dl _ yl) yl (7)

ar
Where o and 3 are two predefined parameters con-
trolling the convergence rates. The derivatives of y; with
respect to " and r are calculated through employing

implicit function (5). To obtain the expression of 88}/&)
m
and %Yi, the derivative of F with respect to m is firstly
T
expressed as

dF oF oF 3y

= )=0 8

dm0) = amt * (ay,-) (amm) ®)

That is
oy a0 .
om0 ~ ®)

aF/ayi

Using (5) to take the derivative of F with respect to m
& gives

OF  osgn (m0))
ami) — 29m0)
= S(m(j))[sgn (xij —yi) +2r —1]

[Sgn (‘xi—j - yl) +2r — 1] (10)
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oF .
y is also calculated by using (5):
i
oF 0)
gy, =~ 2 (580 (m?) + D3y — ) (1)
1

jeA

In (11), the term 6(x;;-y;) is equal to 1 only if j equals
to jo, i.e., the time shift whose corresponding x;; equals
to output y;. This indicates jo € M and sgn(m;) = 1,
(11) is simplified to

dF
=2 (12)
3}/i
Combined with (10), (9) is written as
ay; 1 ;
3’5&) = 28(111(]))[sgr1 (xij —yi) +2r — 1] (13)

If o(my) is replaced by 6’(my) = 1 for -1 < my < 1 for
simplification. Based on (13), (6) is converted to

m®) = m0) 4 o (d; —yi)[sgn (xi—j —yi) +2r — 1] (14)

Similar with the deduction of (9) and (13), we also
have

Wi 8F/8r (15)
or 3F/ayi
oF

=2 ;Z(sgn(m(j))+1)—l =2(N—1) (16)

JEA

ar

Based on (12), (16) is written as

Wi N1 (17)
ar

Combined with (17), (7) is converted to
e = 4 28(d; — i) (N — 1) (18)

where N = |M]| is the current length of filter mask in
use.

Combining (1), (14), and (18), the parameters updating
algorithm for one dimensional adaptive rank order mor-
phological filter are given as (19), where itN denotes the
current iteration and itN + 1 for the next. Note that the
update processes of filter mask M and rank parameter r
are varying according to each sample i rather than
remaining the same for each sample.
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itN) . N) itN) i)
y![” ) Rank(N‘(le]”(.w,afl(x,,,\] € Mf” ), |Mf'r )| = Nx('r )

mEitNﬂ),l _ m!(xtN),j cald - y’[uN))[Sgn (i) — y‘(nN)) . er('w) “1Lvje M:fw)
ngumn —ivie MftrN)’ml(xtNH),[ < thm M}
r}iiN+l) _ rx(uN) +2B(di— y:uN))(Ni(uN] —

(19)

To illustrate the performance of IDARMF given by (19),
an example is shown in Figure 2. In Figure 2a, it depicts
three signals: noised signal x (dash-dot line) as input sig-
nal, desired signal d (solid line) as supervisory signal, and
output signal y (dotted line) as recovered signal. x = s + n,
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where s is the useful signal contaminated by Gaussian
noise n and SNR, (signal-to-noise ratio) is set 2. In this
example, s = sin(¢f) and d is selected equal to s in order to
recover the useful signal. Initial parameters of IDARMEF in
(19) are set as follows: initial 1D filter mask M = [-5,-4,-
3,-2,-1,0,1,2,3,4,5], initial assigned value for element in the
mask m® = 0.5 (Vj € M), initial rank parameter 7 =,
thm_AM = 0, max iterations iterationNUM = 300, conver-
gence rate oz = 1 x 10* and B = 1.5 x 10>,
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signal y and (b) "™ defined in (20).
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Figure 2 An example illustrating the performance of 1DARMF given by (19): (a) Supervisory signal d, noised signal x and output
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If we define the sum of squared error between y and d
as the evaluation of signal recovering ability, the expres-
sion is given as

i

where i means the ith sample of signal and itN
denotes current iteration. Figure 2b shows e con-
verges to steady state and oscillates in a stable manner
as itN gets increased.

2.2. Pattern classification using 1DARMF (PC1DARMF)

In Section 2.1, the general procedure to implement
1DARMEF needs desired signal d as supervisory signal to
train the key parameters of filter to obtain desired out-
put. However, for a certain input x, if 4 is alternatively
chosen, the iterative training process would finally lead
to different output y. This means under supervision of
inappropriate or undesirable d, the output may fail to
recover useful signal from original input x. A perfor-
mance comparison of IDARMF using different supervi-
sory signals is given to illustrate this phenomenon in
Figure 3. With input x and the initial parameters being
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set the same with Section 2.1, different d results in dif-
ferent y, as shown in Figure 3a, ¢, e, g, i. Figure 3b, d, f,
h, j depict corresponding e gradually reaches stable
oscillation as iterations increase. The most distinct com-
mon feature is all "™ eventually progress to a steady-
state through enough iterations. This phenomenon can
be theoretically guaranteed: Feuer and Weinstein [10]
concluded that if the convergence rate was restrained
within a upper limit, then it was the necessary and suffi-
cient for LMS algorithm to ensure the convergence of
the algorithm. Therefore, with the proper selection of
ain (6) and B in (7), e is also expected to stably
oscillate eventually. The selection rule will be later sum-
marized in Section 2.3. This condition is the crucial pre-
requisite to further form our algorithm for pattern
classification. In Table 1 min(e"™) are also listed to
numerically compare the effect of different d on signal
recovering.

