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Abstract

In this article, a comprehensive study on uncertainty principle of the local polynomial Fourier transform (LPFT) is
presented. It shows that the uncertainty product of the LPFT of an arbitrary order is related to the parameters of
the signal and the window function, in addition to the errors of estimating the polynomial coefficients. Important
factors that affect resolutions of signal representation, such as the window width, the length of overlap between
signal segments, order mismatch and estimation errors of polynomial coefficients, are discussed. The effects of
minimizing computational complexities on signal representation by reducing the order of the transform and the
overlap length between signal segments are also examined. In terms of the signal concentration, comparisons
among the short-time Fourier transform, the Wigner-Ville distribution and the second order LPFT are presented.

distribution

The LPFT is shown to be an excellent candidate providing better representations for time-varying signals.
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1 Introduction

The Fourier transform is an important tool to obtain
signal representation in the frequency domain. However,
it is not suitable to deal with time-varying signals that
contain frequencies changing with time. To describe the
frequency characteristics of such signals, the short-time
Fourier transform (STFT), defined as

+00

STFT (t, ) = /S(t)h(r—t) exp {—jwt} dr, 1)

—0Q

is widely used.” The basic assumption of the STFT is
that the frequencies in each signal segment are not
changed with time so that the frequency variations with
time are approximately described by the Fourier trans-
forms of the successive signal segments. Because this
assumption is not generally true, however, the resolution
of the STFT in the time-frequency domain is often
limited.

To overcome this drawback, other time-frequency
transforms such as fractional Fourier transform [1,2]
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and local polynomial Fourier transform (LPFT) [3] were
proposed. As a generalization of the STFT, the kernel of
the LPFT uses extra parameters to approximate the
phase of the signal into a polynomial form. With these
parameters, or the polynomial coefficients, the LPFT
can describe the time-varying frequencies with a better
accuracy, and therefore the resolution of signal repre-
sentation in the time-frequency domain can be signifi-
cantly improved compared with that achieved by the
STFT. Because the LPFT is a linear transform, it is free
from the cross terms which may exist in some other
time-frequency representations. Due to its desirable
advantages, the LPFT has found applications in various
areas. For example, it has been used to improve radar
images of fast maneuvering targets [4,5]. It has been
applied for non-stationary interference suppression in
noise radar systems [6], as well as in spread spectrum
communications [7], to achieve improved performance
compared with that obtained by the STFT. In [8], the
LPFT-based beamformer is derived for source localiza-
tion and tracking in nonstationary environment, which
can resolve closely spaced sources when their velocities
are sufficiently different. Moreover, the LPFT can be
used as an instantaneous frequency estimator, and the
corresponding asymptotic covariance matrix and bias of
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the estimates are studied in [3]. A comprehensive review
on the LPFT and its applications can be referred to [9].

In the classical time-frequency domain, the product of
time duration and bandwidth cannot be arbitrarily small
and is generally described in the form of the uncertainty
principle [10]. The uncertainty principle plays an impor-
tant role in signal analysis [10], and studies on the
uncertainty principle of various transforms have been
reported in the literature [1,11-16]. For example, it was
reported that the STFT is limited by the uncertainty
principle [17]. The local uncertainty principle was
demonstrated in [12] by defining local quantities as con-
ditional standard deviations, while the standard formula-
tion of the uncertainty principle is in terms of global
standard deviation. It shows that the local uncertainty
product of the spectrogram indeed has a lower bound
due to the windowing approach but it is not a property
of the signal or a fundamental limit. For a large class of
bilinear time-frequency distributions, the local uncer-
tainty product is always less than or equal to the global
uncertainty product and can be arbitrarily small [12].

It has been observed that the resolution of the LPFT
in the time-frequency domain is also influenced by the
window length which controls the tradeoff of bias and
variance [3,18]. Therefore, it is believed that there must
exist some form of the uncertainty principle based on
the LPFT. The uncertainty principle of the second order
LPFT was only recently discussed in [19]. It was shown
that the uncertainty product of the second order LPFT
for the second order PPS is time-independent when
Gaussian window is used to segment the signal. How-
ever, a comprehensive study on the uncertainty principle
for an arbitrary order LPFT has not been reported in
the literature.

