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Abstract

This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter
algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-
size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS
affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and
the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially
updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is
performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean
square error (MSE), and low computational complexity features. We demonstrate the good performance of the
proposed algorithms through several simulations in system identification scenario.

Keywords: Adaptive filter, Normalized Least Mean Square, Affine projection, Selective partial update, Selective
regressor, Variable step-size

1. Introduction
Adaptive filtering has been, and still is, an area of active
research that plays an active role in an ever increasing
number of applications, such as noise cancellation, chan-
nel estimation, channel equalization and acoustic echo
cancellation [1,2]. The least mean squares (LMS) and its
normalized version (NLMS) are the workhorses of adap-
tive filtering. In the presence of colored input signals, the
LMS and NLMS algorithms have extremely slow conver-
gence rates. To solve this problem, a number of adaptive
filtering structures, based on affine subspace projections
[3,4], data reusing adaptive algorithms [5,6], block adap-
tive filters [2] and multi rate techniques [7,8] have been
proposed in the literatures. In all these algorithms, the
selected fixed step-size can change the convergence and
the steady-state mean square error (MSE). It is well
known that the steady-state MSE decreases when the
step-size decreases, while the convergence speed
increases when the step-size increases. By optimally
selecting the step-size during the adaptation, we can

obtain both fast convergence rates and low steady-state
MSE. These selections are based on various criteria. In
[9], squared instantaneous errors were used. To improve
noise immunity under Gaussian noise, the squared auto-
correlation of errors at adjacent times was used in [10],
and in [11], the fourth order cumulant of instantaneous
error was adopted.
In [12], two adaptive step-size gradient adaptive filters

were presented. In these algorithms, the step sizes were
changed using a gradient descent algorithm designed to
minimize the squared estimation error. This algorithm
had fast convergence, low steady-state MSE, and good
performance in nonstationary environment. The blind
adaptive gradient (BAG) algorithm for code-aided sup-
pression of multiple-access interference (MAI) and nar-
row-band interference (NBI) in direct-sequence/code-
division multiple-access (DS/CDMA) systems was pre-
sented in [13]. The BAG algorithm was based on the
concept of accelerating the convergence of a stochastic
gradient algorithm by averaging. The authors shown
that the BAG had identical convergence and tracking
properties to recursive least squares (RLS) but had a
computational cost similar to the LMS algorithm. In
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[14], two low complexity variable step size mechanisms
were proposed for constrained minimum variance
(CMV) receivers that operate with stochastic gradient
algorithms and are also incorporated in the channel
estimation algorithms. Also, the low low-complexity
variable step size mechanism for blind code-constrained
constant modulus algorithm (CCM) receivers was pro-
posed in [15]. This approach was very useful for nonsta-
tionary wireless environment.
In [16], a generalized normalized gradient descent

(GNGD) algorithm for linear finite-impulse response
(FIR) adaptive filters was introduced that represents an
extension of the NLMS algorithm by means of an addi-
tional gradient adaptive term in the denominator of the
learning rate of NLMS. The simulation results show
that the GNGD algorithm is robust to significant varia-
tions of initial values of its parameters.
Important examples of two new variable step-size

(VSS) versions of the NLMS and the affine projection
algorithm (APA) can be found in [17]. In [17], the
step-size is obtained by minimizing the mean-square
deviation (MSD). This introduced algorithms show good
performance in convergence rate and steady-state MSE.
This approach was successfully extended to selective
partial update (SPU) adaptive filter algorithm in [18].
To improve the performance of adaptive filter algo-

rithms, the adaptive filter algorithm was proposed based
on channel impulse response statistics [19,20]. In [21] a
new variable-step-size control was proposed for the
NLMS algorithm. In this algorithm, the step-size vector
with different values for each filter coefficient was used. In
this approach, based on prior knowledge of the channel
impulse response statistics, the optimal step-size vector is
obtained by minimizing the mean-square deviation (MSD)
between the optimal and estimated filter coefficients.
Another feature which is important in adaptive filter

algorithms is computational complexity. Several adaptive
filters with fixed step-size, such as the adaptive filter
algorithms with selective partial updates have been pro-
posed to reduce the computational complexity. These
algorithms update only a subset of the filter coefficients
in each time iteration. The Max-NLMS [22], the variants
of the SPU-NLMS [23], and SPU-APA [24,25] are
important examples of this family of adaptive filter algo-
rithms. Recently an affine projection adaptive filtering
algorithm with selective regressors (SR) was also
proposed to reduce the computational complexity of
APA [26-28]. In this algorithm, the recent regressors are
optimally selected during the adaptation.
In this paper, we extend the approach in [21] to the

APA, SPU-NLMS, SPU-APA, and SR-APA and four
novel VSS adaptive filter algorithms are established.
These algorithms are computationally efficient.

We demonstrate the good performance of the presented
algorithms through several simulation results in system
identification scenario. The comparison of the proposed
algorithms with other algorithms is also presented.
What we propose in this paper can be summarized as

follows:

• The establishment of the VSS-APA.
• The establishment of the VSS-SPU-NLMS.
• The establishment of the VSS-SPU-APA.
• The establishment of the VSS-SR-APA.
• Demonstrating of the proposed algorithms in sys-
tem identification scenario.
• Demonstrating the tracking ability of the proposed
algorithms.

