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Abstract

Image alignment is considered a key problem in visual inspection applications. The main concerns for such tasks
are fast image alignment with subpixel accuracy. About this, neural network-based approaches are very popular in
visual inspection because of their high accuracy and efficiency of aligning images. However, such methods are
difficult to identify the structure and parameters of neural network. In this study, a Takagi-Sugeno-Kang-type neuro-
fuzzy network (NFN) with data-mining-based evolutionary learning algorithm (DMELA) is proposed. Compared with

regularized least square

traditional learning algorithms, DMELA combines the self-organization algorithm (SOA), data-mining selection
method (DMSM), and regularized least square (RLS) method to not only determine a suitable number of fuzzy
rules, but also automatically tune the parameters of NFN. Experimental results are shown to demonstrate superior
performance of the DMELA constructed image alignment system over other typical learning algorithms and
existing alignment systems. Such system is useful to develop accurate and efficient image alignment systems.

Keywords: subpixel accuracy, TSK-type neuro-fuzzy network, data-mining based evolutionary learning algorithm,

1. Introduction

Accurate and efficient image alignment is widely applied
to many industrial applications, such as automatic visual
inspection, factory automation, and robotic machine
vision. Among them, visual inspection is usually
required at finding a geometric transformation to align
images. More specifically, the geometric transformation
is commonly used as an affine transformation, which is
consists of scaling, rotation, and translation, for aligning
images. In other words, an affine transformation is con-
sidered of great importance in designing image align-
ment systems. Thus, it raises a challenge to provide an
efficient affine transformation. To this end, neural net-
work-based methods have widespread to address this
challenge because such methods often feed global fea-
tures of inspected images into a trained neural network
to estimate affine transformation parameters [1-4]. In
other words, neural networks are helpful for designing
image alignment systems. Thus, there is a need to
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develop a neural network-based image alignment system
to demonstrate high performance [5]. To this end, the
aim of this study is to design a learning algorithm to
train a neural network that can estimate affine para-
meters precisely.

Regarding the aim, this study adopts weighted gradi-
ent orientation histograms (WGOH) [6] as an image
descriptor, which extracts the features from inspected
images, to be the input of the neural network. Such
representation technique has been proven a good
descriptor in several literatures [7,8]. After that, we
propose a novel learning algorithm to improve the
robustness of neural networks. To be more specific, the
proposed learning algorithm combines the self-organiza-
tion algorithm (SOA), data-mining selection method
(DMSM), and regularized least square (RLS) method to
automatically identify the structure and parameters of
the network. Once our learning method is applied, the
structure of the network will be variable instead of a
fixed one. Moreover, automatic tuning the parameters
of the network can get more dynamic search space than
a heuristic way. In other words, the structure and
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parameters of neural networks will become more
robustness. The major contribution of this study is that
the proposed learning method is helpful to develop effi-
cient image alignment systems by automatically tuning
the systems’ structure and parameters.

The rest of this article is organized as follows. Section
2 gives a review of related studies. In Section 3, the pro-
posed methodology for automatic aligning industrial
images is introduced. The experimental results are pre-
sented in Section 4. In Section 5, a conceptual frame-
work for developing image alignment systems is
described. The conclusion is attained in the last section.

2. Related studies

The problem of precisely aligning images has been well
studied in several fields. For a broad introduction to
image alignment methods, the related literature has
been reviewed on several occasions [9,10]. To brief sur-
vey, prior aligning methods can be classified as feature-
and area-based methods [9,11]. Zitova and Flusser [10]
pointed out that area-based methods are preferably
applied to the images which have not many details.
Moreover, Amintoosi et al. [11] indicated that as the
signal-to-noise ratio (SNR) is low, area-based methods
produce better results than feature-based methods. In
this study, we assume that our proposed image align-
ment system is developed for industrial inspection tasks
such that the captured images usually have less detail.
Thus, area-based methods that adopt global descriptors
are recommended in this article.

Recently, neural network-based image alignment uti-
lizing global features has been a relatively new research
subject. Such methods demonstrated high alignment
speed since it only needs to feed the extracted feature
vectors into the trained neural network to estimate the
transformation parameters. For example, Ethanany et al.
[1] presented a feedforward neural network (FNN) to
align images through 144 discrete cosine transform
(DCT) coefficients as the feature vectors. Their study
showed that the FNN demonstrated high tolerance in
deformed and noisy images. Moreover, based on FNN
research, Wu and Xie [2] utilized low-order Zernike
moments to replace DCT to further improve the perfor-
mance of Ethanany’s study, which adopted larger dimen-
sion of feature vector to represent an image sufficiently
for the un-orthogonality of DCT-based space. As shown
in their results, the proposed method can reduce the
dimension of feature vector but their alignment results
are not satisfied. More recently, Xu and Guo [3]
adopted isometric mapping (ISOMAP) to reduce the
dimension of feature vector. Their study demonstrated
that ISOMAP can drastically reduce the dimension of
feature vector to improve the computational efficiency.
Nevertheless, the over fitting problem could happen in
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ENN when a neural network is over learnt for training
sets. Thus, the unseen pattern may be hard applied to
this over-trained FNN since the network cannot provide
the good ability of generalization. Owing to this pro-
blem, Xu and Guo [12] used a Bayesian regularization
method to improve the capability of generalizing the
FNN. They showed some comparative experiments that
FNN with regularization indeed performed better than
without regularization.

Aforementioned studies indicated that the FNN is
helpful to improve the alignment efficiency. However,
such methods used steepest descent technique to mini-
mize the error function such that it may reach the local
minimal. In addition, it must take a large number of
iterations to minimize the error function and several
training attempts are needed to provide a robust FNN.
In that respect, evolutionary algorithms appear to be
better candidates than steepest descent method [13-15].
Because such learning methods are global and parallel
search, they have more chance to converge toward glo-
bal solution. Therefore, training a neural network utiliz-
ing evolutionary algorithms has been an important field.