Similar to the steps used to derive the uncertainty
principle of the STFT [17], this article firstly reports the
mathematical derivations of the uncertainty principles of
the second, third, fourth order and thereafter Mth order
LPFTs. It is found that the uncertainty product of an
arbitrary order LPFT is related to the parameters of the
signal and the window function, as well as the errors of
estimating the polynomial coefficients. When the poly-
nomial coefficients of the transform kernel are accu-
rately estimated, the uncertainty product becomes a
constant if a Gaussian window is used to segment the
input signal. Based on the derived signal duration and
bandwidth, we can obtain the uncertainty product. Then
we will discuss the effects, in terms of the resolution in
the time-frequency domain and the minimization of the
required computational complexity, of window width,
order mismatch, i.e., using the second order LPFT to
process higher-order PPS, and the length of overlap
between signal segments. Comparisons are also made on
the resolutions of signal representations in the time-
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frequency domain achieved by using the STFT, the
Wigner-Ville distribution (WVD) and the second order
LPFT.

The rest of the article is organized as follows. With
the similar terminologies used in deriving the uncer-
tainty principle of the STFT in Appendix [17], the
uncertainty principles of the LPFTs of various orders
are given in Section 2. Section 3 discusses the effects of
various issues on obtaining desirable signal representa-
tions in the time-frequency domain. Signal concentra-
tions of different time-frequency representations are also
compared. Finally conclusions are given in Section 4.

2 Uncertainty principles of the LPFTs

In this section, the definition of the LPFT is given and
some important issues that affect the computational
complexity are addressed. Then we will give the deriva-
tion of the uncertainty principles of different order
LPFTs and achieve the general expression of the uncer-
tainty principle for the Mth order LPFT.

2.1 The LPFT
The LPFT is a generalization of the STFT, and the Mth-
order LPFT is defined as [3,9]:

LPFT (t, w) :/s(t+r)h(r)exp’—jwr—jiwm;!rmjdr,
T 2)
:/s(r)exp [jwl—jz "Hm! jh(z—t)exp{—jwr}df,
where M is the order of the polynomial function,

Y 10) _ d*Q@)
T dr

M—1
=00 ,ovand oy =4, 20 are the

dlM—l
polynomial coefficients, and Q(¢) is the instantaneous
frequency of the signal.

The LPFT is particularly suited to process the polyno-
mial phase signals (PPSs) with a Gaussian amplitude
defined by

a1/4 at? e At
s(t)=(n) eXP{—Z}QXP[]; ml, } 3)

where P is the order of the PPSs. To compute the
LPFT in (2), the polynomial coefficients w;, ws,.., ®pr1
are first estimated and then used to form the polynomial
phase. The LPFT is obtained by using an STFT proce-
dure whose input is obtained by modulating s(z) with

exp {jor = o, "}

A few important issues, that have direct impacts on
the resolution of time-frequency representation and the
required computational complexity, have to be
addressed. It is always desired to accurately estimate wy,
®9,.., and wy,; so that a high resolution of the signal
representation in the time-frequency domain can be
obtained. The polynomial time frequency transform
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(PTFT) [20,21], which is considered as a maximum like-
lihood estimator, can be used to estimate the polynomial
coefficients used in (2). The PTFT is a transform which
converts a 1-D input signal into a multi-dimensional
output from which the polynomial coefficients are esti-
mated. The maximum number of polynomial coeffi-
cients that can be estimated is the same as the order of
the PTFT. Figure 1 shows a 2D PTFT of two chirp com-
ponents. From the location coordinates of the two
peaks, the values of w and w; for the two chirp compo-
nents can be approximately achieved.

When M, the order of the LPFT, is large, one practical
problem is that the corresponding PTFT requires a
heavy computational load even using the fast algorithms
reported in [22,23]. Based on the radix-2 fast algorithm
for the PTFT [22] and the fast Fourier transform (FFT)
algorithm [24-26] for the STFT computation, the num-
ber of complex multiplications needed by the LPFT is
approximately

Cuper (N) ~ [C{,m (q) + zlog2q+ 0.75q] N
q—1

where N is the length of the input signal, g is the
length of the window (or signal segment), and /, 0 < [ <
q -1, is the length of overlap between signal segments.
In (4), Cprep () is the number of complex multiplica-
tions needed by the rth order PTFT of length g, the sec-
ond term in the square brackets is the number of
complex multiplications for an FFT of length ¢, the
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third term in the square brackets is the number of com-
plex multiplications for windowing and modulation
operations, and the factor outside the square brackets is
approximately the number of the segments used for the
LPFT. It was reported that for the rth order PTFT of
length N, where r = 2 or 3, the required number of
complex multiplications are in the order of N [22].
Because the PTFT requires a heavy computational com-
plexity, especially when N is large, it is important to
find various methods to minimize the computational
complexity for the parameter estimation by using the
PTFT.