We have organized our paper as follows. In section 2,
the NLMS and SPU-NLMS algorithms will be briefly
reviewed. Then, the family of APA, SR-APA and SPU-
APA are presented and the family of variable step-size
adaptive filters is established. In the following, the
computational complexity of the VSS adaptive filters is
discussed. Finally, before concluding the paper, we
demonstrate the usefulness of these algorithms by pre-
senting several experimental results.
Throughout the paper, the following notations are

adopted:
|.| norm of a scalar
||.||2 squared Euclidean norm of a vector
(.)T transpose of a vector or a matrix
tr(.) trace of a matrix
E[.] expectation operator

2 Background on family of NLMS algorithm
2-1 Background on NLMS
The output y(n) of an adaptive filter at time n is given by

y(n) = wT(n)X(n) (1)

where w(n) = [w0(n), w1(n), ..., wM-1(n)]
T is the M × 1

filter coefficients vector and X(n) = [x(n), x(n-1), ..., x(n-
M+1)]T is the M × 1 of input signal vector. The NLMS
algorithm is derived from the solution of the following
constrained minimization problem [1]

min
w(n+1)

‖w (n + 1) − w (n)‖2

Subject to wT (n + 1)X(n) = d(n)
(2)

where d(n) is the desired signal. The resulting NLMS
algorithm is given by the recursion

w(n + 1) = w(n) +
μ

‖X(n)‖2X(n)e(n) (3)
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where μ is the step-size which is introduced to control
the convergence speed (0 <μ < 2). Also, e(n) is the
output error signal which is defined as

e(n) = d(n) − y(n) (4)

2-2 Selective Partial Update NLMS
By partitioning the filter coefficients and input signal vec-
tors to the B blocks each of length L (note that B = M/L
and is an integer), X(n) = [x1(n), x2(n), ..., xB(n)]

T and w(n)
= [w1(n), w2(n), ..., wB(n)]

T, the SPU-NLMS algorithm for
a single block update at every iteration minimizes the
following optimization problem:

min
wF(n+1)

‖wF (n + 1) − wF (n)‖2

Subject to wT (n + 1)X(n) = d(n)
(5)

where F = {j1, j2, ..., jS} denote the indices of the S
blocks out of B blocks that should be updated at every

adaptation and wF(n) =
{
wj1 ,wj2 , ...,wjS

}T [24]. Again by

using the method of Lagrange multipliers, and defining

XF(n) =
{
xj1 (n), xj2 (n), ..., xjS(n)

}T , the update equation

for SPU-NLMS is given by:

wF (n + 1) = wF(n) +
μ

‖XF(n)‖2
XF(n)e(n)

Indices of F correspond to S largest values of ‖xj(n)‖2 for 1 ≤ j ≤ B
(6)

For M = B and L = 1, the SPU-NLMS algorithm in (6)
reduces to

wi (n + 1) = wi(n) +
μ

x(n − i)
e(n)

i = arg max
0≤j≤M−1

| x(n − j) |
(7)

which is the max-NLMS algorithm [22]. For M = B
and L = B, the SPU-NLMS algorithm becomes identical
to NLMS algorithm in (3).

3. Background on APA, SR-APA and SPU-APA
3-1. Affine projection algorithm (APA)
Now, define the M × K matrix of the input signal and K
× 1 of the desired signal as:

X(n) =

⎡
⎢⎣

x(n) . . . x(n − K + 1)
...

. . .
...

x(n − M + 1) . . . x(n − K − M + 2)

⎤
⎥⎦ (8)

d(n) =
[
d(n), ..., d(n − K + 1)

]T (9)

where K is a positive integer (usually, but not necessa-
rily K ≤ M). The family of APA can be established by
minimizing relation (2) but subject to d(n) = XT(n) w(n
+1). Again, by using the method of Lagrange multipliers,
the filter vector update equation for the family of APA
is given by:

w(n + 1) = w(n) + μX(n)
(
XT(n)X(n)

)−1
e(n) (10)

where e(n) = [e(n), e(n-1), ..., e(n-K+1)]T is the output
error vector, which is defined as:

e(n) = d(n) − XT(n)w(n) (11)

3-2 Selective Regressor APA (SR-APA)
In [26], another novel affine projection algorithm with
selective regressors (SR), called (SR-APA), was pre-
sented. In this section, we briefly review the SR-APA.
The SR-APA minimizes relation (2) subject to:

dG(n) = XT
G(n)w(n + 1) (12)

where G = {i1, i2, ..., ip} denote the P subset (subset
with P member) of the set {0, 1, ..., K-1}.

XG(n) =

⎡
⎢⎣

x(n − i1) . . . x(n − ip)
...