In this respect, several evolutionary algorithms were
proposed [16-18]. Gomez and Schmidhuber [16] pro-
posed enforced sub-populations using sub-populations
of neurons for the fitness evaluation and overall control.
The sub-populations that are used to evaluate the solu-
tion locally can obtain better performance compared to
systems that only use one population for evaluating the
solution. Moriarty and Miikkulainen [17] used a symbio-
tic evolution method to train a neural network. The
authors indicated that the symbiotic evolution per-
formed better than traditional genetic algorithms.
Recently, Hsu et al. [18] proposed a multi-groups coop-
eration-based symbiotic evolution (MGCSE) to train a
Takagi-Sugeno-Kang (TSK)-type neuro-fuzzy network
(TNFEN). Their results showed that MGCSE can obtain
better performance and convergence than symbiotic
evolution. Although MGCSE is a good approach for
training a TNFN, it would not be suitable for image
alignment tasks. The reason is that the dimension of the
input of a neural network is always high and the num-
ber of hidden node is not small such that large amount
of parameters must be trained. For instance, in the
experiments described in this article, the dimension of
the input and output of the network is 33 and 4, respec-
tively, and the number of fuzzy rules is 25. Thus, in
MGCSE’s model, the total number of parameters is
5050 (r*(2 * m + m*(n + 1)), r = 25, n = 33, m = 4).
Such a great number would lead the algorithm not only
to impossibly converge to optimal solution, but also to
estimate bad image alignment results. In addition,
MGCSE performed random group combination to con-
struct a network. In spite of such action can sustain
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diversity, there is no systematic way to identify suitable
groups for selecting chromosomes. Thus, it could result
in slow rate of convergence.

To this end, this study proposes a TNFN with data-
mining-based evolutionary learning algorithm (DMELA)
to solve the abovementioned problems. In the first
place, DMELA encodes an antecedent part of a TSK-
type fuzzy rule into a chromosome and utilizes a RLS to
estimate the consequent part of a TSK-type fuzzy rule.
Such combination not only reduces the number of para-
meters that must be trained, but also increases the con-
vergence speed. Later, DMSM is used to explore the
association rules that can identify suitable and unsuita-
ble groups for chromosome selection. This action would
solve the random group combination problem yielded
by MGCSE. Finally, the SOA is utilized to decide suit-
ability of different number of fuzzy rules. Thus, SOA is
useful to automatic construct the structure of neuro-
fuzzy networks (NFENs). In short, DMELA benefits both
structure and parameters learning of a TNEN and it col-
locates with WGOH descriptor to provide a framework
to develop accurate and efficient image alignment
systems.

3. Methodology

The flow chart of the proposed image alignment algo-
rithm, which consists of learning and executing phase, is
illustrated in Figure 1. During the learning phase, the
synthesized training images are created by applying the
reference image to affine transformations with randomly
selected parameters, and then use the WGOH descrip-
tor to represent these training images as feature vectors.
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Finally, the feature vectors and desired targets are
employed to train a TNFN using DMELA. During the
executing phase, the sensed image is sent to the WGOH
descriptor to extract a feature vector and then feed it
into the DMELA-trained TNEN to estimate affine trans-
formations parameters.

3.1. Synthesized training images

Image alignment can be viewed as a mapping between
two images by means of a geometric transformation.
Typically, affine transformation, which composites of
translation, rotation, and scaling, is the most commonly
used type. This article adopts the affine transformation
as the transformation model and it can be described by
the following matrix equations:

<x2> . <c059 —sin@) (xl —xc> . (xc + Ax) N
) sinf cos6 Y1 —Ye ve+ Ay )’
where (x1, y1) indicates the original image coordinate,
(%, y2) indicates transformed image coordinate, s is a
scaling factor, (Ax, Ay) is a translation vector, 6 is a
rotation angle, and (x,, y.) is the center of rotation.
Thus, the synthesized training images can be generated

by applying various combination of translation, rotation,
and scaling transformations within a predefined range.

3.2. WGOH descriptor

The WGOH has been proven a good descriptor by a
global feature selection approach (GFSA), which has
been presented in our previous research [7]. Such
descriptor was compared with other five global descrip-
tors and results showed that WGOH demonstrated best
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Figure 1 Flow chart of the proposed image alignment algorithm.
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performance. Therefore, this article adopts WGOH as a
descriptor to represent inspected images.

The WGOH descriptor was inspired by scale invariant
feature transform (SIFT) descriptor [19], and presented
by Bradley et al. [20] to show its high speed. The main
idea of the WGOH is that it calculates the orientation
histograms within a region, and uses the magnitude of
the gradient at each pixel and the 2D Gaussian function
to weight the histogram [6]. Therefore, for the WGOH
descriptor, there are four steps for representing an
image:

1. For each image, we capture the template window,
whose location is at the center of the image, to be a
place of extracting features. Within the window, we
divide the length and width of the window into four
equal parts to form 4 x 4 grids. Each grid is considered
a sub-image. Thus, the template window can be split
into 4 x 4 sub-images.

2. On each pixel of the sub-image (I(x, y)), the gradi-
ent magnitude m(x, y), and orientation 6(x, y) are com-
puted using pixel difference which the equations can be
written as

mGy) = UG+ 1) = 1= L)Y + UGy + 1) =1y —1))%  (2)

0(xy) =tan” ((I(x,y+1) = I(xy — D))/Ux+ Ly) = Ix=1,p)).  (3)

3. Calculate the 8-bin orientation histograms (each bin
cover 45°) within each sub-image which are weighted by
the gradient magnitude, and the Gaussian function.

4. Concatenate 8-bin histograms of 16 sub-images into
a 128-element feature vector, and normalize it to a unit
length. To reduce strong gradient magnitudes, the ele-
ments of the feature vector are limited to 0.2, and this
vector is normalized again.

Page 4 of 22

Consequently, each image can be represented by a
128-elemet feature vector. Figure 2 illustrates an exam-
ple of WGOH computation steps. Because the 128-ele-
met feature vector is still too high to train a TNFN,
there is a requirement of finding a dimensionality reduc-
tion method to lower the dimension of the feature vec-
tor. According to [21], genetic algorithm outperformed
than principal component analysis and linear discrimi-
nate analysis as dealing with their speaker recognition
case. Thus, in our image alignment case, we adopted
genetic algorithm method described in [22] to reduce a
128-elemet into a 33-element feature vector in the
experimental section.

3.3. Structure of TNFN

In general, three typical types of NFN are the TSK-type,
Mamdani-type, and singleton-type. According to [23,24],
the authors have shown that a TNEN can offer better
network size and learning accuracy than a Mamdani-
type NEN. Thus, for our image alignment task, we only
compare the TNFN with the singleton-type NEN in the
experimental section to prove that the TNEN outper-
forms the singleton-type NEN.

A TNEN [25] employs a linear combination of the
crisp inputs as the consequent part of a fuzzy rule. The
fuzzy rule of the TSK-type neuro-fuzzy system is shown
in Equation 4, where n and j represent the dimension of
the input and the number of the fuzzy rules, respec-
tively.