Figure 3 and Table 1 indicate the most matching
supervisory signal in signal geometry shape with original
input x (i.e., d = s = sin(t)) yields minimum value of
min(e“™), showing the best signal recovering ability.
Based on this property, it is expected that given an

50 100 150 200 250 300
itN

(b)

2 3 4 5 6 7 8 9 1 50 100 150 200 250 300
t itN

(c) (d)

50 100 150 200 250 300

itN

()

200
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Figure 3 1DARMF performances using s = sin(t), SNR, = 2 and different supervisory signal d. Initial parameter settings: MO = [-5-4,-3/2,-
1,01,234,5], m% =05 (vje B), (Y = 0, thm_M = 0, iterationNUM = 300; (@) d = sin(z), (c) d = sin(1.20), () d = c(® + £ - 1) (c is a proper
scaling factor which constrains range of d to be within [-1,11), (g) d is triangular signal (Triwave), (i) d is signal generated according to uniform
distribution (rand), (b), (d), (f), (h), (j): correspondent e™ of its left figure.

(] 50 100 150 200 250 300
itN

@




Li and Xiao EURASIP Journal on Advances in Signal Processing 2011, 2011:83

http://asp.eurasipjournals.com/content/2011/1/83

Table 1 min(e"™) gained using different supervisory
signal d (s = sin(t))

S D min(e™V)

sin(t) sin(t) 0.7276
sin(1.2t) 3.7734
o +t2-1) 89434
TriWave 0.9754
Rand 106224

unrecognized noised signal and a certain number of
reference signals (also known as signal templates) as
supervisory signals, IDARMF may be capable of achiev-
ing signal recognition and classification through finding
out under which reference signal the min(e“™) value
reach the minimum among all reference signals pro-
vided. We thus propose the basic procedures for pattern
classification using 1IDARMEF in Figure 4.

The procedure for pattern classification using
1DARMEF can be further developed to an algorithm,
named PC1DARMEF algorithm. It is a supervised pattern
classification approach. The fundamental of this algo-
rithm is to realize signal geometry shape matching using
1DARMEF as a tool in an iterative way. If the supervisory
signals denote different types of physical meanings, for
example representing different operation conditions or
fault types in dynamic processes, this algorithm could
achieve faults diagnosis through the signal geometry
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shape matching. In general, PCIDARMEF algorithm is
meaningful in two levels: first, it serves for the type clas-
sification purpose and secondly a feature extractor from
nonstationary signals with proper parameter settings.

2.3. Issues for implementing PC1DARMF algorithm

In Section 2.2, PC1DARMF algorithm was mainly
described in a high-level structure. There are still several
significant engineering principles and experience to
know which are important to practical implementation.
They include initial parameter settings, convergence
rates selections, and iteration stopping criteria.

2.3.1. Initial parameter settings

Initial parameter settings for PCIDARMF algorithm
involves initial value determination of filter mask M(O),
assigned value m®” for each element in filter mask,
rank parameter #” and the threshold thm_M. Several
reasons are supporting the random initial parameter set-
tings. First, the only variable of filter mask in 1IDARMF
is its length. Based on analysis of Nikolaou and Antonia-
dis [11] of empirical rule for the length selection and
consideration of keeping computational complexity rela-
tively low, we propose to random chose it between 0.3
and 0.5 times of the total length of input signal. Sec-
ondly, there are no guidelines in theory for m; and r;
initial values. They get renewal in continuous manner to
optimal value during iterations, so their initial values are
expected to be different chosen each time within an

[Step 1: Set values of initial parameters M, m®, ** and thm M

index FI,=min(e,"™).

ep2: For a input signal x, select a signal template d, ( n=1,2,3...,Np and
Np is the signal templates number) as supervisory signal and apply

St
1DARMEF until e,"™ in (20) oscillates in steady state, then calculate

Step 3: Substitute supervisory signal d; with dp, d,...... , dyp
respectively, repeat Step 2.

corresponding group of dp.

Figure 4 The framework of pattern classification using 1DARMF.

ep 4: Define MINFI is the minimum value of F}“

St
(n=1,2,3...,Np).Determine under which supervisory signal IDARMF
reaches MINFI. For example, if d,o resulted in MINFI, then it indicates x

matches signal template d,, best and x can be classified to the

/
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interval (e.g., [0, 1]). Thirdly, notice the derivations of
(6) and (18) in Section 2.1 are all irrelevant to the value
of thm_AM, thm_M can be also randomly chosen within
[0, 1]. Besides, the most important is that it is impossi-
ble to find optimal initial parameter settings for signals
with varying nonstationary characteristics. The first goal
of PCIDARMEF is to measure how good two signals
match each other rather than achieve optimal signal
recovering, so the selection of initial parameter values
would not be necessarily restrained as special ones.
Based on the analysis, we use random initial parameter
settings for later experiments.

2.3.2. Convergence rates selections

The selection rule of convergence rate o and 3 in (19) is
(21), which is referenced from [10] and early mentioned
in Section 2.1. As was indicated before, (21) guarantees
the convergence of the LMS algorithm.

O<pu<

= 3u(R| (21)

where p denotes convergence rate, R is covariance
matrix of input signal, tr[R] is the trace of R. We further
find empirically that if & and 8 is chosen as 1/3tr[R],
output y may often cause unstable oscillation. In this
article, we adopt that o and f is much smaller than 1/
3tr[R]: for example, & = 0.0001,3 = 0.0015.
2.3.3. Iteration stop criteria
Max iteration number preset is the key factor to greatly
influence the algorithm computational cost. Notice the
computational complexity of PC1IDARMEF algorithm is
O(|NlogN ||SL||dNUM||MaxitN|), where N is the

average length of structuring element and O(|NlogN |)
is the computational complexity of Quicksort algorithm,
SL is the processed signal length, and dNUM for the
number of signal templates. SL and dNUM are prede-
fined and unchangeable. MaxitN is the max iterations to
ensure the convergence. Salembier [8] and Figure 3 in
Section 2.2 also pointed out that IDARMF had an abil-
ity to provide fast convergence. If the PC1DARMEF algo-
rithm always set a fixed iteration numbers, it would be
unnecessary and the computational cost would be tre-
mendous. An alternative way for reducing redundant
iterations is to stop the iterations when within a certain
number of continuous iterations, average variation of e
UtN) falls below a threshold if no specified information
about input signal and the noise level is given.