. . .
...

x(n − M + 1 − i1) . . . x(n − M + 1 − ip)

⎤
⎥⎦ (13)

is the M × P matrix of the input signal and:

dG(n) =
[
d (n − ii) , ..., d

(
n − ip

)]T (14)

is the P × 1 vector of the desired signal. Using the
method of Lagrange multipliers to solve this optimiza-
tion problem leads to the following update equation:

w(n + 1) = w(n) + μXG(n)
(
XT
G(n)XG(n)

)−1
eG(n) (15)

where

eG(n) = dG(n) − XT
G(n)w(n) (16)

The indices of G are obtained by the following
procedure:
1. Compute the following values for 0 ≤ i ≤ K - 1:

e2(n − i)

‖X(n + i)‖2 (17)

2. The indices of G correspond to P largest values of
(17).
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3-3. Selective Partial Update APA (SPU-APA)
The SPU-APA solves the following optimization pro-
blem [24]:

min
wF(n+1)

‖wF (n + 1) − wF (n)‖2

Subject toXT (n)w(n + 1) = d(n)
(18)

where F = {j1, j2, ..., jS} denote the indices of the S
blocks out of B blocks that should be updated at every
adaptation. Again, by using the Lagrange multipliers
approach, the filter vector update equation is given by:

wF(n + 1) = wF(n) + μXF(n)
(
XT
F(n)XF(n)

)−1
e(n) (19)

where

XF(n) =
[
XT
j1(n),X

T
j2(n), ...,X

T
js(n)

]T
(20)

is the SL × K matrix and:

Xi(n) =
[
xi(n), xi(n − 1), ..., xi(n − K + 1)

]
(21)

is the L × K matrix. The indices of F are obtained by
the following procedure:
1. Compute the following values for 1 ≤ i ≤ B:

Tr
(
XT
i (n)Xi(n)

)
(22)

2. The indices of F correspond to S largest values of
relation (22).

4. VSS-NLMS and the proposed VSS Adaptive
Filter Algorithms
4-1. Variable Step-Size NLMS algorithm using statistics of
channel response
Consider a linear system with its input signal X(n) and
desired signal d(n) are related by

d(n) = hTX(n) + v(n) (23)

where h = [h0, h1, ..., hM-1]
T is the true unknown system

with memory length M, X(n) = [x(n), ..., x(n-M+1)]T is
the system input vector, and v(n) is the additive noise.
The filter coefficients of VSS-NLMS are updated by [21]

w(n + 1) = w(n) +U(n)
X(n)e(n)

‖X(n)‖2 (24)

where the step-size matrix is defined as U(n) = diag[μ0
(n), ..., μM-1(n)].
To quantitatively evaluate the mis-adjustment of the

filter coefficients, the MSD is taken as a figure of merit,
which is defined as

�(n) = E
[
‖w̃(n)‖2

]
(25)

where the weight error vector is given by

w̃(n) = w(n) − h (26)

Note that at each iteration, the MSD depends on μi(n),
and by using the independent and identically distributed
(i.i.d) sequence for input signal, we have

�(n+1) ≈
{
1 +

tr[U2(n)]
M2

}
E

[
‖w̃(n)‖2

]
− 2

M
E

[
w̃T(n)U(n)w̃(n)

]
+ tr

[
U2(n)

] σ 2
v

M2σ 2
x

(27)

The optimal step-size is obtained by minimizing the
MSD at each iteration. Taking the first-order partial
derivative of Λ(n+1) with respect to μi(n)(i = 0, ..., M-1),
and setting it to zero, we obtain

μi (n) =
ME

[
w̃2
i (n)

]
E

[
‖w̃(n)‖2

]
+

σ 2
v

σ 2
x

(28)

and

E[w̃2
i (n + 1)] =

[
1 − 2μi(n)

M

]
E[w̃2

i (n)] +
μ2
i (n)

M2σ 2
x
E[e2(n)] (29)

We can estimate E[e2(n)] by a moving average
approach of e2(n):

σ̂ 2
e (n) = λσ̂ 2

e (n − 1) + (1 − λ)e2(n) (30)

where 0 < l < 1 is the forgetting factor. Also, the
initial value for E

[
w̃2
i (0)

]
is given by the second-order

statistics of the channel impulse response, i.e. E
[
h2i

]
.

4-2. Variable Step-Size Selective Partial Update NLMS
algorithm using statistics of channel response
The filter coefficients in SPU-NLMS are updated by

wF(n + 1) = wF(n) +
UF(n)

‖XF(n)‖2
XF(n)e(n)

whereUF(n) =
{
μj1(n),μj2(n), ...,μjS(n)

}T . (31)

Approximating e(n) with

e(n) ≈ XT
F (n)

(
hF − wF(n)

)
+ v(n) ≈ −XT

F (n)w̃F(n) + v(n)

where hF = {hj1 , hj2 , ..., hjS }T
(32)

and substituting (31) into (32), we obtain

wF(n + 1) = wF(n) +UF(n)
XF(n)

(−XT
F (n)w̃F(n) + v(n)

)
‖XF(n)‖2

(33)

and

w̃F(n + 1) = Q(n)w̃F(n) + UF(n)
XF(n)v(n)

‖XF(n)‖2
(34)
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where

Q(n) = ISL − UF(n)
XF(n)XT

F (n)

‖XF(n)‖2
(35)

and ISL is the SL × SL identity matrix.
For obtaining the MSD, we can write

�(n) = E
[‖w̃(n)‖22] = E

[‖w̃F(n)‖22
]
= E

[‖w̃Ḟ(n)‖22
]

(36)

where w̃Ḟ(n) are the weights that are not selected to
update and we know

w̃Ḟ(n + 1) = w̃Ḟ(n) (37)

Combining (34), (36) and (37) we have

�(n + 1) = E
[
w̃T
F(n)Q

T(n)Q(n)w̃F(n)
]
+

σ 2
v

(SL)2σ 2
x

tr
(
U2

F(n)
)
+ E

[‖w̃Ḟ(n)‖22
]