TF x; is Ayj(maj, s1) and x; is Agj(maj, 537) . .. and xy is Apj(myj, 55) THEN Y = woj+wyjx; +. . .+w,.jxn(4-)

The structure of a TNFN is shown in Figure 3, where
n represents the dimension of the input. It is a five-layer
network structure. In the TNEN, the firing strength of a
fuzzy rule is calculated by performing the following

Figure 2 Steps for creating a WGOH feature vector.
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Figure 3 Structure of the TNFN.

“AND” operation on the truth values of each variable to
its corresponding fuzzy sets by:

o2

n [uil) . mij:lz
u =[Tew |- , 5)
i=1 Y

where (1) _ . and 4{*) are the outputs of first and

third layers; m; and o;; are the center and the width of
the Gaussian membership function of the jth term of

the ith input variable x;, respectively. In this article, the
reason of adopting the Gaussian membership function is
that it can be a universal approximator of any nonlinear
functions on a compact set [23].

The output of the fuzzy system is computed by:

M M n
Yu® Y u (woi + 3 wi)
y=u® = j=1 _ i=1 ©)
$h 0 §h 0 '
21 j
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where #® is the output of fifth layer, wy; is the weight-
ing value with ith dimension and jth rule node, and M
is the number of a fuzzy rule. Here, the dimension of
the output is set to be 4, and they are represented as a
scaling factor (s), a rotation angle (), and translation
parameters (Ax, Ay), respectively.

3.4. Data-mining-based evolutionary learning algorithm
The proposed DMELA aims to improve MGCSE [18].
Unlike MGCSE encoding one fuzzy rule into a chro-
mosome, DMELA only encodes an antecedent part of
a fuzzy rule into a chromosome. The consequent part
of a fuzzy rule used in DMELA is estimated by an RLS
approach. These two operations could not only reduce
the number of parameters that must be trained, but
also increase the convergence speed. Therefore, details
of the coding step and RLS approach are described as
follows:

(1) Coding step

The coding structure of chromosomes in our proposed
DMELA is shown in Figure 4. This figure describes an
antecedent part of a fuzzy rule that has the form in
Equation 4, where m;; and 0;; represent a Gaussian
membership function with mean and deviation of ith
dimension and jth rule node, respectively.

(2) RLS approach

Since the coding step only decides an antecedent part of
a fuzzy rule, the consequent part is undetermined. In
this article, RLS is adopted to estimate the consequent
part. For simplicity, we only use two inputs (x, x,) and
one output (y) to represent a two-rule TSK-type neuro-
fuzzy system, which is described as follows:

Rule 1

IF x1 is Ay (mu, on) and x; is Ay (ma1, 021), THEN 1 = wor + wnXxy +waxa, (7)
Rule 2

IF x1 is A12(mi2, 012) and x; is Azp(m22, 022), THEN y = wop + wio¥y + woXy, (8)
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where A ; and Bj; are the linguistic parts with respect
the input i and Rule j. From Equation 6, the output can
be written as:
uryr +u2y2 . A
V= Y 2 Uiy + Uzy2, 9)
Ui +up
where u; and u, are the firing strengths of Rules I and
2, respectively, iy = u1/(u1 + up), and i = up/(u1 + uz).
Combine Equations 7-9, and we can get the following
equation:

y = iayr +iayy =t (wor + wnX1 +waxz) + iy (wo + wiaxy + wraxa)

(10)

= (X1 wn + (fix2)way + fwor + (fox))wia + (f2X2)was + lpWwoes.

Since #i;, i, #1, and x, are known values, the only
unknown value is the consequent part w;j. Suppose a
given set of training inputs and desired outputs is

{x(v), yd(t)}fﬁl. Equation 10 can be rewritten as:

AW =Y, (11)
where
i (Dx (1) i ()x2(1) (1) dp(1)a (1) 2(1)x2(1) i2(1)
) ﬂl(Z)Axl(z) i (2)x2(2) (2) l12(2)"61(2) (2)x2(2) 12(2) (12)
ﬁl(M):xl(M) ity (M)xz (M) ity (M) L72(1\/1):961(1“/1) i (M)x2(M) 1i2 (M)
and
W = [wn wa wor wiz Wy Woy | . (13)

In general, there is no exact solution to solve for W.
Instead, a least square method is utilized to obtain an
approximate solution. Moreover, to get the smooth esti-
mation, the regularization is adopted. To this end, such
method is named as RLS approach. Using RLS, the

approximation solution is as follows:
W = (ATA + AI)1ATY, (14)

where 4 is a regularization parameter which adjusts
the smoothness. Therefore, by getting Equation 14, we

my; (0| My,

o,

/ nj nj

Figure 4 Coding an antecedent part of a fuzzy rule into a chromosome in DMELA.




Hsu et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:96

http://asp.eurasipjournals.com/content/2011/1/96

complete the estimation the consequent part of fuzzy
rules. Such operation can easily be expanded to #n input,
m output, and r fuzzy rules of a TNFN. To compare
with MGCSE, the consequent part used in this article is
computed by an RLS approach rather than tuned by an
evolutionary procedure. Such action would increase the
convergence speed because RLS approach directly calcu-
lates the consequent part one time to minimize the
errors between real and desire outputs. Nevertheless,
evolutionary method tunes the consequent part many
times to gradually minimize the errors.

In addition to the above two processes, to consider the
structure of TNFN, DMELA adopts the variable length
of a combination of chromosomes with RLS method to
construct a TNEN. To deal with this, multi-groups sym-
biotic evolution (MGSE) is utilized in this article. Unlike
the traditional symbiotic evolutions (TSEs) [17], each
population in MGSE is divided into several groups, and
each group represents a set of chromosomes that
belongs to an antecedent part of one fuzzy rule. The
structure of chromosomes to construct TNFNs in
DMELA is shown in Figure 5. As shown in the figure,
each antecedent part of a fuzzy rule represents a chro-
mosome selected from a group, Py;,. denotes that there
are Pg,. groups in a population, and M; means that
there are My rules used in TNFN construction. Such
construction allows variable number of rules in TNFN.