Similar to the concept of the STFT which uses Fourier
transform to deal with signal segments that contain
time-varying frequencies, we can use a smaller number
of the polynomial coefficients in the LPFT to approxi-
mate the frequency contents of the signal segments. If
the second order LPFT is used to process higher-order
PPSs, as shown in [27,28] for example, the number of
polynomial coefficients to be estimated is reduced,
which directly leads to the reduction of the PTFT order,
or equivalently the reduction of the required computa-
tional complexity. We will discuss the side effects of this
order mismatch, i.e., the order of the LPFT is smaller
than the order of the PPSs, on the resolution of the sig-
nal representation in the time-frequency domain. Other
practical issues, which also exist in the STFT, including
the effects of window width and the length of overlap
between adjacent signal segments will be discussed. The
computational complexity can be significantly reduced if

components can be approximately achieved.
A

Figure 1 2D PTFT of two chirp components. From the location coordinates of the two peaks, the values of @ and w; for the two chirp
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the overlap length can be minimized without obviously
degrading the resolution of the time-frequency
representation.

2.2 Uncertainty products of the LPFTs
This subsection first presents the uncertainty principles
for the lower order LPFTs, i.e,, M = 2, 3 and 4. Then, a
general expression of the uncertainty principle for the
Mth order LPFT is deduced.

It is assumed that the input signals are PPSs with the
same orders of the LPFTs, i.e.,, M in (2) is equal to P in
(3). The corresponding normalized local signal is

s(T)h(t —t)exp {jwt —]'2214:2 wmily(nr!it)m }

ne (1) = . (5
\/f Is (T) h (1 — 1) [2dt
where
1/4 2
h(t)=(;> exp{—a2 }, (6)

is a Gaussian window used to obtain the signal seg-
ments and 4 >0 is the parameter to control the window
width.

With the above defined input signal and the window
function, the normalization factor, i.e., the integral in
the denominator of (5), becomes

1/2 2
[|s(r)h(r—t)|2dr=( o ) exp{—aat } (7)
7 (a+aw) a+o

Therefore, the normalized local signal is expressed as
o +ay\l/4
n@=(“""
a’t? (¢ +a) T2 "
'EXP{_2(ot+a)]exP{_ 2 +att+]Z m! (8)

m=1
M
) o Om-1(T = O™
.exp{]wt—]g " ]m' .

m=2

For an arbitrary order PPS, it is easy to derive

1/2 2
@ E=(1") exp{—(am)(r—a“fa) } (9)

which is independent of the order of the PPS. With
(32) in Appendix, the mean time, (z);, of the normalized
local signal becomes
at

(t)e = .
a+o

Similarly, we also obtain

a1 a’t?
(T >t_2(a+a)+(a+a)2' (10)
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Therefore the time duration of the normalized local
signal, which is defined in (33) in Appendix, is expressed
as

T? = ! (11)

P 2@+a)

Since both (r), and T? are related to |7,(r)| instead of
N4(7), they are independent of the order of the input sig-
nal. It means that the signal duration in the time
domain is determined by the signal parameter o and
window parameter a only.

Let us now compute the mean frequency (), and the
bandwidth B? for the LPFTs of various orders. For the

second order LPFT, the local signal is

1(t —1)?

w
st(t)=s(r)h(t—t)exp{ja)t—j 5

}, (12

where s(¢), the input of the second order LPFT, is the
second order PPS or the chirp signal, obtained by set-
ting P = 2 in (3), and o, is estimated by using the sec-
ond order PTFT. In this case, the Fourier transform of
the local signal, s,(z), becomes the second order LPFT of
s(2).

The normalized local signal for P = 2 in (8) at the
time ¢t becomes

s(r)h(x —t)exp {jwt —j ”{t)z }

\/f\s(r)h(rft)\zdr
(oz+az)1/4exp{7(oz+a)r2
2

T

ne (7) =

. jait? a’t?
+att+japt +

2 2@+a)
jan(rft)z}

B it —
exp {]C‘) 2

With the definition in (35), we have

at(a; — wy)

(@) = ap + w1t + =ap + w1t + (@ — w1) (7),,(13)

a+uo
in which the first term is related to the signal para-
meter a,, the second term is related to w;, and the last
term is a product of the deviation of @, from a; and the
mean time, (7).
Similarly, by using (37) in Appendix, we have

(a1 — w1)?
20+a)’

a+o

(%) = , ()7 + (14)

which shows that the frequency variance is deter-
mined by the parameters of the signal and the window
in the first term, the square of mean frequency in the
second term, and the scaled square of the estimation
error of the polynomial parameter w; in the last term.