(38)

From (35), we can write

E
(
QT(n)Q(n)

)
=

[
1 +

1

(SL)2
tr

(
U2

F(n)
)]

ISL − 2
(SL)

UF(n) (39)

Combining (38) and (39), we get

�(n + 1) =
[
1 +

1

(SL)2
tr

(
U2

F(n)
)]

E
[‖w̃F(n)‖22

] − 2
SL

E
[
w̃T
F(n)UF(n)w̃F(n)

]
+

σ 2
v

(SL)2σ 2
x

tr
(
U2

F(n)
)
+ E

[‖w̃Ḟ(n)‖22
] (40)

Taking the first-order partial derivative of Λ(n+1) with
respect to μi(n)(I = 0, ..., M-1), and setting it to zero for
j Î F we have

∂ (� (n + 1))

∂μj

=
[

2

(SL)2
μj(n)

]
E

[‖w̃F(n)‖22
] − 2

SL
E

[
w̃2
j (n)

]
+

2

(SL)2
σ 2
v

σ 2
x

μj(n) = 0 (41)

Therefore,

μj =
SLE[w̃2

j (n)]

E
[‖w̃F(n)‖22

]
+

σ 2
v

σ 2
x

(42)

To update
[
w̃2
j (n)

]
, we use the following equation

obtained by taking the mean square of the j th entry in
(34):

E
[
w̃2
j (n + 1)

]
=

[
1 − 2

SL
μj(n)

]
E

[
w̃2
j (n)

]
+

1

(SL)2
μ2
j (n)E

[∥∥w̃F(n)
∥∥2
2

]
+

1

(SL)2
σ 2
v

σ 2
x

μ2
i (n) (43)

From (32), we can write

E
(
e2(n)

) ≈ σ 2
x E

[‖w̃F(n)‖22
]
+ σ 2

v (44)

and

E
[
w̃2
j (n + 1)

]
=

[
1 − 2

SL
μj(n)

]
E

[
w̃2
j (n)

]
+

μ2
j (n)

(SL)2σ 2
x

E
(
e2(n)

)
(45)

Also, E(e2(n)) is obtained according to (30).

4-3. Variable Step-Size APA using statistics of channel
response
Suppose X(n), and d(n) are defined similar to Section
3-1, and

v(n) =
[
v(n), ..., v(n − K + 1)

]T (46)

is the noise vector, X(n) is the input signal matrix and
d(n) is the desired signal vector which are related by

d (n) = XT(n)h + v(n) (47)

The filter coefficients in VSS-APA are updated by

w(n + 1) = w(n) +U(n)X(n)
(
XT(n)X(n)

)−1
e(n) (48)

Combining (11) and (47), we rewrite the estimation
error signal in (11) as

e(n) = −XT(n)w̃(n) + v(n) (49)

Substituting (49) into (48), we obtain

w̃(n + 1) = Q(n)w̃(n) +U(n)X(n)
(
XT(n)X(n)

)−1
v(n) (50)

where

Q(n) = IM − U(n)X(n)
(
XT(n)X(n)

)−1
XT(n) (51)

and IM is the M × M identity matrix.
The MSD is defined as relation (26) and combining it

with (50), we have

�(n + 1) = E
[
w̃T(n)QT(n)Q(n)w̃(n)

]
+

Kσ 2
v

M2σ 2
x
tr

(
U2(n)

)
(52)

Similar to [21], we assume that the entries of X(n) and
v(n) are zero-mean independent and identically distribu-
ted (i.i.d) sequence with variance σ 2

x and σ 2
v , respec-

tively; w̃(n) , X(n) and v(n) are mutually independent.
Therefore, we obtain from (51),

E
(
QT(n)Q(n)

)
=

[
1 +

K
M2

tr
(
U2(n)

)] − 2K
M

U(n) (53)

Combining (52) and (53), we get

�(n + 1) =
[
1 +

K
M2

tr
(
U2(n)

)]
E

[‖w̃(n)‖22] − 2K
M

E
[
w̃T(n)U(n)w̃(n)

]
+

Kσ 2
v

M2σ 2
x
tr

(
U2(n)

) (54)

The optimal step-size is obtained by minimizing the
MSD at each iteration. Taking the first-order partial
derivative of Λ(n+1) with respect to μi(n)(i = 0, ..., M-1),
and setting it to zero, we obtain

μi(n) =
ME

[
w̃2
i (n)

]
E

[
‖w̃(n)‖2

]
+

σ 2
v

σ 2
x

(55)
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To update w̃2
i (n) , we use the following equation

obtained by taking the mean square of the i th entry in
(50):

E
[
w̃2
i (n + 1)

]
=

[
1 − 2K

M
μi(n)

]
E

[
w̃2
i (n)

]
+

K
M2

μ2
i (n)E

[‖w̃(n)‖22] + K
M2

σ 2
v

σ 2
x

μ2
i (n) (56)

We obtain from (49)

E
[
‖e(n)‖2

]
= Kσ 2

x E
[‖w̃(n)‖22] + Kσ 2

v (57)

Substitution of (57) into (56) leads to

E
[
w̃2
i (n + 1)

]
=

[
1 − 2K

M
μ2
i (n)

]
E

[
w̃2
i (n)

] μ2
i (n)

