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Abstract

the proposed DEDR-VA-related imaging techniques.

The convex optimization-based descriptive experiment design regularization (DEDR) method is aggregated with
the neural network (NN)-adapted variational analysis (VA) approach for adaptive high-resolution sensing into a
unified DEDR -VA-NN framework that puts in a single optimization frame high-resolution radar/SAR image
formation in uncertain operational scenarios, adaptive despeckling and dynamic scene image enhancement for a
variety of sensing modes. The DEDR -VA-NN method outperforms the existing adaptive radar imaging techniques
both in resolution and convergence rate. The simulation examples are incorporated to illustrate the efficiency of
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1. Introduction

In this article, we consider the problem of enhanced
remote sensing (RS) imaging stated and treated as an
ill-posed nonlinear inverse problem with model uncer-
tainties. The problem at hand is to perform high-resolu-
tion reconstruction of the power spatial spectrum
pattern (SSP) of the wavefield scattered from the
extended remotely sensed scene via space-time adaptive
processing of finite recordings of the imaging radar/SAR
data distorted in a stochastic uncertain measurement
channel. The SSP is defined as a spatial distribution of
the power (i.e., the second-order statistics) of the ran-
dom wavefield backscattered from the remotely sensed
scene observed through the integral transform operator
[1,2]. Such an operator is explicitly specified by the
employed radar/SAR signal modulation and is tradition-
ally referred to as the signal formation operator (SFO)
[2,3]. The operational uncertainties are attributed to
inevitable random signal perturbations in inhomoge-
neous propagation medium with unknown statistics,
possible imperfect radar calibration, and uncontrolled
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sensor displacements or carrier trajectory deviations in
the SAR case. The classical imaging with an array radar
or SAR implies application of the method called
“matched spatial filtering (MSF)” to process the
recorded data signals [2,3]. A number of approaches had
been proposed to design the constrained regularization
techniques for improving the resolution in the SSP
obtained by ways different from the MSF, e.g., [1-9] but
without aggregating the minimum risk (MR) descriptive
estimation strategies with convex projection regulariza-
tion. In [7], an approach was proposed to treat the
uncertain RS imaging problems that unifies the MR
spectral estimation strategy with the worst case statisti-
cal performance (WCSP) optimization-based convex
regularization resulting in the descriptive experiment
design regularization (DEDR) method. Next, the varia-
tional analysis (VA) framework has been combined with
the DEDR in [2,9] to satisfy the desirable descriptive
properties of the reconstructed RS images, namely: (i)
convex optimization-based maximization of spatial reso-
lution balanced with noise suppression, (ii) consistency,
(iii) positivity, (iv) continuity and agreement with the
data. In this study, we extend the developments of the
DEDR and VA techniques originated in [2,7,9] by
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performing the aggregation of the DEDR and VA para-
digms and next putting the RS image enhancement/
reconstruction tasks into the unified neural network
(NN)-adapted computational frame addressed as a uni-
fied DEDR-VA-NN method. We have designed a family
of such significantly speeded-up DEDR-VA-related algo-
rithms, and performed the simulations to illustrate the
effectiveness of the proposed high-resolution DEDR-
VA-NN-based image enhancement/fusion approach.

The rest of the article is organized as follows. In Sec-
tion 2, we provide the formalism of the radar/SAR
inverse imaging problem at hand with necessary experi-
ment design considerations. In Section 3, we adapt the
celebrated maximum likelihood (ML) inspired amplitude
phase estimation (APES) technique for array sensor/SAR
imaging. The unified DEDR-VA framework for high-
resolution radar/SAR imaging in uncertain scenarios is
conceptualized in Section 4, adapted to the NN-oriented
sensor systems/methods fusion mode in Section 5, next,
is followed by illustrative simulations in Sections 6 and
the conclusion in Section 7.

2. Problem formalism

The general mathematical formalism of the problem at
hand is similar in notation and structural framework
to that described in [2,7,9] and some crucial elements
are repeated for convenience to the reader. Following
[1,2,9], we define the model of the observation RS
wavefield u by specifying the stochastic equation of
observation (EO) of an operator form u = Se + n,
where e = e(r), represents the complex scattering func-
tion over the probing surface R > r, n is the additive
noise, u = u(p), is the observation field, p = (¢, p)
defines the time (£)-space(p) points in the temporal-
spatial observation domainpe P=TxP (te T,pe
P) (in the SAR case, p = p(¢) specifies the carrier tra-
jectory [7]), and the kernel-type integral
SFO & : E(R) — U(P) defines a mapping of
the source signal space E(R) onto the observation
signal space U(P). The metrics structures in the corre-
sponding Hilbert signal spaces U(P), E(R) are imposed