The learning process of DMELA in each group
involves seven major operators: initialization, SOA,
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DMSM, fitness assignment, reproduction strategy, cross-
over strategy, and mutation strategy. This process stops
as the number of generations or the fitness value
reaches a predetermined condition. The whole learning
process is described below:
3.4.1. Initialization
Before we start to design DMELA, the initial groups of
individuals should be generated. The initial groups of
DMELA are generated randomly within a fixed range.
The following formulations show how to generate the
initial chromosomes in each group:

Deviation: Chry, . [p] = random|(G yin, Omax],

wherep=2,4,...,2n;g=1, 2,...,Pyzic=1,2,...,Nc, (15)
Mean: Chry . [p] = random|[myyin, Mimax],
wherep=1, 3,..., 2n—1, (16)

where Chr,, . represents cth chromosome in the gth
group, Nc is the total number of chromosomes in each
group, p represents the pth gene in a Chry , and [0y,
Omax)> [Mmin» Mmax] represent the predefined range to
generate the chromosomes.
3.4.2. Self-organization algorithm
To select fuzzy rules automatically, SOA utilized the
building blocks (BBs) to present the suitability of TNFN
with different fuzzy rules. In Figure 6, SOA encodes the
probability vector Vy,, which stands for the suitability
of a TNFN with M, rules, into BBs. In addition, in

antecedent of Rule 1

antecedent of Rule 1

Group 1

antecedent of Rule 1

antecedent of Rule 1

antecedent
of Rule 1

antecedent
of Rule j

antecedent
of Rule M,

Using RLS to estimate

consequent of each Rule TNFN 1

antecedent of Rule /

antecedent of Rule /

Group j antecedent of Rule

antecedent of Rule /

antecedent
of Rule 1

antecedent
of Rule j

antecedent
of Rule M,

Using RLS to estimate
consequent of each Rule

TNFN N,

antecedent of Rule M,

antecedent of Rule M

Group Psize antecedent of Rule M

antecedent of Rule M}

Figure 5 Structure of chromosomes to TNFNs construction in DMELA.
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Figure 6 Coding the probability vector into the BBs in the SAM.

SOA, the minimum and maximum number of rules
must be predefined to limit the number of fuzzy rules
to a certain bound, i.e., [Mpin, Mmax-

After BBs is defined, we use SOA to determine the
suitable selection times of each number of fuzzy rules.
The “selection times” indicates how many TNFNs
should be produced in one generation. In other words,
SOA is used to determine the number of TNFN with
M rules in every generation. After the SOA is carried
out, the selection times of the suitable number of fuzzy
rules in a TNEN will increase; otherwise, the selection
times of the unsuitable ones in a TNFS will decrease.
The processing steps of the SOA are described as
follows:

Step 0. Initialize the probability vectors of the BBs:

Vm, = 0.5, for M = Mmin, Mmin +1, - Mmax; (17)
and
Accumulator = 0. (18)

Step 1. Update the probability vectors of the BBs
according to the following equations:

Vi, = Vi, + (Upt valueyy, + 1), if Avg < fity, (19)
Vim, = Vi, — (Upt valuey, x 1),  otherwise '
Mimax
Avg = Z fitss/ (Mmax — Mmin); (20)
Mj=Mmin
Mmax
Upt valuey, = fitn, Y fity (21)
Mj=Mmin )

if Fitnessyy, > (Best Fitnessyy, — ThreadFitnessvalue) (22)

then fity, = fitsm, + Fitnessp,,

where Vy, is the probability vector in the BBs, A is a
predefined threshold value, Avg represents the average
fitness value in the whole population, Best Fitnessy,
represents the best fitness value of TNFN with M rules,
and fity, is the sum of the fitness values of the TNFN
with My rules. In Equation 19, the conditions “fity, > or

<Avg” would affect the suitability of TNFNs with M
rules to be increased or decreased.

Step 2. Determine the selection times of TNFNs with
different rules according to the probability vectors of
the BBs as follows:

Rpu, = (Selection Times) * (Vy,/Total Velocy), for M, = Mmin, Mimin+1, - * - Mmax, (23)
Max
Total Velocy = E \ (24)
Mj=Mmin

where Selection_Times represents the total selection
times in each generation and Rpu, represents the selec-
tion times of TNFNs with M rules in one generation.

Step 3. In SOA, to prevent suitable selection times
from falling into the local optimal solution, we use two
different actions to update V. Such actions are
defined in the following equations:

if Accumulator < SOATimes, then do Steps 1 to 3,  (25)
if Best Fitnessy = Best Fitness, then Accumulator = Accumulator + 1, (26)
if Accumulator > SOATimes, then do Step 0 and  Accumulator = 0, (27)

where SOATimes is a predefined value, Best_Fitness,
represents the best fitness value of the best combination
of chromosomes in the gth generation, and Best_Fitness
represents the best fitness value of the best combination
of chromosomes in the current generations. If Equation
27 is satisfied, then it indicates that the suitable selec-
tion times may fall into the local optimal solution. At
this time, the processing step of SOA should return to
Step 0 to initialize the BBs.
3.4.3. The DMSM
After the selection times are determined, DMELA
further performs the selection step, which includes the
selection of groups and chromosomes. In selection of
groups, this article proposes DMSM to determine the
suitable groups for chromosomes selection. To prevent
the selected groups from falling into the local optimal
solution, DMSM uses normal and explore actions to
select well-performed groups. The details of the DMSM
are discussed below:
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Step 0. The transactions are built, as in the following
equations:

if  Fitnessy, > (Best Fitnessy, — ThreadFitnessvalue)
Transaction;[i] = TFCRuleSetyy, [i]

28
then 28)
Performance Index = g,
if  Fitnessy, < (Best Fitnessy, — ThreadFitnessvalue)
Transaction;[i] = TFCRuleSetpy, [i
i wlil 29)

then

Performance Index = b,

where i = 1, 2,..., My, My = My Muins - Mmaxo J =
1, 2,...,TransactionNum, the Fitnessy, represents the fit-
ness value of TNFN with M rules, ThreadFitnessvalue
is a predefined value, TransactionNum is the total num-
ber of transactions, Transaction; [i] represents the ith
item in the jth transaction, TFCRuleSety,[i] represents
the ith group in the M groups used for chromosomes
selection, and Performance Index = g and Performance
Index = b represent the good and bad performances,
respectively. Hence, transactions have the form shown
in Table 1. As shown in Table 1, the first transaction
means that the three-rule TNFN formed by the first,
fourth, and eighth groups have “good” performance. In
contrast, the second transaction indicates that the four-
rule TNFN formed by the second, fourth, seventh, and
the tenth groups have “bad” performance.