M2σ 2
x
E

[
‖e(n)‖2

]
(58)

It is straightforward to estimate E[||e(n)||2] by a
moving average of ||e(n)||2:

σ̂ 2
e (n) = λσ̂ 2

e (n − 1) + (1 − λ)‖e(n)‖2 (59)

4-4. Variable Step-Size Selective Regressor AP algorithm
using statistics of channel response
The filter coefficients in VSS-SR-APA are updated by

w(n + 1) = w(n) + U(n)XG(n)
(
XT
G(n)XG(n)

)−1
eG(n) (60)

Assuming dG(n) = XT
G(n)h + vG(n) and combining it

with (16), we have

eG(n) = XT
G(n)

(
h − w(n)

)
+ vG(n) = −XT

G(n)w̃(n) + vG(n) (61)

where

vG(n) =
[
v(n − i1), ..., v(n − ip)

]T (62)

Substituting (61) into (60), we obtain

w(n + 1) = w(n) + U(n)XG(n)
(
XT
G(n)XG(n)

)−1 (−XT
G(n)w̃G(n) + vG(n)

) (63)

and

w̃(n + 1) = Q(n)w̃(n) +U(n)XG(n)
(
XT
G(n)XG(n)

)−1
vG(n) (64)

where

Q(n) = IM − U(n)XG(n)
(
XT
G(n)XG(n)

)−1
XT
G(n) (65)

Combining MSD and (65) we have

�(n + 1) = E
[
w̃T(n)QT(n)Q(n)w̃(n)

]
+

Pσ 2
v

M2σ 2
x
tr

(
U2(n)

)
(66)

From (66), we can write

E
(
QT(n)Q(n)

)
=

[
1 +

P
M2

tr
(
U2(n)

)]
IM − 2P

M
U(n) (67)

Combining (66) and (67), we get

�(n + 1) =
[
1 +

P
M2

tr
(
U2(n)

)]
E

[‖w̃(n)‖22] − 2P
M

E
[
w̃T(n)U(n)w̃(n)

]
+

Pσ 2
v

M2σ 2
x
tr

(
U2(n)

) (68)

Taking the first-order partial derivative of Λ(n+1)with
respect to μi(n)(i = 0, ..., M-1), and setting it to zero we
have

∂
(
�(n + 1)

)
∂μi

=
[
2P
M2

μi(n)
]
E

[‖w̃i(n)‖22
] − 2

M
E

[
w̃2
i (n)

]
+

2
M2

σ 2
v

σ 2
x

μi(n) = 0 (69)

Therefore,

μi(n) =
ME

[
w̃2
i (n)

]
E

[
‖w̃(n)‖2

]
+

σ 2
v

σ 2
x

(70)

To update
[
w̃2
i (n)

]
, we use the following equation

obtained by taking the mean square of the j th entry in
(64):

E
[
w̃2
i (n + 1)

]
=

[
1 +

2P
M

μi(n)
]
E

[
w̃2
i (n)

]
+

P
M2

μ2
i (n) E

[
‖w̃(n)‖2

]
+

P
M2

σ 2
v

σ 2
x

μ2
i (n) (71)

From (61), we can write

E
[
‖eG(n)‖2

]
= Pσ 2

x E
[‖w̃(n)‖22] + Pσ 2

v (72)

Therefore,

E
[
w̃2
i (n + 1)

]
=

[
1 +

2P
M

μi (n)
]
E

[
w̃2
i (n)

]
+

μ2
i (n)

M2σ 2
x
E

[
‖eG(n)‖2

]
(73)

It is straightforward to estimate E[||eG(n)||
2] by a

moving average of ||eG(n)||
2:

σ̂ 2
eG(n) = λσ̂ 2

eG(n − 1) + (1 − λ)‖eG(n)‖2 (74)

4-5. Variable Step-Size Selective Partial Update AP
algorithm using statistics of channel response
The filter coefficients in VSS-SPU-APA are updated by

wF(n + 1) = wF(n) +UF(n)XF(n)
(
XT
F(n)XF(n)

)−1
e(n) (75)

Approximating e(n) with

e (n) ≈ XT
F(n)

(
hF − wF(n)

)
+ v(n) ≈ −XT

F(n)w̃F(n) + v(n) (76)

and substituting (76) into (75), we obtain

wF(n + 1) = wF(n) + UF(n)XF(n)
(
XT
F(n)XF(n)

)−1 (−XT
F(n)w̃F(n) + v(n)

) (77)

and

w̃F(n + 1) = Q(n)w̃F(n) +UF(n)XF(n)
(
XT
F(n)XF(n)

)−1
v(n) (78)
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where

Q(n) = ISL − UF(n)XF(n)
(
XT
F(n)XF(n)

)−1
XT
F(n) (79)

Combining MSD and (78) we have

�(n + 1) = E
[
w̃T
F(n)Q

T(n)Q(n)w̃F(n)
]
+

Kσ 2
v

(SL)2σ 2
x

tr
(
U2

F(n)
)
+ E

[‖w̃Ḟ(n)‖22
]

(80)

From (79), we can write

E
(
QT(n)Q(n)

)
=

[
1 +

K

(SL)2
tr

(
U2

F(n)
)] − 2K

SL
UF(n) (81)

Combining (81) and (80), we get

�(n + 1) =
[
1 +

K

(SL)2
tr

(
U2

F(n)
)]