by scalar products, [u, ']y =/“(P)“/ * (p)dp,
P

le, €]e = /e(r)e/ * (r)dr, respectively [1]. The func-
R
tional kernel S(p, r) of the SFO & is referred to as the

unit signal [2] determined by the time-space modula-
tion employed in a particular RS system. In the case of
uncertain operational scenarios, the SFO is randomly
perturbed [7], ie. § = S+AS where AS pertains to the
random uncontrolled perturbations, usually with
unknown statistics. The fields e, n, u. are assumed to
be zero-mean complex valued Gaussian random fields
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[1,7]. Next, since in all RS applications the regions of
high correlation of e(r) are always small in comparison
with the resolution element on the probing scene
[1-3], the signals e(r) scattered from different direc-
tions r, r’ € R of the remotely sensed scene R are
assumed to be uncorrelated with the correlation func-
tion R,(r, 1) = (e(r)e*(r’) ) = b(r) 6(r-r’);r,r’e R where b
(r) = {e(r)e*(r) ) = (|e(r)|2>; re R represents the power
SSP of the scattered field [1]. The problem of high-
resolution RS imaging is to develop a framework and
related method(s) that perform optimal estimation of
the SSP (referred to as a scene image) from the avail-
able radar/SAR data measurements. It is noted that in
this study we are going to develop and follow the uni-
fied DEDR-VA-NN framework.

The RS radar/SAR system-oriented finite-dimensional (i.
e., discrete-form) approximation of the EO is given by [7]

u=Se+n=Se+Ae+n, 1)

in which the disturbed MxK SFO matrix § =S + A is
the discrete-form approximation of the integral SFO for
the uncertain operational scenario, and e, n, u represent
zero-mean vectors composed of the sample (decomposi-
tion) coefficients {ex, n,, u,,; kK = 1,...K; m = 1,...,M},
respectively [1-3]. These vectors are characterized by the
correlation matrices: R, = D = D(b) = diag(b) (a diagonal
matrix with vector b at its principal diagonal), R,,, and R,
= <8R.S" >,(a) + Rn, respectively, where <>, defines the
averaging performed over the randomness of A character-
ized by the usually unknown probability density function p
(A), and superscript “+” stands for Hermitian conjugate.
Vector b composed of the elements, {b; = B{e,} = <erer™>
= <|eg|*>; k = 1,..,K} is referred to as a K-D vector-form
approximation of the SSP, where B represents the second-
order statistical ensemble averaging operator [1,2]. The
SSP vector b is associated with the lexicographically
ordered pixel-framed image [1,7]. The corresponding con-
ventional K,xK, rectangular frame-ordered scene image B
= bk, k)); kyy = 1,..,K; ky, = 1,..,K,} relates to its lexico-
graphically ordered vector-form representation b = £ {B}
= {b(k); k = 1,..,K = K,xK,} via the standard row-by-row
concatenation (i.e., lexicographical reordering) procedure,
B = £—1b} [1]. It is noted that in the simple case of cer-
tain operational scenario [2,3], the discrete-form (i.e.,
matrix-form) SFO S is assumed to be deterministic, i.e.,
the random perturbation term in (3) is irrelevant, A = 0.

The enhanced RS imaging problem is stated generally
as follows: to map the scene pixel-framed image B via
lexicographical reordering B = £~!{b} of the SSP vector
estimate |, reconstructed from whatever available mea-
surements of independent realizations of the recorded
data (1). The reconstructed SSP vector f, is an estimate
of the second-order statistics of the scattering vector e
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observed through the perturbed SFO and contaminated
with noise; hence, the imaging problem at hand must be
qualified and treated as a statistical nonlinear uncertain
inverse problem [1,7,9]. The enhanced high-resolution
imaging implies solution of such inverse problem in
some optimal way. We know that in this article we
intend to develop and follow the unified DEDR-VA fra-
mework, next adapted to NN-based computational
implementation.