Step 1. Normal action:

The aims of this action include two parts: accumulate
the transaction set and select groups. Regarding the first
part, if the groups fit Equations 28 and 29, then the
groups are stored in a transaction. Regarding the second
part, DMSM selects groups using the following
equation:

if  Accumulator < NormalTimes

30
then Grouplndex[i] = Random|1, Psi], (30)

where i = 1, 2,..., My, My = Muin, Mminsir-er Mmaxo
Accumulatar defined in Equation 30 are used to deter-
mine which action should be adopted, GroupIndex|i]
represents the selected ith group of the M, groups, and
Py, indicates that there are Py, groups in a population
in DMELA. If the best fitness value does not improve

Table 1 Transactions in the DMSM

Transaction index Groups Performance index
1 148 g
2 24,710 b

TransactionNum 134,689 g
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Table 2 Sample transactions

Transaction index Groups

1 b cetghp
2 {a b ¢ fim, o}
3 {c f, i, m o}

4 b,¢es pt

5 {a, b ¢dfm, o}

for a sufficient number of generations (NormalTimes),
then DMSM selects groups according to explore action.

Step 2. Explore action:

If Accumulator exceeds the NormalTimes, then the
current action switches to the explore action. The objec-
tive of this action is to adopt the notion of DMSM to
explore suitable groups in transactions. The major
operations of DMSM include FP-growth performing,
association rules generating, and suitable groups select-
ing. The details of these three operations are presented
below.

i. FP-growth performing In this operation, only good
groups, whose performance index showed “g“ in Table
1, are performed with FP-growth and bad groups are
skipped. Thus, frequently occurring groups can be
found according to the predefined Minimum_Support,
which stands for the minimum fraction of transactions
containing the item set. After Minimum_Support is
defined, data mining using FP-growth is performed. The
FP-growth algorithm can be divided into two parts:
FP-tree construction and FP-growth. The sample
transactions are shown in Table 2. In this example,
Minimum_Support = 3.

(1) FP-tree Construction

To construct a FP-tree, we first scan the transactions
and retrieve the frequent 1-groupset which represents
the set with bigger support counts than Minimum_
Support in transactions. Then, the retrieved frequently
occurring groups are arranged in descending order
based on their supports. After that, we discard the infre-
quently occurring groups and sort the remaining groups.
Then, the result is shown in Table 3. Thus, the ordered
transactions appeared in this table are utilized to
construct a FP-tree.

Table 3 Transactions after discarding the infrequent
groups and sorting the remaining groups

Transaction index Groups Ordered groups
1 b cefghp {c b

2 {a, 6 ¢fim, o} {c b, f, m, o}

3 {c fim, o} {c £ m, o}

4 b ¢ces p {c b}

5 {a,6¢dfm, o} {c b fm, o}
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Figure 7 Example of FP-tree construction. (a) Steps for constructing the FP-tree of sample transactions. (b) FP-tree of Table 5.

Header Table
Item head

(b)

The steps in FP-tree construction are illustrated in
Figure 7a. In this figure (formed by scanning the last
transaction in Table 3), the rightmost chart is called a
prefix-tree of the frequent 1-groupset. Each node of the
prefix-tree is composed of one group, a count of the fre-
quent 1-groupset, and a node frequently occurring
group link. Afterward, the completed FP-tree shown in
Figure 7b is created by combining the prefix-tree of the
1-groupset and the header-table.

(2) FP-growth

The FP-growth operation can be done by following
steps: First, we choose each frequent 1-groupset as a
suffix group, and find the corresponding set of paths
connecting to the root of the FP-tree. The set of prefix
paths is called the conditional group base. Second, we
accumulate the count of each group in the base to
construct the conditional FP-tree of the corresponding
suffix group. Third, after exploring the frequently occur-
ring groups in the conditional FP-tree, FP-growth data
mining is completed by the concatenation of the suffix
group with the generated frequently occurring groups.
Finally, the frequent groups generated by the FP-growth
are shown in Table 4.

ii. Association rules generating Once the frequently
occurring groups are found, we can produce association
rules from these frequent ones. For the purpose of iden-
tifying the association rules with good performance, the
frequent groups must combine the groups owing bad

performance shown in Table 1 to count the confidence
degree. The confidence degree can be computed by the
following formula:

confidence(frequent groups = good)
= P(good | frequent groups)
supp(frequent groups U good)
- supp(frequent groups U good) + supp(frequent groups U bad)’

(31)

where P(good|frequent groups) is the conditional
probability, frequent groups U good or bad means the
union of frequent groups and good or bad performance,
and supp(frequent groups U good or bad) stands for the
counts of frequent groups with good or bad performance
occurring in transactions. Then the rule is valid if

confidence(frequent groups = good) > minconf,  (32)

where minconf represents the minimal confidence
given by user or expert. Hence, we can infer that if a
rule satisfies Equation 32, then the frequent groups can
be viewed as the suitable groups, otherwise they would
be unsuitable groups. For instance, if the confidence of
{1,3,6} = {g} is bigger than the minimum confidence,
then we construct this association rule. This rule
indicates that the combination of the first, third, and
sixth groups results in “good” performance. After doing
so, the frequent groups are conduct to the association
rules and generate the AssociatedGoodPool which con-
tains all frequent groups satisfied Equation 32.

Table 4 Frequently occurring groups generated by FP-growth data mining

Suffix group Cond. group base

Cond. FP-tree

Frequent groups

B c4 c4
F ch:3, ¢l c4, cb:3
M cbf:2, cf:1 cf:3
0O

cbfm:2, cfm:1 cfm:3

cb4

cf4, bf:3, cbf:3

cm:3, fm:3, cfm:3

co:3, fo:3, mo:3, cfo:3, cmo:3, fmo:3, cfmo:3
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iii. Suitable groups selecting After the association
rules are identified, DMSM selects groups according to
the association rules. The group indexes are selected
from the associated good groups as the following
equations:

if NormalTimes < Accumulator < ExploreTimes
then  Grouplndex[i] = w, (33)

where w = GoodltemSet|q| = Random|AssociatedGoodPool],

where g = 1, 2,..., AssociatedGoodPoolNum i = 1, 2,...,
My, My = Muin, Muine1r-» Mmax, ExploreTimes are the
predefined value that judges to perform the exploring
action, AssociatedGoodPool represents the sets of good
item set that obtain from association rules, Associated-
GoodPoolNum presents the total number of sets in
AssociatedGoodPoolNum and GoodlItemSet[i] presents a
good item set that select from AssociatedGoodPool ran-
domly. In Equation 33, if M greater than the size of
GoodltemSet, then remaining groups are selected by
Equation 30.

Step 3. If the best fitness value does not improve for a
sufficient number of generations (ExploreTimes), then
DMSM selects groups based on the normal action.

Step 4. After the M, groups are selected, M; chromo-
somes are selected from M, groups as follows:

Chromosomelndex|i] = g, (34)

where g = Random|[1, N_), i = 1, 2,..., k, N, represents
the total number of chromosomes in each group, and
Chromosomelndec|i] represents the index of a chromo-
some that is selected from the ith group.