E
[‖w̃F(n)‖22

] − 2K
SL

E
[
w̃T
F(n)UF(n)w̃F(n)

]
+

Kσ 2
v

(SL)2σ 2
x

tr
(
U2

F(n)
)
+ E

[‖w̃Ḟ(n)‖22
] (82)

Taking the first-order partial derivative of Λ(n+1) with
respect to μi(n)(i = 0, ..., M-1), and setting it to zero for
j Î F we have

∂
(
�(n + 1)

)
∂μj

=
[

2K

(SL)2
μj(n)

]
E

[‖w̃F(n)‖22
] − 2K

SL
E

[
w̃2
j (n)

]
+

2K

(SL)2
σ 2
v

σ 2
x

μj(n) = 0 (83)

Therefore, for j Î F we have

μj =
SLE

[
w̃2
j (n)

]
E

[‖w̃F(n)‖22
]
+

σ 2
v

σ 2
x

(84)

To update
[
w̃2
i (n)

]
, we use the following equation

obtained by taking the mean square of the j th entry in
(78):

E
[
w̃2
j (n + 1)

]
=

[
1 +

2K
SL

μj(n)
]
E

[
w̃2
j (n)

]
+

K

(SL)2
μ2
j (n) E

[‖w̃F(n)‖22
]
+

K

(SL)2
σ 2
v

σ 2
x

μ2
j (n) (85)

From (76), we can write

E
[
‖e(n)‖2

]
= Kσ 2

x E
[‖w̃F(n)‖22

]
+ Kσ 2

v (86)

Therefore

E
[
w̃2
j (n + 1)

]
=

[
1 − 2K

SL
μj (n)

]
E

[
w̃2
j (n)

]
+

μ2
j (n)

(SL)2σ 2
x

E
[
‖e(n)‖2

]
(87)

Also E[||e(n)||2] is obtained according to (59).

5. Computational complexity
The computational complexity of the VSS adaptive
algorithms has been given in Tables 1 and 2. The com-
putational complexity of the APA and NLMS is from
[4]. The SPU-NLMS needs 3SL+1 multiplications. This
algorithm needs 1 additional multiplication and B log2S
+O(B) comparisons. Comparing the updated equation
for NLMS and VSS-NLMS shows that the VSS-NLMS
needs 4M + 3 additional multiplication and M division
due to variable step-size. In VSS-SPU-NLMS, the addi-
tional multiplication and additional division is respec-
tively 4SL + 3 and SL. Also, this algorithm needs B log2S
+O(B) comparisons. It is obvious that the computational
complexity of VSS-SPU-NLMS is lower than VSS-
NLMS. The number of reductions in multiplication and
division for VSS-SPU-NLMS is respectively 3(M-SL)-1
and M-SL.
The SPU-APA needs (K2+2K)SL+K3+K2 multiplications.

This algorithm needs 1 additional multiplication and B
log2S+O(B) comparisons. The SR-APA needs (P2+2P)M
+P3+P2 multiplications and K divisions. This algorithm
needs (K-P)M+K+1 additional multiplications and K log2P
+O(K) comparisons. Comparing the updated equation
for APA and VSS-APA shows that the VSS-APA needs

Table 1 The computational complexity of NLMS, SPU-NLMS, VSS-NLMS, and VSS-SPU-NLMS algorithms

Algorithm multiplication Additional division Additional multiplication Comparisons

NLMS 3M+1 - - -

SPU-NLMS 3SL+1 - 1 B log2S+O(B)

VSS-NLMS 4M M 3M+4 -

VSS-SPU-NLMS 4SL SL 3SL+5 B log2S+O(B)

Table 2 The computational complexity of APA, SPU-APA, SR-APA, VSS-APA, VSS-SPU-APA, and VSS-SR-APA

Algorithm multiplication Additional division Additional multiplication Comparisons

APA (K2 + 2K)M+K3+K2 - - -

SPU-APA (K2 + 2K)SL+K3+K2 - 1 B log2S+O(B)

SR-APA (P2 + 2P)M+P3+P2 K (K-P)M + K+1 K log2P+O(K)

VSS-APA (K2 + 2K)M+K3+K2+KM2 M 3M+K+1 -

VSS-SPU-APA (K2 + 2K)SL+K3+K2+KS2L2 SL 3SL + K + 2 B log2S+O(B)

VSS-SR-APA (P2 + 2P)M+P3+P2+PM2 M + K (K-P+3)M+K+P+2 K log2P+O(K)
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KM2+3M+K+1 additional multiplications and M divisions
due to variable step-size. In VSS-SPU-APA, the additional
multiplication is KS2+L2+3SL+K+1 and additional division
is SL. Also, this algorithm needs B log2S+O(B) compari-
sons. It is obvious that the computational complexity of
VSS-SPU-APA is lower than VSS-APA. The number of
reductions in multiplication and division for VSS-SPU-
APA is respectively (K2+2K+4)(M-SL)+K(M2-S2L2) and
M-SL. In VSS-SR-APA, the additional multiplication is
3M+P+1 and additional division is M compared with SR-
APA. Also this algorithm needs K log2P+O(K) compari-
sons. It is obvious that the computational complexity of
VSS-SR-APA is lower than VSS-APA.