3. Adaptation of APES technique for array sensor/
SAR imaging

In this section, we perform an extension of the recently
proposed high-resolution ML inspired APES, i.e., the
ML-APES method [6], for solving the SSP reconstruc-
tion inverse problem via its modification adapted to
radar imaging of distributed RS scenes. In the consid-
ered low snapshot sample case (e.g., one recorded SAR
trajectory data signal in a single look SAR sensing mode
[7]), the sample data covariance matrix Y =

J
(/n Zj=1 ugu’(j) is rank deficient (rank-1 in the single

radar snapshot and single look SAR sensing modes, J =
1). The convex optimization problem of minimization of
the negative likelihood function Indet{ R,} + tr{R;'Y}
with respect to the SSP vector b subject to the convexity
guaranteed non-negativity constraint results in the cele-
brated APES estimator [6]

j - SRYRSs,
k= ;
(5iRy'sy)’

In the APES terminology (as well as in the minimum
variance distortionless response (MVDR) and other ML-
related approaches [1,4,6] etc.), s represents the so-
called steering vector in the kth look direction, which in
our notational conventions is essentially the kth column
vector of the regular SFO matrix S. The numerical
implementation of the APES algorithm (2) assumes
application of an iterative fixed point technique by
building the model-based estimate R, = U(B[il) of the
unknown covariance R, from the latest (ith) iterative

k=1,..K. (2)

SSP estimate B[i] with the zero step initialization

B[o] = bygr computed applying the conventional MSF

estimator [2].
In the vector form, the algorithm (2) can be expressed
as

baks = b - {F(I)UU+F(1)+}diag = (FMu) o (FDu)*, (3)

Where - defines the Schur-Hadamar [1] (element wise)
vector/matrix product, Fopgs = FY _ DAS+R‘;1(IS) repre-
sents the APES matrix-form solution operator (SO), in
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which
D = D(b) = diag(b) andR; ' (b) = (SDS* + Ry)™" (4)

where operator {}4;,s returns the vector of a principal
diagonal of the embraced matrix. The algorithmic struc-
ture of the vector-form nonlinear (i.e., solution-depen-
dent) APES estimator (3) guarantees positivity but does
not guarantee the consistency. In the real-world uncer-
tain (rank deficient) RS operational scenarios, the incon-
sistency inevitably results in speckle corrupted images
unacceptable for further processing and interpretation.
To overcome these limitations, in the next section we
extend the unified DEDR-VA framework of [2,9] for the
considered here uncertain operational scenarios to guar-
antee consistency and significantly speed-up
convergence.

4. Unified DEDR-VA framework for high-resolution
radar/SAR imaging in uncertain scenarios

4.1. DEDR-VA approach

The DEDR-VA-optimal SSP estimate  is to be found as
the regularized solution to the nonlinear equation [7]

bpEDR = P{FpeprYFpgpr ) diag = P{D(BDEDR)}diag/ (5)

where Fpepr represents the adaptive (i.e., dependent
on the SSP estimate f;) matrix-form DEDR SO and P is
the VA inspired regularizing projector onto convex solu-
tion sets (POCS). Two fundamental issues constitute the
benchmarks of the modified DEDR-VA estimator (5)
that distinguish it from the previously developed kernel
SSP reconstruction algorithm [2], the DEDR method
[7,9] and the detailed above APES estimator (3). First,
we reformulate the strategy for determining the DEDR
SO Fpepr in (5) in the MR-inspired WCSP convex opti-
mization setting [1,7], i.e., as the MR-WCSP constrained
DEDR convex optimization problem (specified by [7,
Equations 8 and 11]) to provide robustness of the SSP
vector estimates against possible model uncertainties.
The second issue relates to the VA inspired problem-
oriented codesign of the POCS regularization operator
P in (5) aimed at satistying intrinsic and desirable prop-
erties of the solution such as positivity, consistency,
model agreement (e.g., adaptive despeckling with edge
preservation), and rapid convergence [1,8]. The solution
to the MR-WCSP conditioned optimization problem [7,
Equation 43] yields the DEDR-optimal SO

Fpepr = F?) = KS*Ry! ©6)

where K= (S'Ry;'S + 0A™!) ™! defines the so-called
reconstruction operator (with the regularization para-
meter o and stabilizer A™), and Rgl is the inverse of the
diagonal loaded noise correlation matrix [7]Ry = N5l
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with the composite noise power Ny = Ny+f3, the additive
observation noise power N, augmented by the loading
factor B = yn/a = 0 adjusted to the regularization para-
meter o, the Loewner ordering factor y > 0 of the SFO
S [1] and the uncertainty bound n imposed by the MR-
WCSP conditional maximization (see [7,8] for details).

It is noted that other feasible adjustments of the pro-
cessing-level degrees of freedom {o,, N5, A} summarized
in [7,8] specify the family of relevant POCS-regularized
DEDR-related (DEDR-POCS) techniques that we unify
here in the following general form

O pEOYED) )y, = PKOQRD g =1, 2, 3,...,p  (7)

where Q = S'YS defines the MSF measurement statis-
tics matrix independent on the solution f,, and different
(say P) reconstruction operators {I (K p = 1,..,P} speci-
fied for P different feasible assignments to the proces-
sing degrees of freedom {o, Ny, A} define the
corresponding DEDR-POCS estimators (7) with the rele-
vant SO’s {F? = K¥S*; p = 1,...,P}.