3.4.4. Fitness assignment

In this step, the fitness value of an antecedent part of a
fuzzy rule (an individual) is calculated by summing up
the fitness values of all possible combinations in the
chromosomes that are selected from M, groups that are
decided by DMSM. The steps in the fitness value assign-
ment are described below:

Step 1. Choose M, antecedent part of fuzzy rules with
RLS method to construct a TNEN Rpyy, times from M
groups with size Nc. The M, groups are obtained from
the DMSM.

Step 2. Evaluate every TNEN that is generated from
Step 1 to obtain a fitness value.

Step 3. Divide the fitness value by M; and accumulate
the divided fitness value to the selected antecedent part
of fuzzy rules with their fitness value records that were
set to zero initially.

Step 4. Divide the accumulated fitness value of each
chromosome from M groups by the number of times
that it has been selected. The average fitness value
represents the performance of an antecedent part of a
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fuzzy rule. In this article, the fitness value is designed
according the follow formulation:

Fitness Value = 1/(1 + E(y, 7)), (35)
where
N
B, 1) =D (i —v)* (36)

i=1

where y; and j; represent the desired and predicted
values of the ith output, respectively, E(y,¥) is a error
function, and N represents the number of the training
data in each generation.
3.4.5. Reproduction strategy
Reproduction is a procedure of copying individuals
according to their fitness value. This study adopted
our previous research-elite-based reproduction strat-
egy (ERS) [18] to perform reproduction. In ERS,
every chromosome in the best combination of M
groups must be kept by performing reproduction
step. In the remaining chromosomes in each group,
this study uses the roulette-wheel selection method
[26] for this reproduction process. The well-per-
formed chromosomes in the top half of each group
[27] proceed to the next generation. The other half is
created by executing crossover and mutation opera-
tions on chromosomes in the top half of the parent
individuals.
3.4.6. Crossover strategy
Although the reproduction operation can preserve the
best existing individuals, it does not create any new
individuals. In nature, an offspring can inherit genes
from two parents. The major way to the inheritance of
parents is the crossover operator, the operation of
which occurs for a selected pair with a crossover rate.
In this article, a two-point crossover strategy [26] is
adopted and such strategy is illustrated in Figure 8.
From this figure, exchanging the site’s values between
the selected sites of individual parents creates new indi-
viduals. The benefit of the two-point crossover is its
ability of introducing a higher degree of randomness
into the selection of genetic material [28].
3.4.7. Mutation strategy
In spite of many new strings the crossover strategy pro-
duced, new information to every group at the site of an
individual is still not provided by these strings. Mutation
can randomly alter the allele of a gene. In this article,
uniform mutation [26] is adopted, and the mutated gene
is drawn randomly from the domain of the correspond-
ing variable. The advantages of uniform mutation are
not only to provide new information for a population
but also to preserve diversity [29].
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3.5. Termination criterion
If the learning steps meet one of the following condi-
tions, DMELA is terminated, and output the final
results.

(1) The number of generations reaches a predefined
maximal iteration value.

(2) Fitness value is greater than a fitness threshold.

Consequently, the whole learning process of DMELA
is summarized in Figure 9.

3.6. Time complexity analysis

In this section, to analyze the complexity of the pro-
posed algorithm, we divide our method into six stages
(skip the initialization stage) to discuss the complexity
individually. Suppose the size of population is Py, the
size of sub-population is N, the number of fuzzy rules
is M, the number of constructing fuzzy systems in one
generation is S (i.e., the Selection_Times defined in
Equation 23), the number of the training data is N, and
the input dimension of NEN is n. The discussion of the
complexity for each stage is as follows:

(1) SOA: in this stage, the only computation is
to update the probability vectors (Equation 19) S times
in one generation. Therefore, the complexity of SOA is
o(S).

(2) DMSM: The DMSM operation includes normal
and explore actions. In the normal action, since this
action would be performed NormalTimes (appeared in
Equation 30) in the overall learning process, the com-
plexity of this action is O(NormalTimes). In the explore
action, because the FP-growth and association rules
mining are performed only in the beginning of this
action or when the system falls into local optima. As a
result, the effect caused by these two operations on the
overall learning efficiency is not crucial. The complexity
of these two operators can be skipped. Moreover, since
the explore action would be performed (ExploreTimes-
NormalTimes) times in the overall learning process, the

complexity of this action is O(ExploreTimes-Normal-
Times), where ExploreTimes appeared in Equation 33.

(3) Fitness assignment: according to Equations 6 and
36, the evaluation of fitness one time requires NMn
computations. Furthermore, there are S evaluation times
in one generation. Thus, the complexity of fitness
assignment is O(SNMn).

(4) Reproduction: in this stage, the roulette-wheel
selection method is chosen to perform reproduction.
Since each selection requires N, steps and N, spins to
fill the sub-populations [30], the total computation for a

whole population in a generation is NfPsize. Therefore,

the complexity of reproduction stage is O(N.Py,)-

(5) Crossover: to consider the selection of parents, the
tournament selection is adopted to select parents. Since
the tournament selection can be performed in constant
time and N, Pg;,, competitions are required to fill one
generation [30], the complexity of the tournament
selection is O(N, Ps,,.). Moreover, the computation of
two-point crossover is constant in one generation. Thus,
the complexity of crossover stage is O(N, Ps;.).

(6) Mutation: because the uniform mutation is
adopted and the mutated gene is picked randomly from
the chromosome, the mutation operator needs N, Pg;,.
steps to fill overall populations. Hence, the complexity
of mutation step is O(N, Pg;,.).

In summary, the dominate complexity of the proposed
algorithm is the stage of fitness assignment (O(SNMn))).
It indicates that the fitness assignment step would
occupy most of the learning time.

3.7. Executing procedure

After training a TNEN, the executing phase of the
proposed image alignment system merely consists of com-
puting the WGOH descriptor and then feeding it into the
DMELA-trained TNEN to get a scaling factor s, a rotation
angle 6, and translation parameters (Ax, Ay). About this,
the proposed system is simple and efficient.
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Begin

Initialize each
chromosome in
each group
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SOA

Does each different
length of TNFN select
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A

Fitness
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(include RLS)
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End
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Figure 9 Learning process of DMELA.
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5, horizontal translation = 10.