With the above derivation results, the bandwidth in the
domain of the second order LPFT becomes
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2
B2 = (@) — ()22 2T (a1 — w1) . 15
t ((‘) )L ( )t 2 + 2((1+Ot) ( )
Therefore
1 _ 2
Btthz - (al a)l) (16)

+ 5
4 4d(a+a)

which is related to the parameters of the signal and
the window, and the errors of estimating the polynomial
parameters ;.

Let us next consider the uncertainty principle of the
third order LPFT. The local signal is

a(ﬂ=shﬂﬂr—0&m{hﬁ—] T —0>—j% (r—o}

where s(£), the input of the third order LPFT, is the
third order PPS obtained by setting P = 3 in (3).
In this case, the local normalized signal becomes

o+a\l/4
n@=(""")
(a +a)7? . jart?  japT3 a’t?
-expy— +att +JjapT + + —
2 2 6 2(x+a)
jou(t =07 joo(r — z)3}

. iwt —
exp fjon ", ;

With the same procedure, the mean frequency,
defined in (35) in Appendix, is expressed as

a)ztz 1
(@h=ao+ort— " +(@ = o1+ o) (k@ =) () (17)
and (w?),, defined in (37) in Appendix, becomes
(@), =1 ;a + ()] + 2(a1+a) [(a1 — w1 + wat) + (a2 — 2)(z)(] "
(a2 — w)? ( )
8(a+a)?
Thus, the bandwidth becomes
B} = (0%) — (®)}
Ca+a [(ar— o +opt) + (a3 — @) (T)° (a2 — w2)? (19)
T2 2(a+a) 8a+a)?
Therefore
B2T? - 1 . [(a1 — w1 + wat) + (di —w) (1) " (a— wz); (20)
4(a+a) 16(a+a)

It is observed that the uncertainty product, B?T?, is
affected by the errors of estimating the polynomial para-
meters @; and , in addition to the parameters of the
signal and the window function.

By setting P = 4 in (3) and using the fourth order
LPFT, we can similarly obtain the corresponding mean
frequency (w); and the bandwidth B2, which are listed
in Table 1 respectively. From the expressions in the
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table, we can observe the rules of (w), and B? as M, the

order of the LPFT, is increased. The mean frequency
and the bandwidth for the Mth-order LPFT are

i (=) @y "
L (m- 1!
—1 M -

1 —1)ymng L gm—n
+ an + Z (G Wm—1

~ n! (m—n-—1)!
n= m=n+1

—1
(")
M—-1
1 TZl
2 {
Bz Z I

M-1 1 (=1)" e Lgmn=l 2
- m— n—I
[Z (n— 1! (a"+ Zl (m—n—1)! )<T >‘] :

The lengthy mathematical derivation of the above two
equations is omitted due to the space limit. It is
observed that both (w), and B? are related to the
moments (t ”),. The expressions of the moments (z "),,
for n = 1, 2, .., 6, which can be calculated from (34), are
listed in Table 2.

In general the uncertainty product of an arbitrary
order LPFT is related to the parameters of the signal
and the window function, as well as the errors of esti-
mating the polynomial coefficients. When the polyno-
mial coefficients are estimated correctly for the Mth

order LPFT, that is, @, = 990 = 420 the

dr v WM-—1 dtM—1
mean frequency becomes

Table 1 Expressions of (w); and Bf- for LPFTs of order 2,
3and 4

M
(@),
2 do + wit + (a1 - wy) (7);
2 1
3 ag + w1t — + (a1 — w1 +wat) (1), + ) (a; — wy) <r2>t
wy 2 w3 (3 w3 2
ag + w1t — Pt + Pt + (a1 — w1 + Wt — S(T),
1
1 2 3
4 +, (az—w2+w3t)(r )t+6(a3—w3)<r )t
2
B;
a+ao 1 9
2 + (a1 + w1)
2 2(a+a)
a+a 1
3 2 T2are [(a1 — @1 + w20) + (a2 — w2) (1), ] + 8(a+ ) (a3 — )?
a+ao 1 w3 5
) +2(a+a)[(a1—w1+w2t— ) t )+(a2—w2+w3t)(r)t
1
4 +2(113—w3)( 27+ 8(a+a)2(z—w2+w3t)+(ﬂs—w3)(f>zlz
'l )
+ -
48a+a)y 03
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Table 2 Expressions of ("), forn=1,2,3 4,5 and 6