6. Experimental results
We presented several simulation results in system
identification scenario. The unknown impulse response
is generated according to hi = eiτ r(i), i = 0, ..., M-1,
where r(i) is a white Gaussian random sequence with
zero-mean and variance σ 2

r of 0.09 [20]. The length of

impulse responses were set to M = 20, and 50 in simu-
lations. Also, the envelope decay rate τ was set 0.04. The
filter input is a zero-mean i.i.d. Gaussian process with

variance σ 2
x = 1 . Another input signal is colored

Gaussian signal which is generated by filtering white
Gaussian noise through a first-order autoregressive (AR
(1)) system with the transfer function:

G (z) =
1

1 − 0.8Z−1
(88)

The white zero-mean Gaussian noise was added to the
filter output such that the SNR = 15dB.
In all simulations, the MSD curves are obtained by

ensemble averaging over 200 independent trials.
Figure 1 shows the MSD curves of APA, VSS-APA in

[17], proposed VSS-APA, ES [19] and GNGD algorithm
[16] for colored Gaussian input and M = 20. The para-
meter K was set to 4 and different values for μ were
used in APA. As we can see, by increasing the step-size,
the convergence speed increases but the steady-state
MSD also increases. The VSS-APA in [17] has both fast
convergence speed and low steady-state MSD. The pro-
posed VSS-APA has faster convergence speed and lower
steady-state MSD than VSS-APA in [17], and classical
APA.
In Figure 2 we presented the MSD curves for colored

Gaussian input and M = 50. In this simulation, the para-
meter K was set to 10. The results are also compared
with APA with different values for the step-size and
VSS-APA proposed in [17]. As we can see the perfor-
mance of proposed VSS-APA has both fast convergence
speed and low steady-state MSD features.
Figure 3 compares the MSD curves of SPU-APA, pro-

posed VSS-APA, and proposed VSS-SPU-APA for
colored Gaussian input and M = 20. The parameters K,
and the number of blocks (B) were set to 4. In this fig-
ure, the number of blocks to update (S) was set to 3 for
SPU-APA. Again, different values for the step-size have
been used in SPU-APA. The first one is (S/B), which is
upper stability bound of SPU-APA, and the second one
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(a) APA, =1
(b) APA, =0.05
(c) VSS-APA proposed in [17]
(d) Proposed-VSS-APA
(e) GNGD, 0= 0.2, =0.15 [16]

(f) ES [19]
(a)(b)(c)

Input : Colored Gaussian signal
M=20, K=4

(e)(f) (d)

Figure 1 Comparing the MSD curves of APA with high and low step-sizes, variable step-size proposed in [17], proposed VSS-APA,
GNGD [16]and ES [19]algorithms with M = 20, K = 4 and colored Gaussian signal as input.

Shams Esfand Abadi and AbbasZadeh Arani EURASIP Journal on Advances in Signal Processing 2011, 2011:97
http://asp.eurasipjournals.com/content/2011/1/97

Page 8 of 15



is (0.05 S/B) wich is low values for the step-size. As we
can see, the convergence speed and steady-state MSD is
changed by the step-size. The proposed VSS-SPU-APA
has fast convergence speed and low steady-state MSD.
The VSS-SPU-APA has been also compared with pro-
posed VSS-APA. Close performance can be seen for
these proposed algorithms. But the computational

complexity of proposed VSS-SPU-APA is lower than
VSS-APA
Figure 4 presents the MSD curves of SPU-APA, pro-

posed VSS-SPU-APA, and VSS-APA, for M = 50, and
colored Gaussian input. The parameter K and the num-
ber of blocks were set to 10, and 5 respectively. In this
figure the parameter S was set to 3, and different values
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(b) APA, =0.05
(c) VSS-APA proposed in [17]
(d) Proposed-VSS-APA
(e) GNGD, 0=0.5, =0.15 [16]

(f) ES [19]
(a)(b)(c)(e)(f) (d)

Input : Colored Gaussian signal
M=50,K=10

Figure 2 Comparing the MSD curves of APA with high and low step-sizes, variable step-size proposed in [17], proposed VSS-APA,
GNGD [16]and ES [19]algorithms with M = 50, K = 10 and colored Gaussian signal as input.
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(a) SPU-APA, B=4, S=3, =S/B
(b) SPU-APA, B=4, S=3, =0.05S/B
(c) Proposed-VSS-APA
(d) Proposed-SPU-APA, B=4, S=3

(a)(b)(c)(d)

Input : Colored Gaussian signal 
M=20,K=4

Figure 3 Comparing the MSD curves of SPU-APA with high and low step-sizes, proposed VSS-APA and proposed VSS-SPU-APA with M
= 20, K = 4 and colored Gaussian signal as input.
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for the step-size have been used in SPU-APA. The
simulation results show that the VSS-SPU-APA has
good performance compared with SPU-APA. Also, the
proposed VSS-APA, and VSS-SPU-APA have close per-
formance. But the computational complexity of VSS-
SPU-APA is lower than VSS-APA.
Figure 5 compares the MSD curves of SPU-NLMS, VSS-