3. Tennessee Eastman process fault diagnosis
using PC1IDARMF algorithm

3.1. Introduction to Tennessee Eastman process (TEP)
Tennessee Eastman process is first proposed by Downs
and Vogel [12] to provide a simulated model of real
industrial complex process for studying large-scale
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process control and monitoring methods. As is shown
in Figure 5, the process consists of five major units: an
exothermic two-phase reactor, a product condenser, a
recycle compressor, a flash separator, and a reboiler
stripper. Gaseous reactants A, C, D, E, and inert B are
fed to the reactor. Component G and H are two pro-
ducts of TEP, while F is undesired byproduct. The reac-
tion stoichiometry is listed as (22). All the reactions are
irreversible, exothermic, and approximately first-order
with respect to the reactant concentrations. The reac-
tion rates are expressed as Arrhenius function of tem-
perature. The reaction producing G has higher
activation energy than that producing H, thus resulting
in more sensitivity to temperature.

Agg) + Cg) + D(g) = G

Ag) + Crg) + Eg) = Hyy (22)
Ag) + Eg) = Fq

3D(g) — ZF(])

The reactor product stream is cooled through a con-
denser and fed to a vapor-liquid separator. The vapor
exits the separator and recycles to the reactor feed
through a compressor. A portion of the recycle stream
is purged to prevent the inert and byproduct from accu-
mulating. The condensed component from the separator
is sent to a stripper, which is used to strip the remaining
reactants. After G and H exit the base of the stripper,
they are sent to a downstream process which is not
included in the diagram. The inert and byproducts are
finally purged as vapor from vapor-liquid separator.

The process provides 41 measured and 12 manipu-
lated variables, denoted as XMEAS(1) to XMEAS(41)
and XMV(1) to XMV(12), respectively. Their brief
descriptions and units are listed in Table 2. Twenty pre-
programmed faults IDV(1) to IDV(20) plus normal
operation IDV(0) of TEP are given to represent different
conditions of the process operation, as listed in Table 3.
TEP proposed in [12] is open loop unstable and it
should be operated under closed loop. Lyman and Geor-
gakis [13] proposed a plant-wide control scheme for the
process. In this article, we implement this control struc-
ture to evaluate performance of PCIDARMF algorithm
on fault diagnosis for it provides the best performance
for the process.

3.2. Related work for TEP fault diagnosis

Various approaches have been proposed to deal with the
fault diagnosis and isolation for TEP since its introduc-
tion in 1993. Most of them are dedicated to exploit
data-driven techniques because of the process complex-
ity and data abundance. Multivariate statistics based,
machine learning based, and pattern matching based
methods are the most frequently adopted methodologies
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summarized in this article. Meanwhile hybrids of the
three have been also studied in literature.

Raich and Cinar [14-16] are among the earliest
researchers to apply multivariate statistics techniques for
TEP fault diagnosis. Training data under different
operation conditions are firstly utilized to design PCA
(principal component analysis) models for fault detec-
tion and fault classification. Then, designed PCA models
are applied to new data to calculate statistic metrics and
different discriminant analysis is conducted to determine
whether and which fault occurs. The method is also able
to diagnosis multiple simultaneous disturbances by
quantitatively measuring the similarities between models
for different fault types. Russell et al. [17] and Chiang et
al. [18] gives a comprehensive and detailed study of
multivariate statistical process monitoring using major
dimensionality reduction techniques: PCA, FDA (Fisher
discriminant analysis), PLS (partial least squares), and
CVA (canonical variate analysis). Additionally, some
improved multivariate statistical methods outperform
their conventional counterparts for TEP fault diagnosis,
like dynamic PCA/FDA (DPCA/DFDA) [19], moving
PCA (MPCA) [20], and modified independent compo-
nent analysis (modified ICA) [21]. Application of the
multivariate statistics based methods is under assump-
tion that sample data mean and covariance are equal to
their actual values [17]. This would leads to requirement

of large quantity of real data for ensuring relative accu-
rate statistic estimations.

Machine learning based methods are also abundant in
literature. It requires large amount of historical data
under various fault conditions as training data to form a
data mapping mechanism. Artificial neural networks
(ANN) and support vector machine (SVM) are the most
employed techniques applied to TEP fault diagnosis
[22-25] among machine learning based methods. Eslam-
loueyan [26] further proposed hierarchical artificial
neural network (HANN) to diagnosis faults for TEP.
Fault pattern space is first divided to subspaces using
fuzzy clustering algorithm. For each subspace represent-
ing a fault pattern, a special NN is trained for fault diag-
nosis. Besides, Bayesian networks [27,28] and signed
directed graphs (SDG) [29] are also investigated in TEP
fault diagnosis problem.