4.2. Convergence guarantees

Following the VA regularization formalism [1,7,9], the
POCS regularization operator P in (7) could be con-
structed as a composition of projectors P, onto convex
sets C,; n = 1,...,N with non-empty intersection, in
which case the (7) is guaranteed to converge to a point
in the intersection of the sets {C,} regardless of the initi-
alization by, that is a direct sequence of the fundamen-
tal theorem of POCS (see [7, Part I, Appendix B]). Also,
any operator that acts in the same convex set, e.g., ker-
nel-type windowing operator (WO) can be incorporated
into such composite regularization operator P to guar-
antee the consistency [1]. The RS system-oriented
experiment design task is to make the use of the POCS
regularization paradigm (5) employing the practical ima-
ging radar/SAR-motivated considerations that we per-
form in the next section.

4.3. VA-motivated POCS regularization

To approach the superresolution performances in the
resulting SSP estimates (5), (7), we propose to follow
the VA inspired approach [2,7,9] to specify the compo-
site POCS regularizing operator

P =P,P:1. (8)

The P, in (8) represents the convergence-guaranteed
projector onto the nonnegative convex solution set (the
POCS operator) specified as the positivity operator,
P, = P.,, that has an effect of clipping off all the nega-
tive values [1], and P is an anisotropic WO that we
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construct here following the VA formalism [2,9] as a
metrics inducing operator

Pi=M=mO1+mVv? ©)

that specifies the metrics structure in the K-D solu-
tion/image space B(x) 2 b defined by the squared norm
[2,9]

KKy

m© " (b (ke k)

Fex,ly=1

2
bl — 1k) +b (ke + 1k
m Z ( (ke ) (+l§(k k —Y)1)++15(k+k +y1)))> '
o Ry ) Iy

g ley=1

|b 3, = [bMb] =

(10)

The second sum on the right-hand side of (10) is
recognized to be a 4-nearest-neighbors difference-form
approximation of the Laplacian operator V2 over the
spatial coordinate r, while 7” and m? represent the
nonnegative real-valued scalars that control the balance
between two metrics measures defined by the first and
the second sums at the right-hand side of (10). In the
equibalanced case, m© = m™ = 1, the same importance
is assigned to the both metrics measures, in which case
(9) specifies the discrete-form approximation to the
Sobolev metrics inducing operator M = m@Z + mv?
in the relevant continuous-form solution space
B(R) 5 b(r), where T defines the identity operator [2].
Incorporating in (9) P1= M for the continuous model
and P, = M for the discrete-form image model, respec-
tively, specifies the consistency-guaranteed anisotropic
kernel-type windowing [2,9] because it controls not only
the SSP (image) discrepancy measure but also its gradi-
ent flow over the scene.

4.4. DEDR-VA-optimal dynamic SSP reconstruction
The transformation of (5) into the contractive iterative
mapping format yields

l;[i+1] = B[i] +1P.{Mq — Mq’D[i]B[i]};i =0,1,2,... (11)

initialized by the conventional low-resolution MSF
image

lA)[O] =q= {Q}diag ={S +YS}diag (12)

with the relaxation parameter 1 and the solution-
depended point spread function (PSF) matrix operator

®p = dp(b) = (¥ + NyD ! (b)) e (¥ + NyD ! (b))* (13)

Associating in (11) the iterations i+ 1— ¢t +Ati —>¢;
7— At, with “evolution time”, (At— dt; t +At —t +di)
and considering the continuous 2-D rectangular scene
frame R > r= (x, y) with the corresponding initial MSF
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scene image ¢(r) = fy(r; 0) and the “evolutionary”-
enhanced SSP estimate @(1-; t) respectively, we proceed
from (11) to the equivalent asymptotic dynamic scheme

2]

abért' 0. PAM{(q(r))} - M{/ @;(r, 1'; )b(r; 0)d>r'}), (14)
R

where ®; (r, r’; t) represents the kernel PSF in evolu-
tion time ¢ corresponding to the continuous-form
dynamic generalization of the PSF matrix ®py; specified
by (13), and M defines the metrics inducing operator.
For the adopted M = m©Z + mVV?2 the (14) is trans-
formed into the VA dynamic process defined by the par-
tial differential equation (PDE)

P P talate) — [ ol ri0brs )

! (15)
+a1 Vita(n)) — szrz{/ ®(r, r'; 0)b(r; t)dr'}}.
R

For the purpose of generality, instead of relaxation
parameter t and balancing coefficients m” and m we
incorporated into the PDE (15) three regularizing factors
o, €1, and ¢y, respectively, to compete between noise
smoothing and edge enhancement [2,9]. These are
viewed as additional VA-level user-controlled degrees of
freedom.