n )
at

1

a+a

2
5 1 . at
2(a+a) a+o

3

3at ( at )3
2 +
2(a+a) a+ao

3 3(at)? at \*
’ 4(a+a)3+(a+a)3+<a+a>

15at 5(at)’ at '\’
5 3+ 4t
4(a+a) (a+a) a+o
15 5(at)? 15(at)* at \°
6 3t 4 5t
8(a+a) 4(a+a) 2(a+a) a+o
a aum M g1
2 -1 — m—1
(w):=ao+a1t+2t2+---+(M_1)!tM1=Z(m_1)! (21)

m=1

which is exactly the instantaneous frequency of the
Mth order PPS.
Without giving further details, the bandwidth in the

domain of the Mth order LPFT is derived as Bf = “3*

when the polynomial parameters are estimated correctly,

which leads to the uncertainty product to be

B?T? = 1 (22)
tot 4

Based on the above derived results, we have the fol-
lowing conclusions. When using the Gaussian window
to segment the signal, the signal duration of the PPS is
only related to the signal parameter ¢, the window para-
meter a and is independent of the order. For M >1, the
bandwidth B? is related to the parameters of the signal
and the window function, as well as the errors of esti-
mating the polynomial parameters w;, @, ..., and wyy 1.
When the polynomial coefficients are estimated accu-
rately, the uncertainty product of the Mth order LPFT,
with the same order PPS as the input, is independent of
time or frequency, and becomes a constant. When there
are errors of estimating the polynomial coefficients, the
bandwidth together with the uncertainty product, are
polynomial functions of these errors, which directly
affect the signal representation in the time-frequency
domain.

It should be noted that in this article the uncertainty
principle of the LPFT is derived based on the PPSs. For
other kind of time-varying signals such as sinusoidal FM
signals or parabolic FM signals, we can use the window
function to segment the signals to ensure that each
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segment within the window can be assumed to be the
PPS. As long as the signal segments can be modeled as
PPSs, the above presented results are still valid. In this
way, the derived uncertainty principle of the LPFT can
also be extended to general time-varying signals.

3 Discussions

The main objective on studying various issues of the
LPFT is to achieve the desired signal resolution in the
time-frequency domain with minimum computational
costs. This section considers a few important issues, in
terms of the uncertainty principles of the LPFTs, that
have direct impacts on signal resolution and the
required computational complexity.

3.1 Window width effects

The uncertainty relations derived in the previous section
show that there exists a trade-off between the resolu-
tions in the time and frequency domains. With the
assumption that the polynomial coefficients used in the
LPFT are accurately estimated, the signal duration T? is
inversely proportional to the sum of window width a
and the signal parameter , while the signal bandwidth
B? is directly proportional to this sum, regardless of the
order of the PPS and the LPFT. With different widths of
the Gaussian window, Figure 2 shows the signal concen-
trations in the time-frequency domain achieved by using
the second order LPFT to process the PPS which con-
tains chirp components.

It is seen that, as a decreases or the window width
increases, the chirp components become more concen-
trated in the frequency domain, or equivalently, the
resolution of the signal representation in the frequency
direction is increased. In contrast, the resolution in the
time direction decreases. This observation is consistent
with the signal duration T? and the bandwidth B?
derived in the last Section. For example, decreasing the
window parameter a leads to the increase of the signal
duration T?, or equivalently, the increase of signal
spread in time. At the same time, the bandwidth B?
decreases as a decreases so that the signal spread in fre-
quency is reduced, that is, the resolution of the signal
representation in the frequency direction is increased.
Because it is impossible to increase the resolution in
both domains at the same time, a compromise has to be
made to balance the requirements of the signal repre-
sentation in the time-frequency domain. When a = 2.5,
for example, Figure 2c¢ provides acceptable resolutions
for both time and frequency domains, that is, the resolu-
tion in the time domain and the frequency domain is
high enough to help us clearly separating the closely
located chirp components.
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Figure 2 The second order LPFTs of a second order PPS. The window length is 1/4 of the signal length.
3.2 Order mismatch effects at? a2a,t? a
As discussed in the Section 1, it is desired to use lower ()t =ao +ait + 5 + 2+ a)? + 1a+a) (23)
order LPFTs to deal with higher-order PPSs to signifi-
cantly reduce the required computational complexity.
However, this mismatch between the orders of the ) A+ (arat)? ﬂ% (24)
LPFT and the PPSs will affect the performance of the t 2 20a+a)®  8@+a)?
signal representation in the time-frequency domain. It is )
necessary to find out how the signal representation in Therefore, the uncertainty product becomes
the time-frequency domain is affected and if possible, 1 1 2 )
how the mismatch effects are to be minimized. Because tz tz = 4 N ( 424 ) + ! 5 (25)
it is difficult to draw a general conclusion for all possi- 4 d@+a)’\a+a 16(a +a)

ble cases, let us consider the use of the second order
LPFT to process the third order PPSs.