Another important approach is pattern matching. The
basic idea is to match the pattern against the templates
stored after using feature extracting techniques. Differ-
ent similarity measures are defined to quantify the
matching degree. Qualitative trend analysis (QTA) is a
significant pattern-matching based method. It represents
signals as a set of basic shapes as major features, which
distinguishes different signals in geometry shapes.
Maurya et al. [30] used seven primitives to represent
signal geometry under different fault conditions. Maurya
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Table 2 Measurements and manipulated variables in TEP
(Continued)

Variable Description Units
XMEAS(1) A feed (Stream 1) kscmh XMV(9) Stripper steam valve
XMEAS(2) D feed (Stream 2) kg/h XMV(10) Reactor cooling water flow
XMEAS(3) E feed (Stream 3) kg/h XMV(11) Condenser cooling water flow
XMEAS(4) Total feed (Stream 4) kscm h XMV(12) Agitator speed
XMEAS(5) Recycle flow (Stream 8) kscm h
XMEAS(6 Reactor feed rate (Stream 6 kscm h . .
© ( ) et al. [31] also proposed an interval-halving method for
XMEAS(7) Reactor pressure kPa gauge R X
trend extraction and a fuzzy matching based method for
XMEAS(8) Reactor level % . . . . .
. similarity estimation and inferences. Akbarya and bish-
XMEAS(9) Reactor temperature C K
noi [32] used wavelet-based method to extract features
XMEAS(10) Purge rate (Stream 9) kscm h K L .
XMEAS(11) Broduct seb tom o and binary decision tree to classify them. All the above,
u . o, . .
pemp QTA-based methods require training data, while Singhal
XMEAS(12) Product sep level % R
and Seborg [33] proposed a pattern-matching-strategy
XMEAS(13) Prod sep pressure kPa gauge . L. . .
; requires no training data but a huge amount of histori-
XMEAS(14) Prod sep underflow (Stream 10) m~/h e .
, cal data. The approach needs specification of snapshot
XMEAS(15) Stripper level % . . . .
i dataset, which serves as a template during the historical
XMEAS(16) Stripper pressure kPa gauge .. . .
_ s database search. Pattern similar to snapshot data in his-
XMEAS(17) Stripper underflow (Stream 11) m>/h . L. .
MEAS(S) Stripper temperature o torical database can be located by sliding a window of
, signals in fixed length. The drawback of this method is
XMEAS(19) Stripper steam flow kg/h . . .
that it needs to accumulate historical data and, of
XMEAS(20) Compressor work kw . | .
) course, cannot perform on-line process monitoring
XMEAS(21) Reactor cooling water outlet temp °C .
) tasks. In general, pattern recognition based methods are
XMEAS(22) Separator cooling water outlet temp °C
Variable Description Stream
XMEAS(23) Component A 6 Table 3 Notations and descriptions of faults in TEP
XMEAS(24) Component B 6 Variable Description Type
XMEAS(25) Component C 6 IDV(0) Normal operation -
XMEAS(26) Component D 6 IDV(1) A/C feed ratio, B composition constant Step
XMEAS(27) Component E 6 (Stream 4)
XMEAS(28) Component F 6 IDV(2) B composition, A/C ratio constant (Stream 4) Step
XMEAS(29) Component A 9 IDV(3) D feed temperature (Stream 2) Step
XMEAS(30) Component B 9 IDV(4) Reactor cooling water inlet temperature Step
XMEAS(31) Component C 9 IDV(5) Condenser cooling water inlet temperature  Step
XMEAS(32) Component D 9 IDV(6) A feed loss (Stream 1) Step
XMEAS(33) Component E 9 IDV(7) C header pressure loss-reduced availablity Step
XVEASG4)  Component F 9 (Stream 4) -
XMEAS(35) Component G 9 IDV(8) A, B, C feed composition (Stream 4) \F;:;(ajt(i)gg
XMEAS(36) Component H ? IDV(9) D feed temperature (Stream 2) Random
XMEAS(37) Component D Ihl Variation
XMEAS(38) Component £ 1 IDV(10)  C feed temperature (Stream 4) Random
XMEAS(39) Component F 1M Variation
XMEAS(40) Component G 1 IDV(11)  Reactor cooling water inlet temperature Random
XMEAS@41)  Component H 1 Variation
bl — IDV(12)  Condenser cooling water inlet temperature  Random
Variable Description Variation
XMV(1) D feed flow (Stream 2) IDV(13)  Reaction kinetics Slow Drift
XMV(2) E feed flow (Stream 3) IDV(14)  Reactor cooling water valve Sticking
XMV(3) A feed flow (Stream 1) IDV(15)  Condenser cooling water valve Sticking
XMV(4) Total feed flow (Stream 4) IDV(16)  Unknown
XMV(5) Compressor recycle valve IDV(17)  Unknown
XMV(6) Purge valve (Stream 9) IDV(18)  Unknown
XMV(7) Separator pot liquid flow (Stream 10) IDV(19)  Unknown
XMV(8) Stripper liquid product flow (Stream 11) IDV(20)  Unknown
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relatively computationally demanding but the develop-
ment of computer processor has been helping lessen
this pressure.

Hybrid TEP fault diagnosis methods, investigated in
literature commonly, employ multivariate statistical
tools. For example, Lee et al. [34] combined SDG and
PLS to demonstrate better diagnosis resolution, accu-
racy, and reliability than previous qualitative methods.
Lu et al. [35] considered the limitation of PCA for dif-
ferentiating faults with similar time-varying characteris-
tics and utilized wavelet analysis to extend the feature
extracting ability into time-frequency domain.

PC1DARMEF algorithm in this article is a novel pattern
matching method. The theoretical basis is rank-order
based filter theory, which is easy to understand and
implement. The computational complexity is controlla-
ble and may be relatively lower than traditional QTA-
based methods. It employs the complete signal rather
than some elements extracted as template. The applied
strategy preserves important information, preventing
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possible information loss, and distortion. It also needs
no knowledge about occurrence moments of the fault.
Simulation data in Section 4 would verify its
effectiveness.