4.5. Family of numerical DEDR-VA-related techniques for
SSP reconstruction

The discrete-form approximation of the PDE (15) in
“iterative time” {i = 0, 1, 2,...} yields the contractive map-
ping iterative numerical procedure [2]

b = l3[;‘] +P.{co(q — ®pyibpy) + 1 V{q) — CzVZ{q’D[i]B[i]}} (16)

i = 0,1,2,... with the same MSF initialization (12). Dif-
ferent feasible assignments to the user-controlled
degrees of freedom (i.e., balancing factors cy, ¢, ¢;) in
(16) specify the family of corresponding DEDR-VA-
related SSP reconstruction techniques that produce the
relevant RS images. Extending the previous studies on
the DEDR-VA topic [2,9] herebeneath we exemplify the
following ones.

(i) The simplest case relates to the specifications: ¢y =
0,¢; =0, ¢y =const =-¢,c>0,and @ (r, r’;t) = 6(r - ')
with excluded projector P.. In this case, the PDE (15)
reduces to the isotropic diffusion (so-called heat diffu-

sion) equation 813(1‘; t)/Bt = chlA)(r; t). We reject the

isotropic diffusion because of its resolution deteriorating
nature [1].
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(ii) The previous assignments but with the anisotropic
conduction factor, -¢, = ¢(r; £) > 0 specified as a mono-
tonically decreasing function of the magnitude of the
image gradient distribution [4], i.e., a function

c (r, | Vr@(r; t) |) > 0, transforms the (15) into the aniso-
tropic diffusion (AD) PDE,
ab(r; t)/at = o(r;| V,b(r; 1) [)V2b(r; t), which specifies

the celebrated Perona-Malik AD method [4] that shar-
pens the edge map on the low-resolution MSF images.

(iii) For the Lebesgue metrics specification ¢y = 1 with
¢1 = ¢ = 0, the PDE (15) involves only the first term at
the right-hand side resulting in the locally selective
robust adaptive spatial filtering (RASF) approach inves-
tigated in details in our previous studies [7,9].

(iv) The alternative assignments ¢y = 0 with ¢; = ¢, =
1 combine the isotropic diffusion with the anisotropic
gain controlled by the Laplacian edge map. This
approach is addressed as a selective information fusion
method [5] that manifests almost the same perfor-
mances as the DEDR-related RASF method [7].

(v) The aggregated approach that we address here as
the unified DEDR-VA method involves all the three
terms at the right-hand side of the PDE (15) with the
equibalanced ¢y = ¢; = ¢ = const (one for simplicity),
hence, it combines the isotropic diffusion (specified by
the second term at the right-hand side of (16)) with the
composite anisotropic gain dependent both on the evo-
lution of the synthesized SSP frame and its Laplacian
edge map [2]. This produces a balanced compromise
between the anisotropic reconstruction-fusion and
locally selective image despeckling with adaptive aniso-
tropic kernel windowing that preserves and even shar-
pen the image edge map [2].

All exemplified above techniques with different feasi-
ble specifications of the user-controllable degrees of
freedom compose a family of the DEDR-VA-related
iterative techniques for SSP reconstruction/enhance-
ment. The general-form DEDR-VA framework is shown
in Figure 1. It is noted that the progressive contractive
mapping procedure (16) can be performed separately
along the range (y) and azimuth (x) directions in a par-
allel fashion making an optimal use of the PSF sparse-
ness properties of the real-world RS imaging systems.
These features of the POCS-regularized DEDR-VA-
related algorithms generalized by (16) result in the dras-
tically decreased algorithmic computational complexity
(e.g., up to ~10® times for the typical large-scale 10° x
10® SAR pixel image formats [8]).

Next, several RS images formed by different sensor
systems or applying different image formation techni-
ques can be aggregated into an enhanced fused RS
image employing the NN computational framework
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T
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Figure 1 General framework of the unified POCS-regularized DEDR-VA method.

[10]. We are now ready to proceed with construction of
such NN-adapted DEDR-VA-related techniques.