Figure 10 Example of visual inspection images. (a) Reference image. (b) Testing image with scale = 0.9, rotation = -10° vertical translation =

(b)

4. Experimental results

In the following experiments, visual inspection images,
which are 640 x 480 pixels size, are used to examine the
utility of the proposed image alignment method. Figure
10 depicts an example about such images where the left
side is a reference image and the other side is a trans-
formed image by a scaling, rotation and translation.
Also in this figure, the dashed window represents a tem-
plate window (the size is 200 x 200, and feature vectors
are extracted within this window), and the cross sign
denotes the reference location of the template.

In Table 5, four types of experimental images are pre-
pared for simulation. The first three types of images are
the synthesized ones generated randomly within the
range in Table 6. In the last type of images are real ones
captured from a camera. Moreover, Table 6 indicates
the searching range for image alignment. If the affine
transformation exceeds the range, then the image align-
ment system may not promise high accuracy. Thus, the
range of the image alignment defined in this article is
restricted in Table 6.

All the experiments are performed using an Intel Core
i7 860 chip with a 2.8 GHz CPU, a 3G memory, and the
Matlab 7.5 simulation software.

The experimental results in this section contain four
sections. Section 4.1 performs the comparison with

Table 5 Experimental images preparation

Table 6 The range of affine transformation parameters
used in experiments

Affine transformation The range of affine transformation

parameter parameter
Scale [0.7 13]
Rotation (degrees) [-30 30]
Vertical translation (pixels) [-20 20]
Horizontal translation (pixels) [-20 20]

different types of NFNs. Comparison with existing learn-
ing methods is presented in Section 4.2. In Section 4.3,
synthesized images are used to compare the proposed
image alignment system with other systems. Section 4.5
uses real images to validate the alignment accuracy of
the proposed system.

4.1. Comparison with different types of NFN

In this section, we perform the comparison of a TSK-
type and a singleton-type NFN. To setup an experiment,
we run both types of NFN with the same number of
fuzzy rules and the same population size described in
Table 7 for 100 generations learning. Then such experi-
ment is repeated 15 times using different initial condi-
tions and final results are shown in Table 8. From this

Table 7 The initial parameters before training

Image type Image preparation Parameters Value Parameters Value
Synthesized 600 images are generated with randomly selected Pive 40 Mininy Minax] [18, 25]

images ?gigl: garameters within the range described in Nc 20 Mot M [-10, 10]

Training The 70% (420) of synthesized images Selectior?_Times 20 (S Smad 13, 131 ]
images NormalTimes 10 [Wenine Wnax] RLS determined
Testing images  The 30% (180) of synthesized images SearchingTimes 15 Minimum_Support TransactionNum/3

Real images Images are acquired from CCD camera with different

pose from the reference image

Minimum_Confidence  60%
RLS parameter (A) 0.003

Crossover rate 0.6
Mutation rate 0.2
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Table 8 The comparison of the TNFN and the singleton-type NFN

Method Errors
ErrScale ErrAngle (degrees) ErrDx (pixels) ErrDy (pixels)
Mean SD Mean SD Mean SD Mean SD
TNFN 0.0054 0.0051 0.2106 0.1856 04702 0.3578 04326 04015
Singleton-type NFN 0.027 0.021 1.237 1.075 1.338 1.016 1.571 1.319

table, the TSK-type NEN exhibits lower image alignment
error than the singleton-type NEN. Thus, we can con-
clude that the TNFN would be performed better than
the singleton-type NEN in our image alignment case.

4.2, Comparison with existing learning methods

Two typical evolutionary learning methods TSE [17] and
MGCSE [18] are implemented carefully to compare with
the proposed DMELA. To explore the number of fuzzy
rules for TSE and MGSE, the fuzzy rules are tuned by
setting the range of 20-100 in increments of 5. Thus,
the results find that 85 and 80 rules are suitable for TSE
and MGCSE, respectively.

In this simulation, training and testing images are ran-
domly generated by the way specified in Table 5. Then
33-element feature vectors are obtained by applying
WGOH with genetic algorithm-based dimensionality
reduction described in [22] to above-generated images.

Moreover, before training, the initial parameters of
DMELA are given in Table 7.

To consider SOA in DMELA, Figure 11 shows the
results of the average probability vectors for 15 runs in
different training and testing images. In this figure, the
optimal number of fuzzy rules is 24. It represents that
in most cases a 24-rule TNFN would have better perfor-
mance than other rules within [Min, Mmax] = [18, 25].

Figure 12a-b depicts the learning curves and root
mean square error (RMSE) of three different methods.
From this figure, DMELA demonstrates fast conver-
gence speed and less RMSE than TSE and MGCSE. In
addition, due to RLS method utilized, the high initial fit-
ness value would occur in Figure 12a.

Furthermore, to discuss the learning time, we add the
time measurement on the proposed algorithm and per-
form comparison with MGCSE and TSE. The running
time defined in this article is to measure the time as the

Probability
O ©9 9 9 o o
(W] E=N (8] o ~ [us]
T T T T T T

o
(a8
T

01F

18 19 20

Rule Numbers

Figure 11 Results of average probability vectors for 15 runs in SOA.
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fitness of the algorithm reaches the predefined value.
Thus, the results of three algorithms over 15 runs at dif-
ferent initial conditions are reported in Table 9. As
shown in this table, the proposed algorithm (DMELA) is
much faster than MGCSE and TSE.

4.3. Comparison with existing image alignment systems
To evaluate the proposed system in comparison with
other existing systems [3,12,19], the implementation of
these existing systems are carefully cited in their original
article. The comparison in this section consists of the
alignment accuracy and robustness. These comparisons
are discussed in the following parts.

4.3.1 Alignment accuracy

To compare the alignment accuracy of different systems,
the training images, which are used to train neural net-
works, and the testing images, which are used to check
the alignment accuracy, are generated by the way
described in Table 5.

Figure 13 depicts an alignment example for a testing
image on three different systems. The cross sign in this
figure denotes the estimated results. From this figure,
the proposed system can estimate more accurate posi-
tion and orientation of the cross sign than other
systems.

Table 9 Comparison of running time for various
algorithms

Method Best (s) Worst (s) Mean (s)
DMELA 212 1063 623
MGCSE 3078 4106 3698
TSE 4711 8106 6565

In addition, 15 runs using different training and
testing images are performed to further examine the
alignment accuracy of the proposed system. The simula-
tion results are shown in Table 10, which presents the
average and standard deviation error of three image
alignment systems. From this table, the proposed system
exhibits the lowest alignment error than other systems.
Moreover, the simulated data indicate that the
alignment accuracy reach the subpixel level; thus, the
proposed system can provide a useful way to align
images very accurately.