3.3. Diagnostic procedure of using PCIDARMF algorithm

The method proposed for TEP fault diagnosis is a
supervised signal geometry shape matching approach, so
constructing the signal templates as supervisory signals
should be considered in the first place. The left part of
Figure 6 depicts the procedure for obtaining the tem-
plates. The training data used for template construction
is a matrix consisting of raw sampled signal intervals of
selected measurements within different fault conditions.
The normalization of the raw signal to zero mean, unit
variance signal eliminates the discrepancy in the differ-
ent weights given to different variables. After noise
reduction by wavelet de-noising method [36], PCA
model is then employed to extract PCs (principal com-
ponents) since variables in TEP are highly correlated.

supervisory signals

Figure 6 TEP fault diagnosis procedure using PC1DARMF algorithm.
A
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Signals of selected PCs are defined as signal templates.
This means each fault (including normal operation) is
now represented as a number of signal templates. When
new sampled signals as testing data are available, PCA
model for training data is applied to normalized and de-
noised testing signals. PC1IDARMEF algorithm matches
unrecognized signal patterns against every template to
give classification result according to each PC. Finally,
multi-data fusion technique, for instance consensus the-
ory [37], combines the classification results of selected
PCs to give the final decision.

4. Simulation result analysis

4.1. Data set specification for simulation

This section describes TEP simulation data specification
we adopt in this article. It mainly concerns the data
constituent for the training and testing sets, data sam-
pling interval, and sample size. The form of training and
testing data is a matrix consisting of variables XMEAS
(1) to XMEAS(2) and XMV(1) to XMV(11) except con-
stant-valued XMV(12). An observation vector of TEP
process is given as (23) and data collected during one
simulation run of fault type i consists of k observations
assembled as (24). Downs and Vogel [12] recommended
the favorable time for one simulation run was between
24 and 48 hrs. In this article, we chose 24 h to keep
computational cost relatively low. Russell et al. [17] pro-
posed a sampling interval of 3 min to allow fast fault
diagnosis. Thus, one simulation run contains 480 obser-
vations in our simulation studies, i.e., k is 480 in (24). If
n; simulation runs are implemented for fault type i, the
training data matrix including n, fault types is repre-
sented as (25).

x = [XMEAS(1), ..., XMEAS(41), XMV(1), ..., XMV(11)]" (23)

Xi1

Xi: cee (24‘)
T
Xife

M = [Xt1, coor Xy vooeer Xits eoos Xings covvves Xn 10 o Xy, | (25)

4.2. Deterministic fault diagnosis in TEP

In this section, we first consider diagnosis of determinis-
tic faults, i.e., IDV(1) to IDV(7) in TEP. Their brief
introductions are listed in Table 3. Following the proce-
dures described in Section 3.3, we construct the signal
templates as standard patterns in the first place. The
training data matrix M,, of (25) is assembled. It is
designed to contain process data produced in eight dif-
ferent simulation runs and each fault type corresponds
to a simulation. In these simulations, the fault is
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introduced 8 h after the simulation started. After PCA is
conducted on normalized and de-noised M,,, parallel
analysis [38] is applied to suggest that the PCs, which
correspond to the first five largest eigenvalues of train-
ing data covariance matrix, capture total variations of
the data set optimally. To form standard patterns of
each fault type, matrices X, to X, defined in (24) are
first normalized and de-noised, respectively. After that
projections of preprocessed data onto the first five PCA
loading vectors are performed to obtain five new obser-
vations (scores). With the consideration of reducing the
computational cost of later PCIDARMEF algorithm, a
resampling of the new observations reducing data points
from 480 to 60 is performed. Figure 7 illustrates trends
of five resampled signals for each fault type. With five in
a row composing a set, these trends obtained from
training data set are signal templates.

After signal templates were prepared, we move to
build signal patterns derived from testing data. In Sec-
tion 4.2, we define testing data set for each fault type,
which consists of data collected from 20 simulation
runs, in which 10 are generated with fault introduced in
the 4th h and the 10 others introduced in the 12th h.
As the same with training data set, testing data set is
also needed to be normalized and de-noised. PCA
model generated from training data and resampling are
adopted to acquire signal patterns. The five signal pat-
terns as a set represent current status of sampled raw
data collected from the process in signal geometry man-
ner, possessing major features for fault recognition.

After signal templates and signal patterns to be recog-
nized are built, PC1IDARMEF algorithm can be performed
step by step as demonstrated previously in Figure 4. The
initial parameters for the algorithm are selected as fol-
lows: assigned value 77, rank parameter r'*’, and the
threshold thm_A are subject to random choices while
the initial length of filter mask N‘” is an integer chosen
arbitrarily from 20 to 30 (0.3 to 0.5 times the trend
length) for balancing tradeoff between algorithm effec-
tiveness and low computational cost. The convergence
rates o and f3 are pointed in Section 2.3. The algorithm
stops when the variation of e is less than 1% within
continuous 50 iterations and max iterations is set 200 to
ensure algorithm convergence.

In this example, an unrecognized signal pattern of a
selected PC adopts eight faulty statuses signal templates
for that PC as supervisory signals and applies
PC1DARMEF algorithm to find its best matching signal
template. If one signal pattern and its best matching sig-
nal template turn out to both derive from the same
fault type, it is regarded as correct fault diagnosis, other-
wise the incorrect diagnosis. Table 4 lists the correct
diagnosis rates of 20 tests for each fault type using five
PCs.
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Table 4 Correct diagnosis rates of TEP deterministic
faults using five PCs (20 simulations for each fault type)

PC; used: PC, PC, PC; PC, PCs

Fault type
IDV(0) 20% 20% 5% 0.0 10%
IDV(1) 60% 100% 0.0 0.0 90%
IDV(2) 65% 100% 75% 100% 15%
IDV(3) 60% 35% 50% 30% 10%
IDV(4) 15% 10% 0.0 10% 55%
IDV(5) 75% 0.0 0.0 5% 60%
IDV(6) 100% 85% 100% 90% 30%
IDV(7) 95% 40% 0.0 5% 90%

In order to combine the fault diagnosis results given
by five PCs, multisource data fusion employing consen-
sus theory is considered here to give a more reliable
final result. The linear opinion pool (LIOP) as one of
the most popular approaches of consensus theory
achieves results fusion by computing the weighted sum
of diagnosis credibility given by each PC.