5. Radar/SAR image enhancement via sensor and
method fusion

5.1. Fusion problem formulation

Consider the set of equations

q? = @b v®:p=1,...,P, (17)

which model the data {q*’} acquired by P RS imaging
systems that employ the image formation methods from
the DEDR-VA-related family specified in the previous
section. In (17), b represents the original K-D image
vector, {®®} are the RS image formation operators
referred to as the PSF operators of the corresponding
DEDR-VA-related imaging systems (or methods) where
we have omitted the sub index D for notational simpli-
city, and {v?} represent the system noise with further
assumption that these are uncorrelated from system to
system.

Define the discrepancies between the actually formed
images {q”’} and the true original image b as the /,
squired norms, /,(b) = [lq? - ®7b||% p = 1,...P. Let us
next adopt the VA inspired proposition [10] that the
smoothness properties of the desired image are con-
trolled by the second-order Tikhonov stabilizer, Jp,;(b)
= b'"P,b, where P, =M = mO1+ m(Vv? is the VA-
based metrics inducing (regularizing) operator specified
previously by (9). We further define the image entropy
as

K
H(b)=—) bilnb. (18)

Then, the contrivance for aggregating the imaging sys-
tems (methods), when solving the fusion problem, is the
formation of the augmented objective (or augmented
ME cost) function

E(b | 2) = —H(b) + (1/2) 3 asle(b) + (1/2) kpaJpa(b),  (19)

and seeking for a fused restored image [, that mini-
mizes the objective function (19), in which A = (1;..4p,
Aps1)T represents the vector of weight parameters,

commonly referred to as the fusion regularization para-
meters [10]. Hence, in the frame of the aggregate regu-
larization approach to decentralized fusion [2,6], the
restored image is to be found as a solution of the con-
vex optimization problem

b = argminE(b | 1) (20)
b
for the assigned values of the regularization para-
meters A. A proper selection of A is next associated with
parametrical optimization [10] of such the aggregated
fusion process.

5.2. NN-adapted fusion algorithm

The Hopfield-type dynamical NN, which we propose to
employ to solve the fusion problem (20), is an expansion
of the maximum entropy NN (MENN) proposed in our
previous study [10]. We consider the multistate Hop-
field-type (i.e., dynamic) NN [10,11] with the K-D state
vector x and K-D output vector z = sgn(Wx + 0), where
W and 0 are the matrix of synaptic weights and the vec-
tor of the corresponding bias inputs of the NN, respec-
tively. The energy function of such the NN is expressed
as [10]

E(x) = E(x;W,0) = — (1/2) x'Wx — 0"x

=—(1/2) Z:::l ZL WiiXexi — Z:::l Orxp.

The proposed idea for solving the RS system/method
fusion problem (20) using the dynamical NN is based
on extension of the following cognitive processing pro-
position invoked from [10]. If the energy function of the
NN represents the function of a mathematical minimi-
zation problem over a parameter space, then the state of
the NN would represent the parameters and the station-
ary point of the network would represent a local mini-
mum of the original minimization problem. Hence,
utilizing the concept of the dynamical net, we may
translate our image reconstruction/enhancement pro-
blem with RS system/method fusion to the correspon-
dent problem of minimization of the energy function
(21) of the related MENN. Therefore, we define the
parameters of the MENN in such a fashion that to

(21)
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aggregate the corresponding parameters of the RS sys-
tems/methods to be fused, i.e.,

P K
2 () )
Wii=— ) o [ ) 1 i i | = ApaaMii,  (22)

P A K
O = — lnxk + Zp=1 [)\.p Zj=1 (D](}f)q](f?)]

Vk, i = 1,...,K, where we redefined {x; = by } and
ignored the constant term E ., in E(x) that does not
involve the state vector x. The regularization parameters
{A,} in (22), (23) should be specified by an observer o
pre-estimated invoking, for example, the VA inspired
resolution-over-noise-suppression balancing method
developed in [10, Section 3]. In the latter case, the result
of the enhancement-fusion becomes a balanced tradeoff
between the gained spatial resolution and noise suppres-
sion in the resulting fused enhanced image with the
POCS-based regularizing stabilizer.