By setting w, = 0 in (17) and (19), the mean frequency
and the bandwidth become

1
(@) = ap + w1t + (a1 — @1) (T); + 2a2<1’2)z

at(a) —wy) a2 (28’ +a+a)
=dg + w1l + 5 ,
a+o 4(a+a)
2 2
a+o 1 azat a
Bt2= + (ag —wr1) + 2 + 2 3¢
2 2(@a+a) a+a 8(a+a)

When the parameter w; is estimated correctly, i.e., w;
= a; + a»t, we have

In (23) or (24), the last term is the effects of the
order mismatch, which are directly proportional to the
polynomial coefficient, a,. Therefore, the order mis-
match may have a small effect when a, is small
enough, which is generally true in many practical
applications. Another way to reduce the effect of the
order mismatch is to minimize the signal duration T?
by decreasing the window width or increasing the win-
dow parameter a. For example, when a — «, (®); in
(23) is approaching to ap +ait+ “;tz, which is the

instantaneous frequency of the third order PPS. Mean-

a+o

while B? in (24) is approaching to “3*. It means that,

when the third order PPS is processed with the second
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order LPFT, (w); and B? of the second order LPFT
approach to those of the third order LPFT as the win-
dow width is decreased. The uncertainty product in
(25) also approaches to the minimum.

When the signal parameter o approaches to zero, the
third order PPS with a Gaussian amplitude becomes a
third order PPS with a constant amplitude. Under this
situation, the mean frequency and bandwidth become

2

art ap
(w) = ap + art + 5 + aq’
X a4 (26)
B? = ¢ + “
2 8a%
and the uncertainty product is
1 a
BXT?= + 2 as a—0, (27)
4 1643

which increases with the increase of the polynomial
coefficient a, and with the decrease of the window para-
meter a. Similarly, as a goes to infinity, (w), approaches

to the instantaneous frequency, and B>T? approaches to

1
which is the minimum of the uncertainty product.

From the above discussion, it is seen that increasing
the window parameter a always helps to achieve a better
estimation of the instantaneous frequency (w),. It should
be noted that, however, as a goes to infinity, that is as
the window becomes narrower in the time domain, the
signal bandwidth B?, or the spread in frequency in (24)
also approaches to infinity, which decreases the resolu-
tion in frequency. Therefore, the window width for
practical applications should be properly selected to
achieve a compromise between the resolutions in both
time and frequency. An adaptive procedure for window
length selection has been provided in [28]. Similarly, an
automated procedure for window width selection is pos-
sible and will be discussed in our future study.

3.3 Effects of overlap lengths

It was shown in [28] that when the second order LPFT is
used to process the chirp signals, the length of overlap
between the adjacent signal segments can be significantly
reduced without obviously degrading the signal resolution
in the time-frequency domain, which allows us to further
minimize the required computational complexity. For
example, the required number of complex multiplications
in (4) is reduced as [ increases. For the third order PPS,

a4 _ . i 302 —643
() = ( ) ot /2[8](0.4L+1.15x10 241.48x10751%)

T (28)
+ ej(0.45t+1.15><10’312+1.48><10’6t3)]

Page 8 of 13

with o = 107, Figure 3a shows the signal representa-
tion obtained by the third order LPFT without any
overlap. Compared to the performance with the maxi-
mum overlap, i.e., / = g-1, as shown in Figure 3b, no
obvious degradation in signal resolution is observed
compared to Figure 3a. Because the total computa-
tional complexity is directly proportional to the num-
ber of signal segments being processed, the LPFT
computation without overlap between signal segments
makes significant savings on the computational com-
plexity compared to that using the overlap between
signal segments.

Let us next consider the effects of using lower order
LPFT with different overlap lengths. Figure 4a shows
the representation of the third order PPS obtained by
using the second order LPFT without any overlap.
Obvious unsmoothness is observed at the junctions of
two adjacent segments where the values of the estimated
chirp rates have sudden changes. This order mismatch
effect can be minimized by increasing the length of
overlap between the adjacent segments. As shown in
Figure 4b, the second order LPFT with the maximum
overlap achieves a representation that is comparable to
that obtained by using the third order LPFT in Figure
3b.