C(w|PC) = Z AiP(w;|PC;)

1

(26)

where P(w;|PC;) quantifies the credibility of algorithm
result of using ith PC for fault diagnosis. In other
words, it reflects the frequencies of ascending orders of
index FI,, (introduced in Figure 4) in overall FI values
when choosing the right signal template of PC,. P(w;|
PC;) can be calculated on the basis of statistics of extra
training data set, which contains 10 simulation runs for
each type with fault introduced time of the 8th h after
the simulation started. X; is the weight of result given by
PC; and can be determined according to data variation
captured by related PC. Tables 5 and 6 list P(w;|PC))
and weight A; for PC,. Based on the knowledge of Tables
5 and 6 and (26), the final diagnosis results using
PC1DARMEF algorithm and consensus theory for IDV(0)
to IDV(7) are tabulated in Table 7.

The fusion results of five PCs in Table 7 are the same
with results only using signal templates of PC; in Table

Table 5 Credibility of PCIDARMF algorithm for
deterministic fault diagnosis using PC;
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Table 6 Weight A; of PC; for deterministic fault diagnosis

PC; Ai

PC, 60.91%
PG, 15.63%
PC, 11.08%
PC, 7.43%
PCs 496%

4. Tt requires less computational effort to only use signal
templates of PC; for deterministic faults diagnosis in
TEP. Table 7 suggests normal operation (IDV(0)) is cor-
rectly diagnosed with low rate. When the process is
under normal operation, observations are in steady state
with minor oscillation in noise level. Then, the normali-
zation and PCA dimension reduction may result in sig-
nal templates varying randomly rather than retaining
regular geometry shapes.

Table 8 compares the performances of PC1IDARMF
algorithm with multivariate statistics based approaches
(MSBA) [17]. Both MSBA and the proposed method are
on-line monitoring methods. Besides, [17] is among
handful investigations which gave the detailed specifica-
tions of data in use and studied all fault types of TEP. It
helps provide more comprehensive comparisons. Twenty
MSBA includes PCA, DPCA, FDA.DFDA, CVA, PLS,
MS (multivariate statistics) based statistic measurement
(such as Hotelling T? or Q statistic) [17] and average
values of correct diagnosis rates of 20 MSBA are listed
in Table 8. It shows four out of seven faults are more
easily detected by PC1DARMEF algorithm rather than
MSBA. IDV(3) is defined as unobservable from the pro-
cess data in [17], which implies no observable change in
mean or the variance can be detected. All MSBA per-
forms poorly on IDV(3) diagnosis. However,
PC1DARMEF algorithm manages to capture variations in
signal geometries and performs much better than
MSBA. IDV(4) only cause the mean and standard devia-
tion of each variable differ less than 2% between the
faulty status and normal operation (IDV(0)) [17]. This
phenomenon leaves signal shapes of observations almost

Table 7 IDV(0) to IDV(7) diagnosis results using
PC1DARMF algorithm and consensus theory

Rank PC, PC, PCs PC, PCs Fault type Correct diagnosis rate
1 66.25% 55.00% 33.75% 41.25% 36.25% IDV(0) 20%

2 16.25% 12.50% 23.75% 18.75% 25.00% IDV(1) 60%

3 12.50% 21.25% 17.50% 13.75% 16.25% IDV(2) 65%

4 5.00% 8.75% 8.75% 11.25% 10.00% IDV(3) 60%

5 0.00 2.50% 13.75% 7.50% 6.25% IDV(4) 15%

6 0.00 0.00 2.50% 6.25% 6.25% IDV(5) 75%

7 0.00 0.00 0.00 1.25% 0.00 IDV(6) 100%

8 0.00 0.00 0.00 0.00 0.00 IDV(7) 95%
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Table 8 Comparisons of correct diagnosis rates for
deterministic faults in TEP between PC1DARMF algorithm
and MSBA

Fault type PC1DARMF algorithm MSBA [17]
IDV(1) 60% 88.76%
IDV(2) 65% 92.54%
IDV(3) 60% 12.41%
IDV(4) 15% 49.56%
IDV(5) 75% 69.44%
IDV(6) 100% 83.39%
IDV(7) 95% 75.33%
Average 67.14% 67.35%

invariable from IDV(0), causing both misclassification
rates for IDV(4) and IDV(0) higher than other faults. In
general, both average values for seven deterministic
faults are equally well. Considering the testing data for
PCIDARMEF algorithm are more diverse than MSBA in
[17], the proposed method fares better than the existing
ones.

4.3. Stochastic fault classification in TEP

IDV(8) to IDV(12) given in Table 3 are featured by ran-
dom variations in measurements when one of them
occurs. In this subsection, PCIDARMEF algorithm is
employed to classify stochastic fault types. The training
data set consists of 10 simulation runs for each fault
type and fault is introduced 8 h after simulation started.
The testing data set simulates faulty states with different
faults occurrence time and 20 simulation runs are pro-
vided for each fault type (with fault occurrence time
4th, 2nd, 10th, 6th h per five simulations). Parallel ana-
lysis suggests that five PCs capture most variations. The
initial parameter settings for algorithm follow the set-
tings in Section 4.2. Five sets of signal templates for
characterizing IDV(8) to IDV(12) are depicted in Figure
8. With the same steps in Section 4.2, Tables 9, 10, 11
and 12 list corresponding statistics for stochastic fault
classification directly for saving details of derivations.