Next, we propose to find a minimum of the energy
function (21) as follows. The states of the network
should be updated as x” = x” + Ax using the properly
designed update rule R(z) for computing a change Ax
of the state vector x, where the superscripts ’and ” cor-
respond to the state values before and after network
state updating (at each iteration), respectively. To sim-
plify the design of such the state update rule, we assume
that all x; > > 1, which enables us to approximate the
change of the energy function due to neuron k updating
as [10]

(23)

K
AE~ —(D . Wi+ 6, — 1) Axic — (1/2) Wia(Axi)*. (24)

We now redefine the outputs of neurons as {z; = sgn
K

(E L Wiix; + 6, - 1) Vk = 1,...,K}. Using these defini-
iz

tions, and adopting the equibalanced fusion regulariza-
tion weights, A, = 1 Vp = 1,...,P, we next, design the
desired state update rule R(z) which guarantees nonpo-
sitive values of the energy changes AE at each updating
step as follows,

0 ifz, =0
Axp=R(z) =3 A ifz, >0 (25)
—Aifz, <0

where A is the pre-assigned step-size parameter. If no
changes of AE(Ax) are examined while approaching to
the stationary point of the network, then the step-size
parameter A may be decreased, which enables us to
monitor the updating process as it progresses setting a
compromise between the desired accuracy of finding the
NN’s stationary point and computational complexity
[10]. To satisfy the condition x; > > 1 some constant 20
may be added to the gray level of every original image
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pixel and after restoration the same constant should be
deducted from the gray level of every restored image
pixel, hence, the selection of a particular value of x° is
not critical [10]. Consequently, the restored image
corresponds to the state vector x of the NN in its sta-
tionary point % as, = % - 2’1, where 1 = (1 1..1)" € R
is the Kx1 vector composed with units. The computa-
tional structures of such the MENN and its single neu-
ron are presented in Figures 2 and 3, respectively.

6. Simulations

We simulated fractional side-looking imaging SAR oper-
ating in uncertain scenario [7]. We adopted a triangular
shape of such imaging SAR range ambiguity function
(AF) and a Gaussian shape of the corresponding azi-
muth AF [2,12]. Simulation results are presented in Fig-
ures 4 and 5. The figure captions specify each particular
simulated image formation/enhancement method (p =
1,...,P = 5). Aggregation of the locally selective robust
spatial filtering (RSF) technique [5] with the DEDR-VA-
optimal algorithm (16) was considered in the simula-
tions of the NN-based fused enhancement mode. Next,
Figure 6 reports the convergence rates for three most
prominent VA-related enhanced RS imaging approaches:
the APES [6], the DEDR, and the developed NN-adapted
DEDR-VA-optimal method (16) implemented via the
MENN technique (20-25).

We employ two quality metrics for performance
assessment of the reconstructive methods developed in
this article. The traditional quantitative quality metric
[7] for RS images is the so-called improvement in the

Figure 2 Computational structure of the multi-state MENN for

sensor/image fusion.
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Figure 3 Computational structure of a single neuron in the
MENN.

-

output signal-to-noise ratio (IOSNR), which provides the
metrics for performance gains attained with different
employed estimators in dB scale

ZkK=1 (| %MSF) — b l)z

IOSNR(dB) = 10 - log,, . 5
ke (| b — b I)

. (26)
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where b, represents the value of the kth element
(pixel) of the original SSP, E}gMSF] represents the value of

the kth element (pixel) of the rough SSP estimate
formed applying the conventional low-resolution MSF
technique (12), and E}g”) represents the value of the kth
element (pixel) of the enhanced SSP estimate formed
applying the pth enhanced imaging method (p = 1,...,P),
correspondingly. We consider and compare here five (i.
e., P = 5) RS image enhancement/reconstruction meth-
ods, in which case p = 1 corresponds to the Lee’s local
statistics-based adaptive despeckling technique [2], p = 2
corresponds to the Perona-Malik AD method [5], p = 3
corresponds to the DEDR-related locally selective RASF
technique [7], p = 4 corresponds to the APES method
[6], and p = 5 corresponds to the NN-fused RSF and
DEDR-VA methods, respectively.

The second employed quality metric is the /; total
mean absolute error (MAE) metric [13]

Ko 2
Zk=1|bk _bk |/p=1,...,P.

The quality metrics specified by (26) and (27) allow us
to quantify the performance of the developed DEDR-
VA-related high-resolution reconstructive methods

1
MAE =

K (27)