To process higher-order PPSs with the second order
LPFT, another method for improvement on signal
representation is to reduce the window length to ensure
that each segment can be approximately assumed as a
chirp component. Compared with Figure 4a, ¢ shows
the improvement on the smoothness of signal represen-
tation, which is achieved by reducing the window length
from 1/4 to 1/8 of the signal length. It should be noted
that, compared with the third order LPFT with the
small window length in Figure 4d, the second order
LPFT with the same window length in Figure 4c can
achieve comparable result and with less computational
complexity. It is worth mentioning that for any order
LPFTs, the frequency resolution will become degraded
as the window length is reduced, as shown in Figure 4c,
d. For other higher-order PPSs, the second order LPFT
can also be used, as long as the window length is small
enough to ensure that each segment within the window
can be approximately assumed as the chirp signal.

3.4 Resolution comparisons

Let us now consider the performances achieved by the
STFT and the second order LPFT of a chirp signal
obtained from (3) with P = 2. Using the STFT, the cor-
responding mean frequency and bandwidth are [29]

aait , a+a a3

t 2 +2(a+o¢)' (29)

(a))t:a0+ ’
a+o
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Figure 3 The third order LPFTs of a third order PPS with a = 2.5 (the window length is 1/4 of the signal length). (@) The LPFT without
overlap between adjacent segments, and (b) The LPFT with the maximum overlap.
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Figure 4 The LPFTs of the third order PPS with a = 2.5. (a) The second order LPFT without overlap, (b) the second order LPFT with the
maximum overlap, (c) the second order LPFT without overlap and with a shorter window, and (d) the third order LPFT without overlap. The
window length for (a) and (b) is 1/4 of signal length and that for (c) and (d) is 1/8 of signal length.
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The mean time (z), and the duration T? of the STFT
are the same as those of the LPFT. Therefore the uncer-
tainty product of the STFT is

2
B2T2 1 a;

= . 30
P4 4+ a)? (30

When a; = 0, the input signal becomes one whose fre-
quencies do not change with time and the STFT
achieves the lowest bound of the uncertainty product

1
BIT? = 4 Therefore, the STFT can provide good reso-

lution only for signals with constant frequencies. For the
chirp signals, however, Bf in (29) has a non-zero second

term. Therefore, the uncertainty product B2T? of the
1
STET of time-varying signals must be larger than 4 For

the same input signal, if the polynomial coefficient, w;,
of the LPFT is correctly estimated, we achieve the low-

1
est bound of the uncertainty product B>T? = x as seen

in (22). Therefore the second order LPFT achieves a
more concentrated distribution in the time-frequency
domain than the STFT.

Another important issue on the LPFT is about the
estimation errors on ;. Although the PTFT is the max-
imum likelihood estimator, it is still possible to have
some estimation errors, especially when the signals are
corrupted by heavy noises. Because the second term of
(15) is proportional to (a; - w,)? the uncertain product

for the second order LPFT of chirp signals is B2T? > le

if w; is not correctly estimated. Comparing (15) and
(29) reveals that as long as |a; - ®1|< |ay], i.e., the esti-
mation error of w; is smaller than |a;|, the LPFT of the
chirp signal achieves a smaller bandwidth than the
STFT. Therefore, the second order LPFT can still
achieve a more concentrated distribution in the time-
frequency domain than the STFT. Furthermore, the
resolution performance of the STFT cannot be further
improved because a; in (29) or (30) is the signal para-
meter. In comparison, improvement on the resolution
performance of the LPFT can be achieved by minimiz-
ing the error of parameter estimation. It should be
noted that if the estimation error of w; is larger than |
ay|, the resolution of the LPFT will become worse than
that of the STFT although such a case rarely happens
when the PTFT is used to estimate the polynomial
coefficients.

Besides the STFT and LPFT, which are linear time-
frequency transforms, another bilinear time-frequency
transform, known as the WVD, has been often used in
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many applications [29]. The WVD of the chirp signal is

1 —at — ag)?

WVD (1, @) =  exp {—atz _ (@=ait=do) } .

bid o

When is small, the WVD is concentrated on @ = ag +

ait. The associated mean frequency and bandwidth are
[29]

o
(w); =ap +a;t and Bt2=2

It means that the WVD can provide a better fre-
quency resolution for chirp signals as far as o is small
enough. However, the WVD suffers from the cross
terms for multiple-component signals. It is difficult to
remove the cross terms without sacrificing the resolu-
tion of the signal representation, particularly for non-
linear multiple-component chirp signals [29].