In Table 9 statistics suggest that supervision of signal
template sets of every PC results in at least one O cor-
rect classification rate, while the fusion gives more com-
prehensive results. The performances of stochastic faults
classification are poorer than performances of determi-
nistic faults. One important reason was analyzed in Sec-
tion 4.2 for random variations hinder formation of
standard patterns. Table 13 tabulates comparisons
between PCIDARMEF algorithm and MSBA [17] for
classifying stochastic faults in TEP. The former performs
better on two out of five faults. Note that IDV(9) is also
viewed as unobservable like IDV(3) in [17] and very dif-
ficult to be identified by MSBA. PC1DARMEF algorithm
here again fares better for unobservable fault. Since
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random variations lead to irregular morphology of signal
shape but observable quantitative variations of statistic
measurements, PCIDARMEF algorithm performs poorer
than MSBA on average. However, the conclusion that
MSBA will always give lower misclassification rates than
PC1IDARMEF algorithm would be incorrect, because 8
out of 20 approaches studied in [17] still give lower
average correct diagnosis rates compared to
PC1DARMEF algorithm. If more diverse training data
types are provided, the classification results of the pro-
posed method are expected to be better.

4.4. Diagnosis of all fault types in TEP

After investigating diagnostic performances of
PC1DARMEF algorithm for two major fault classes,
respectively, we proceed to study the case when it is
applied to all possible faults in TEP. The training data
set consists of 10 simulation runs for each fault type
and the fault is introduced the 8th h after simulation
started. The testing data set simulates faulty states with
different faults occurrence time and 20 simulation runs
are provided for each type (with fault introduced time
4th, 2nd, 10th, 6th h per five simulations). Parallel ana-
lysis is applied to find that six PCs enough capture most
variations. The parameter selection rules for
PCIDARMEF algorithm is the same as previous. Tables
14, 15, 16 and 17 list related statistics. Table 17 suggests
that the performances of PCIADRMF algorithm
degrades when more sets of signal templates represent-
ing more fault types are provided in comparisons with
Tables 7, 8, 9, 10, 11 and 12. This phenomenon implies
as a supervised pattern matching strategy, PCIDARMF
algorithm may require more different training data cov-
ering major features of relevant groups as much as pos-
sible to assist forming highly representative signal
templates.

5. Conclusion and discussion

In this article, a supervised pattern classification
method using one-dimensional adaptive rank-order
morphological filter called PCIDARMEF is developed to
detect and recognize different faults in Tennessee East-
man process. This method generates several signals of
featured geometry shapes as standard patterns on the
basis of training data. With the same processing proce-
dures as training data, testing data reflecting current
operational states of TEP are transformed to signal
patterns with defined specification. They are matched
against standard signal patterns with employment of
1DARME. It adaptively adjusts filter mask and rank
parameter for each sample of signal rather than adopt-
ing uniform ones for all the samples. The major para-
meters for implementing this algorithm are capable of
being randomly chosen.
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Figure 8 Signal templates for (a) IDV(8) to (e) IDV(12). In each row, five figures from left to right correspond to signal templates of PC; to

Table 9 Correct classification rates of TEP stochastic
faults using signal templates of five PCs (20 simulations

for each fault type)

Table 10 Credibility of PC1DARMF algorithm for

PC; used: PC, PC, PC; PC, PCs stochastic fault classification using PC;

Fault type Rank PC, PC, PC; PC, PCs
IDV(8) 20% 25% 0.0 0.0 0.0 1 34.00% 32.00% 26.00% 48.00% 36.00%
IDV(9) 40% 75% 5% 5% 45% 2 36.00% 22.00% 40.00% 22.00% 16.00%
IDV(10) 0.0 0.0 65% 70% 5% 3 14.00% 22.00% 18.00% 12.00% 14.00%
IDV(11) 60% 25% 30% 35% 45% 4 10.00% 10.00% 8.00% 12.00% 20.00%
IDV(12) 20% 35% 30% 70% 0.0 5 6.00% 14.00% 8.00% 6.00% 14.00%
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Table 11 Weight ); of PC /for stochastic fault
classification
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Table 14 Correct diagnosis rates of IDV(0) to IDV(20)
using signal templates of six PCs

PC; Ai PC; used: PC, PC, PC; PC, PCs PCq
PC; 51.18% Fault type
PG, 29.70% IDV(0) 5% 60% 0.0 55% 0.0 10%
PCs 7.78% IDV(1) 0.0 0.0 50% 0.0 95% 5%
PC, 5.94% IDV(2) 95% 10% 100% 100% 90% 0.0
PCs 540% IDV(3) 0.0 0.0 0.0 5% 15% 0.0
IDV(4) 5% 0.0 0.0 5% 0.0 0.0
IDV(5) 25% 0.0 10% 0.0 5% 45%
Table 12 IDV(8) to IDV(12) classification results using IDV(6) 750 100% 100% 80% 30% 504
PC1DARMF algorithm and consensus theory IDV(7) 5505 00 20% 00 100%  85%
Fault type Correct diagnosis rate IDV(8) 00 00 00 59 00 00
IDV(8) 20% DV(9) 0.0 20% 0.0 10% 0.0 10%
IDV(9) 35% IDV(10) 0.0 0.0 0.0 0.0 5% 0.0
IDV(10) 5% IDV(11) 20% 5% 0.0 5% 25% 0.0
IDV(11) 45% IDV(12) 5% 0.0 0.0 0.0 0.0 55%
IDV(12) 45% IDV(13) 5% 0.0 5% 5% 20% 15%
IDV(14) 5% 0.0 0.0 5% 0.0 0.0
.. . IDV(15 10% 5% 0.0 5% 5% 10%
TEP deterministic, stochastic, and all fault classes \D\/Emi OOO Og 00 O(: O(; 50/0
diagnosis are studied to verify the effectiveness of the ) ‘ ' ' ) °
. IDV(17) 65% 50% 20% 35% 5% 10%
proposed method in complex process. Consensus theory
. . . . IDV(18) 25% 35% 65% 50% 30% 20%
is employed for fusion of results provided by different
. . IDV(19) 0.0 0.0 10% 0.0 0.0 0.0
sources The results show with only small quantity of
IDV(20) 0.0 0.0 5% 0.0 10% 0.0

training data provided and the testing data being much
more different from training data, the performances of
deterministic or stochastic faults diagnosis is better than
or equally well as multivariate statistics based
approaches studied in [17]. Several faults deemed as
unobservable for multivariate statistic based approaches
can be also recognized more easily. Deterministic faults
diagnosis fares better than the stochastic faults diagno-
sis, since deterministic ones are apt to form similar or
regular trends regardless of specified faulty conditions
and noise levels while stochastic ones fail to retain basic
morphologies for signal patterns. It is also noted that
for some real-time applications, signal template sets pro-
vided by only one or two PCs is recommended to
reduce computational cost. The future work also lies in
diagnosing more diverse or multiple faults in TEP or