NLMS in [21], proposed VSS-SPU-NLMS, ES [19] and

GNGD algorithms [16]. The parameters B, and S were set
to 4, and 2 respectively. Various values for the step-size
have been used for SPU-NLMS. The simulation results
show that the proposed VSS-SPU-NLMS has fast conver-
gence speed and low steady-state MSD features. Also this
algorithm has close performance to VSS-NLMS in [21].
Good performance can be seen for proposed VSS-SPU-
NLMS. This fact can be seen in Figure 6 for M = 50.
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(c) Proposed-VSS-APA
(d) Proposed-VSS-SPU-APA, B=5, S=3

(a)(b)(c)(d)

Input : Colored Gaussian signal
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Figure 4 Comparing the MSD curves of SPU-APA with high and low step-sizes, proposed VSS-APA and proposed VSS-SPU-APA with M
= 50, K = 10 and colored Gaussian signal as input.
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Figure 5 Comparing the MSD curves of SPU-NLMS with high and low step-sizes, VSS-NLMS proposed in [17], VSS-NLMS proposed in
[21], proposed VSS-SPU-NLMS, GNGD [16]and ES [19]algorithms with M = 20 and colored Gaussian signal as input.
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Figure 7 compares the MSD curves of SR-APA, pro-
posed VSS-SR-APA, and VSS-APA for colored Gaussian
input signal. The parameter K was set 4. Again, large
and small values for step-size have been used in SR-
APA. As we can see, the proposed VSS-SR-APA has
good convergence speed and low steady-state MSD.
This figure shows that the proposed VSS-APA has bet-
ter performance than proposed VSS-SR-APA. In Figure

8, we presented the results for M = 50, and colored
Gaussian input signal. Comparing the MSD curves show
that the VSS-SR-APA has also good performance in this
case.
Figure 9 compares the MSD curves of proposed

VSS-SPU-APA with S = 2 and S = 3, proposed-VSS-
APA, ES [19], GNGD algorithm [16] and VSS-APA
proposed in [17] with M = 20, K = 4 for colored
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(d) Proposed-VSS-SPU-NLMS
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(f) VSS-NLMS, proposed in [17]
(g) ES [19]
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Figure 6 Comparing the MSD curves of SPU-NLMS with high and low step-sizes, VSS-NLMS proposed in [17], VSS-NLMS proposed in
[21], proposed VSS-SPU-NLMS, GNGD [16]and ES [19]algorithms with M = 50 and colored Gaussian signal as input.
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Figure 7 comparing the MSD curves of SR-APA with high and low step-sizes, proposed VSS-APA and proposed VSS-SR-APA in a filter
with M = 20, K = 4 and colored Gaussian signal as input.
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Gaussian signal input. The simulation results show
that the proposed VSS-APA has better performance
than proposed VSS-APA in [17]. Also the perfor-
mance of proposed VSS-SPU-APA for S = 3 is close
to proposed VSS-APA.
Figure 10 compares the MSD curves of proposed VSS-

SPU-NLMS with S = 1 and S = 2 and S = 3, proposed
VSS-NLMS, ES [19], GNGD algorithm [16], and VSS-

NLMS proposed in [17] with M = 20, K = 4 for colored
Gaussian signal input. This figure shows that the
proposed VSS-NLMS has better performance than
VSS-NLMS in [17]. Also by increasing the parameter S,
the MSD curves of VSS-SPU-NLMS will be closed to
VSS-NLMS.
Figure 11 presents the MSD curves of proposed

VSS-SR-APA with P = 1 and P = 2 and P = 3 and
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Figure 8 Comparing the MSD curves of SR-APA with high and low step-sizes, proposed VSS-APA and proposed VSS-SR-APA with M =
50, K = 5 and colored Gaussian signal as input.
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Figure 9 Comparing the MSD curves of proposed VSS-SPU-APA with S = 2 and S = 3, proposed-VSS-APA, VSS-APA proposed in [17],
GNGD [16]and ES [19]algorithms with M = 20, K = 4 and colored Gaussian signal as input.
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proposed VSS-APA, ES [19], GNGD algorithm [16], and
VSS-APA proposed in [17] with M = 20, K = 4 for
colored Gaussian signal input. This figure shows that
the performance of VSS-SR-APA is better than VSS-
APA in [17]. Also, by increasing the parameter P, the
performance of VSS-SR-APA will be closed to VSS-
APA.

Finally, we justified the tracking performance of the
proposed methods in Figure 12. The impulse response
variations are simulated by toggling between different
impulse responses hi = e-iτ r(i) and gi = eiτ r(i). The
impulse response is changed to gi = eiτ r(i) at iteration
4000. As we can see, the proposed VSS algorithms have
good tracking performance. The proposed VSS-APA has
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proposed in [17], GNGD [16]and ES [19]algorithms with M = 20, K = 4 and colored Gaussian signal as input.
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better performance than other algorithms. The perfor-
mance of proposed VSS-SPU-APA with B = 4, and S =
3 is close to proposed VSS-APA.

7. Conclusions
In this paper, we presented the novel VSS adaptive fil-
ter algorithms such as VSS-SPU-NLMS, VSS-APA,
VSS-SR-APA and VSS-SPU-APA based on prior
knowledge of the channel impulse response statistic.
These algorithms exhibit fast convergence while redu-
cing the steady-state MSD as compared to the ordinary
SPU-NLMS, APA, SR-APA and SPU-APA algorithms.
The presented algorithms were also computationally
efficient. We demonstrated the good performance of
the presented VSS adaptive algorithms in system iden-
tification scenario.
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