Figure 4 Simulation results for the first uncertain fractional SAR imaging scenario for the large-scale (1024 x 1024 pixels) test scene
and 5% random Gaussian perturbations in the SFO, < ||A]|> >/||S||> = 5 x 1072 (a) degraded scene image formed applying the MSF
method corrupted by composite noise (fractional SAR parameters: range PSF width (at 1/2 from the peak value) k, = 10 pixels, azimuth PSF
width (at 1/2 from the peak value) k, = 30 pixels, composite SNR psag = 10 dB); (b) adaptively despeckled MSF image [8]; (c) image
reconstructed applying the locally selective RSF method [5] after 30 performed iterations; (d) image reconstructed with the APES method [6]
after 30 performed iterations; (e) image reconstructed applying the POCS-regularized RASF technique [7] after seven performed iterations and (f)
image reconstructed applying the NN-fused RSF [5] and the DEDR-VA technique (16) after 7 performed iterations.
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Figure 5 Simulation results for the second uncertain fractional SAR imaging scenario for the large-scale (1024 x 1024 pixels) test
scene and 5% random Gaussian perturbations in the SFO, < ||A||> >/|[S||> = 5 x 102 (a) degraded scene image formed applying the MSF
method corrupted by composite noise (fractional SAR parameters: range PSF width (at 1/2 from the peak value) , = 7 pixels, azimuth PSF width
(at 1/2 from the peak value) k, = 20 pixels, composite SNR psagr = 15 dB); (b) adaptively despeckled MSF image [8]; (c) image enhanced using
the AD technique [4] after 30 performed iterations; (d) image reconstructed applying the locally selective RSF method [5] after 30 performed
iterations; (e) image reconstructed applying the POCS-regularized RASF technique [7] after seven performed iterations and (f) image
reconstructed applying the NN-fused RSF [5] and the DEDR-VA technique (16) after 7 performed iterations.
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Figure 6 Convergence rates evaluated via the IOSNR metric
(26) versus the number of iterations evaluated for three most
prominent high-resolution iterative enhanced RS imaging
methods: DEDR-RASF method [7], APES-ML-optimal APES
method [6], and the developed unified DEDR-VA-NN technique
(16).

(enumerated above by p = 1,..,P = 5) and, also, the NN
fusion quality.

The quantitative measures of the image enhancement/
reconstruction performance gains achieved with the par-
ticular employed DEDR-RSF method [7], the APES algo-
rithm [6], and DEDR-VA-NN technique (16) for
different SNRs evaluated with two different quality
metrics (26), (27) are reported in Tables 1 and 2, respec-
tively. The numerical simulations verify that the MENN
implemented DEDR-VA method outperforms the most
prominent existing competing high-resolution RS ima-
ging techniques [1-7] (both without fusion and in the
fused version) in the attainable resolution enhancement
as well as in the convergence rates.

7. Concluding remarks

The extended DEDR method combined with the
dynamic VA regularization has been adapted to the NN
computational framework for perceptually enhanced and
considerably speeded up reconstruction of the RS ima-
gery acquired with imaging array radar and/or fractional
SAR imaging systems operating in an uncertain RS
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Table 1 IOSNR values provided with three methods, p = 3, 4, 5

SNR (dB) IOSNR?; p = 3,4, 5
First scenario: Second scenario:
Ky = 10; kg = 30 Ky = Tikq = 20
I0SNR® IOSNR™ I0SNR®™ I0SNR® IOSNR™ IOSNR®™
5 358 6.21 1036 475 727 11.74
7 437 746 1254 569 874 1236
10 545 827 1323 594 957 1475
15 736 883 1527 758 1035 1627

)DEDR-RSF method [7]; “’APES method [6]; ®’DEDR-VA-NN technique (16). The results are reported for the both simulated scenarios.

environment. Connections have been drawn between
different types of enhanced RS imaging approaches, and
it has been established that the convex optimization-
based unified DEDR-VA-NN framework provides an
indispensable toolbox for high-resolution RS imaging
system design offering to observer a possibility to con-
trol the order, the type, and the amount of the
employed two-level regularization (at the DEDR level
and at the VA level, correspondingly). Algorithmically,
this task is performed via construction of the proper
POCS operators that unify the desirable image metrics
properties in the convex image/solution sets with the
employed radar/SAR motivated data processing consid-
erations. The addressed family of the efficient contrac-
tive progressive mapping iterative DEDR-VA-related
techniques has particularly been adapted for the NN
computing mode with sensor systems/method fusion.
The efficiency of the proposed fusion-based enhance-
ment of the fractional SAR imagery has been verified for
the two method fusion example in the reported simula-
tion experiments. Our algorithmic developments and
the simulations revealed that with the NN-adapted
POCS-regularized DEDR-VA techniques, the overall RS
imaging performances are improved if compared with
those obtained using separately the most prominent in
the literature despeckling, AD or locally selective RS
image reconstruction methods that do not unify the
DEDR, the VA and the NN-adapted method fusion con-
siderations. Therefore, the developed unified DEDR-VA-
NN framework puts in a single optimization frame,
radar/SAR image formation, speckle reduction, and

adaptive dynamic scene image enhancement/fusion per-
formed in the rapidly convergent NN-adapted computa-
tional fashion.
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