Table 13 Comparisons of correct diagnosis rate for
stochastic faults in TEP between PC1DARMF algorithm
and MSBA

Fault type PC1DARMF algorithm MSBA [17]
IDV(8) 20% 60.29%
IDV(9) 35% 9.52%
IDV(10) 5% 4741%
IDV(11) 45% 36.51%
IDV(12) 45% 67.44%
Average 30% 44.23%

Table 15 Credibility of PCIDARMF algorithm for IDV(0) to
IDV(20) diagnosis using PC;

Rank  PC, PC, PC; PC, PCs PCq

1 1905%  17.14%  2286%  2048%  26.19%  2048%
2 1190%  6.67% 1286%  1143%  6.19% 8.57%
3 9.05% 5.71% 10.00%  10.00%  5.24% 4.29%
4 9.52% 7.62% 8.57% 4.76% 4.76% 4.76%
5 4.76% 5.71% 3.81% 4.76% 7.14% 7.26%
6 6.19% 7.62% 5.24% 7.14% 5.71% 5.71%
7 7.62% 8.10% 3.81% 7.14% 5.24% 6.67%
8 5.71% 5.71% 3.33% 5.71% 5.24% 4.29%
9 2.38% 7.62% 2.38% 2.86% 2.86% 2.86%
10 6.67% 5.24% 3.81% 3.81% 7.14% 4.29%
11 3.33% 5.24% 4.29% 6.19% 9.52% 1.43%
12 6.67% 5.24% 5.24% 5.24% 3.33% 4.76%
13 2.86% 1.90% 2.86% 3.81% 0.95% 2.38%
14 2.38% 5.24% 3.81% 0.48% 2.38% 3.81%
15 0.48% 0.48% 2.38% 0.95% 0.95% 2.86%
16 0.48% 1.43% 1.90% 1.90% 3.33% 3.81%
17 0.48% 1.43% 0.48% 1.90% 0.95% 5.24%
18 0.0 0.95% 0.48% 1.43% 1.90% 3.81%
19 0.0 0.0 1.43% 00 0.95% 1.43%
20 0.0 0.48% 0.48% 0.0 0.0 0.95%
21 0.48% 0.48% 0.0 0.0 0.0 0.0
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Table 17 IDV(0) to IDV(20) diagnosis results using
PC1DARMF algorithm

Fault type Correct diagnosis rate
IDV(0) 15%
IDV(1) 30%
IDV(2) 95%
IDV(3) 0.0
IDV(4) 5%
IDV(5) 25%
IDV(6) 100%
IDV(7) 65%
IDV(8) 0.0
IDV(9) 5%
IDV(10) 0.0
IDV(11) 15%
IDV(12) 0.0
IDV(13) 5%
IDV(14) 5%
IDV(15) 5%
IDV(16) 0.0
IDV(17) 85%
IDV(18) 30%
IDV(19) 0.0
IDV(20) 0.0

other complex processes to improve the proposed meth-
ods. Besides, Ku et al. [19] pointed DPCA model was
expected to perform better than regular PCA on the
TEP problem. DPCA could be introduced to extract
more information in data set.

Despite some promising results of the proposed
method, this article presents only a preliminary imple-
mentation in complex process, which sheds light on the
novel idea of PC1IDARMF. The key concept of this idea
is to achieve pattern matching between standard pattern
and unrecognized pattern by IDARME. The specifica-
tion of pattern defined is not only limited to time-
domain signal geometry shapes or even not signal geo-
metry shapes. Frequency spectrums, power spectrum,
vector bases, and feature coefficients, etc. can be
assembled to form user-defined pattern as well. The
new developed pattern should be capable of not only
capturing different characteristics for each group but

Table 16 Weight A; of PC; for IDV(0) to IDV(20) diagnosis

PC; Ai

PC, 4107%
PG, 27.48%
PC, 13.03%
PC, 9.60%
PCs 460%
PCs 423%
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also maintaining a relatively steady form without too
much unexpected random variations. Using the same
scheme may address the problems such as unstable pat-
terns introduced by random variations.

List of abbreviations

ANN: artificial neural networks; CVA: canonical variate analysis; DDBM: data-
driven based methods; DRBM: data-reasoning based methods; DTBM: data-
transform based methods; D/PCA: dynamic/principal component analysis; D/
FDA: dynamic/fisher discriminant analysis; 1DARMF: one dimensional
adaptive rank-order morphological filter; HANN: hierarchical artificial neural
network; ICA: independent component analysis; LMS: least mean squares;
MAE: mean absolute error; MPCA: moving PCA; MSBA: multivariate statistics
based approaches; MSE: mean squared error; PCTDARMF: pattern
classification using one dimensional adaptive rank-order morphological filter;
Pl: proportional-integral; PID: proportional-integral-derivative; PLS: partial least
squares; QTA: qualitative trend analysis; ROBF: rank-order based filter; SDG:
signed directed graphs; SNR: signal-to noise ratio; SVM: support vector
machine; TEP: Tennessee Eastman process.
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