4.3.2. Alignment speed

To demonstrate the alignment speed, the execution time
required in performing one image alignment task is dis-
cussed. In this article, the steps of performing one
image alignment task consists of capturing the template
window from the input image, computing the feature
within the window, and feeding the calculated feature
into the trained network to get the affine parameters.

In this experiment, we utilize 240 testing images to per-
form image alignment tasks. The average execution time
of image alignment in the proposed system, [somap,
KICA, and SIFT takes about 30, 330, 65, and 57 ms,
respectively. From this result, we infer that the proposed
system is efficient and can apply to real-time tasks.

4.3.3. Alignment robustness

Next, the robustness of the proposed image alignment
system under different levels of random additive Gaus-
sian noise is discussed. In this experiment, 420 training
images are first added with Gaussian noise and then the
remained 180 testing images are added with noise of the
same strength as that in training images. Figure 14 illus-
trates an example of aligning a testing image with the
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[S.R, Dx, Dy] = [0.98,-19.07,-13.09,-18.54]

-

[S, R, Dx, Dy}=[0.98,-19.23,-12.97,-18.27] (S, R, Dx, Dy]=[0.94,-17.67,-10.58,-13.84]

.

(b) (c)
[S,R, Dx, Dy]=[ 0.94,-19.25-9.76-10.31]  [S, R, Dx, Dy]=[1.01,-23.21,-15.92,-17.47)

@ ©

Figure 13 Alignment results for different systems. (a) Ground truth. (b) Proposed system. (c) ISOMAP. (d) KICA. (e) SIFT.
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Table 10 Alignment errors in different image alignment systems

Method Errors

ErrScale ErrAngle (degrees) ErrDx (pixels) ErrDy (pixels)

Mean SD Mean SD Mean SD Mean SD
Proposed 0.0055 0.0052 0.2068 0.1811 0.4639 0.3498 0.4255 0.3947
ISOMAP[3] 0.0329 0.0311 2.1193 20732 1.7264 1.5673 1.8764 1.6872
KICA [12] 0.0158 0.0161 14121 1.2985 0.9612 0.8635 1.1623 1.0541
SIFT[19] 0.0345 0.0759 0.3561 0.7898 0.9822 1.5789 1.9220 3.7420

~
[S, R, Dx, Dy] =[0.97,7.36,-14.14,-15.86]
(@)

(5, R, Dz, Dy]=[0.97,7.31,-13.86,-16.58] [5, R, Dz, Dy]=[0.87,7.69,-10.21,-10.57]

) ) ©
(S, R, Dz, Dyl=[1.03,7.85.-15.67,-23.36]

(d) (&)
Figure 14 Alignment results for different systems under 10 dB SNR condition. (a) Ground truth. (b) Proposed system. (c) ISOMAP. (d) KICA.
(e) SIFT.
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Figure 15 Average affine transformation errors comparison using the proposed method, ISOMAP, KICA, and SIFT under various SNR.
(a) error with respect to scale, (b) rotation, (c) translation on X-axis, and (d) translation on Y-axis.

5 v
—+— Proposed
45¢ —E8— ISOMAP ]
— & - KICA
A SIFT
35} 4
3t .

Rotation Eror(degree)

0 , f . ; . ;
5 10 15 20 25 30 » 40
SNR(dB)
5 .
—+— Proposed
451 —B8— ISOMAP ]
— & - KICA
) SIFT
35 :7 -

Translation on Y-axis Error(pixel)

SNR(dB)

(d)

reference image under 10 dB SNR condition. As shown
in this figure, the proposed system estimates the rota-
tion and translation of the cross sign more accurately
than other methods.

The simulation results of the absolute estimating
errors of affine parameters under eight levels of SNR are
presented in Figure 15a-d. From the figure, the pro-
posed system demonstrates lower affine parameters
error than other systems, especially as SNR is larger
than 15 dB. It stands for the propose system with high
robustness against noise.

4.4. Real image alignment case
In this section, real images are utilized to verify the effec-
tiveness of the proposed system. Figure 16a-d presents the

results of aligning the same real image using the proposed
system, ISOMAP, KICA, and SIFT, respectively. As shown
in this figure, the proposed system demonstrates more
accurate rotation and position of the cross sign than other
alignment systems. Thus, applying the proposed image
alignment system to real image cases is feasible.

5. A conceptual framework for aligning visual
inspection images

To sum up the findings, this study proposes a concep-
tual framework to assist users in designing image align-
ment systems (see Figure 17). As shown in Figure 17,
three stages are introduced. In the first stage, a feature
extraction approach, which named WGOH descriptor, is
adopted for generating feature vectors. Subsequently,
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Figure 16 Results of image alignment on real images. (a) The proposed system. (b) ISOMAP. (c) KICA. (d) SIFT.
.

(d)

three training procedures are developed to reach the
aims of automatically determining the structure and
tuning the parameters of TNEN. Finally, the estimated
affine transformation parameters are used to align the
inspected image with the reference image.

6. Conclusion

In this article, DMELA is proposed for training a TNFN
to perform image alignment tasks. Thus, this study
tends to investigate two aims including developing an
evolutionary learning algorithm and designing an effi-
cient and accurate image alignment system.

Regarding the first aim, the proposed DMELA com-
bines chromosome encoding and RLS method to deter-
mine the antecedent and consequent part of fuzzy rules.
Such combination can offer faster convergence and less
RMSE in comparison with other evolutionary algorithm.

Moreover, this article utilizes a DMSM to select suitable
groups and identify unsuitable groups for chromosome
selection. Such operation would solve the random group
selection problem yielded by TSE algorithm. Finally, an
SOA is adopted to evaluate suitability of different num-
ber of fuzzy rules such that the automatic structure con-
struction of a NEN is feasible.

Regarding the second aim, by integrating a WGOH
descriptor with a DMELA-trained TNEN to form an
image alignment system could estimate affine para-
meters accurately. The evidence can be found in experi-
mental results on both synthesized and real images. The
results show that the proposed alignment system can
reach a subpixel accuracy, real-time speed, and high
noise robustness level. Consequently, this finding is
helpful to develop efficient and accurate image align-
ment systems.
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Figure 17 Diagram of the proposed conceptual framework for aligning visual inspection images.

J

In spite of the proposed system demonstrating good
performance, there still have some limitations. More
specifically, the searching range of image alignment is
not large enough. Such case would limit the alignment
performance. Thus, future study should be taken into
account the coarse to fine image alignment to enlarge
the searching range. Moreover, the image alignment
accuracy in the case of low SNR is not high enough.
There is a need to improve the WGOH descriptor to
suppress noise.
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