In order to clearly show the frequency resolution of
the signal, Figure 5 compares signal concentration
obtained from the STFT, LPFT and WVD at a particular
time instant. Resolution usually means whether we can
separate two closely located components in the time
and/or frequency domains, while concentration
describes how the transforms concentrate along the sig-
nal’s instantaneous frequency. Resolution and concentra-
tion are closely related and high concentration generally
contributes to high resolution. For signals with constant
frequency components, the STFT can provide the good
frequency resolution, as shown in Figure 5. For chirp
signals, with the same window length and window para-
meter a, however, the LPFT achieves a better frequency
resolution as seen in Figure 5b, c. Although the WVD
also has a better frequency resolution, the cross terms
between the two chirp components, as shown in Figure
5d, can be easily mistaken as a valid frequency compo-
nent. Therefore, the second order LPFT is the best
choice for dealing with chirp signals since it is free from
the cross terms and also achieves a better resolution
than the STFT.

4 Conclusion

In this article, the LPFT is shown to be limited by the
uncertainty principle, and the un-certainty relations of
various order LPFTs are derived to show the trade-off
between the resolutions of signal representation in the
time and frequency domains and the required computa-
tional complexity. The uncertainty product of an arbi-
trary order is determined by the signal parameters, the
window function and the errors of estimating the poly-
nomial coefficients. When Gaussian window function is
employed to segment the signals, the uncertainty pro-
ducts of the LPFT are time independent under the
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Figure 5 The signal concentration comparisons of different time-frequency rep-resentations for a two-component signal. (@) The STFT
of a signal with constant frequencies; (b)-(d) The concentrations of chirp signals using the STFT, the second order LPFT, and the WVD,
respectively. The horizontal axis is the normalized frequency, and the vertical axis is the normalized amplitude.

condition that the polynomial coefficients are accurately
estimated. The effects of the window width, the estima-
tion errors, and the order mismatch by using the second
order LPFT to process higher-order PPSs are discussed.
Resolution comparisons with the STFT and WVD are
also provided to show the merits of the LPFT, and the
LPFT is found to be a better tool to dealing with time-
varying signals.

Appendix

Review on uncertainty principles of the STFT

This appendix provides an example of deriving the
uncertainty principle for the STFT. The definitions of
some terminologies in this appendix are also used in the
main sections of this article. Let us consider the Pth-
order PPS defined in (3) as the input signal. By multi-
plying s() with a window function /(¢), the local signal
is defined as s,(z) = s(¢)h(¢ - 7). It is easily seen that the
Fourier transform of the local signal s,(7) is exactly the
STFT of the original signal s(¢). The normalized local
signal at time ¢ is

s(t)h(t —1)

77[ (T) = ’
\/f Is(t) b (x — 1) 2dt

(31)

which ensures that for any ¢, [|n,(z)|’dr = 1. Let us
review some terminologies based on the normalized
local signal 7n,(z) [29] which is a function of 7 within a
short duration, and its Fourier transform is defined as

Fi (@) [n(7)exp {—ja)r} dr,

to reveal the spectral information around the time
instant ¢. For this normalized local signal, all the rele-
vant quantities, such as the mean time duration, mean
frequency and bandwidth, are time dependent [29].

The mean time of the normalized local signal is
defined as

a2
<r>t=fr|m(r>|2dr—ff's(”h“ DT o)

~ [Is(@h(r —1t)2de’
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and its time duration is defined as

[ - @@= () - 0, 6

where (%), is the second order moment of the normal-
ized local signal, defined as

(r?), = S I (7) PPde.

Similarly, the nth order moment of the normalized
local signal is defined as

{t"), = S " Ine (0) PPdr. (34)

The mean frequency of the normalized local signal is
defined as

1d
= [ olFi@ o= [ @ RACTONCY
and its bandwidth is

B2 - / (@ — (@))?IF (@) Pdo = (07), — ()2, (36)

where

2
<a)2)t = /a)ZIF[ (o) *dw = — / ni (v) d gigt)dr.(37)

Here the duration T? and bandwidth B? are good
measures of the broadness of the local signal in the time
and frequency domains, respectively. For example, T?

(or B?) of a signal means the width of the signal con-
centrated around the mean time (), (or mean frequency
(w);). The uncertainty product in the STFT domain is
generally a function of time, the signal s(¢) and the win-
dow /(t), and has a lower bound [29]

1
gﬁzl

It should be noted that the focus of this article is on
the uncertainty product obtained by multiplying the
duration and bandwidth of the local signal. It is impor-
tant to understand that this uncertainty product places
limits on the processing techniques of the windowed
transforms. Other kinds of uncertainty products, such as
the global uncertainty products, can be referred to [17].

Endnote

*For simplicity in the rest of the article, the integral
without limits implies that the integra-tion is from -
to oo,
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STFT: short-time Fourier transform; LPFT: local polynomial Fourier transform;
WVD: Wigner-Ville distribution; PPSs: polynomial phase signals; PTFT:
polynomial time frequency transform; FFT: fast Fourier transform.
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