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Abstract

Pixel binning refers to the concept of combining the electrical charges of neighboring pixels together to form a
superpixel. The main benefit of this technique is that the combined charges would overcome the read noise at the
sacrifice of spatial resolution. Binning in color image sensors results in superpixel Bayer pattern data, and subsequent
demosaicking yields the final, lower resolution, less noisy image. It is common knowledge among the practitioners
and camera manufacturers, however, that binning introduces severe artifacts. The in-depth analysis in this article
proves that these artifacts are far worse than the ones stemming from loss of resolution or demosaicking, and
therefore it cannot be eliminated simply by increasing the sensor resolution. By accurately characterizing the sensor
data that has been binned, we propose a post-capture binning data processing solution that succeeds in suppressing
noise and preserving image details. We verify experimentally that the proposed method outperforms the existing
alternatives by a substantial margin.

1 Introduction
Recent progress on digital camera technology has had
extraordinary impact on numerous electronic industries,
including mobile phones, security, vehicle, bioengineer-
ing, and computer vision systems. In many applications,
sensor resolution has exceeded the optical resolution,
meaning that the additional hardware complexity to
increase pixel density would not necessarily result in large
image quality gains. The significant improvement in sen-
sor sensitivity has allowed cameras to operate in lighting
conditions that were unthinkable with film cameras.
Despite increased sensitivity, however, noise remains a

serious problem in modern image sensors. Available tech-
nologies for reducing noise in hardware include backside
illuminated architecture [1,2], color filters with higher
transmittance [3,4], and pixel binning [5-7]. Processing
techniques at our disposal include image denoising [8-10],
joint denoising and demosaicking [11-14], image deblur-
ring [15,16] (long shutter to compensate for light), and
single-shot high dynamic range imaging [17].
The goal of this article is to provide a comprehensive

characterization of the pixel binning for color image sen-
sors, and propose post-capture signal processing steps
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aimed at eliminating the binning artifacts. Binning refers
to the concept of combining the electrical charges of
neighboring pixels together to form a superpixel. The
combined signal will then be amplified by a source fol-
lower and converted into digital values by an analog-to-
digital converter. Themain benefit of this technique is that
the combined charges would overcome the read noise,
even if the individual pixel values are small. The improved
noise performance comes at the price of spatial resolution
loss, however. Binning in color image sensors is compli-
cated by the presence of color filter array (CFA). Data are
typically obtained via a single CCD or CMOS sensor with
a CFA spatial subsampling procedure, a physical construc-
tion whereby each pixel location measures only a single
color. Figures 1a,b show themost well knownCFA scheme
called the Bayer pattern, which involves red, green, and
blue filters. To maintain the fidelity of color, binning in
color image sensors are performed by combining neigh-
boring pixels with the same color filter. As evidenced
by the two well known binning configurations shown in
Figures 1a,b, the resultant superpixel form a Bayer pat-
tern, as shown in Figure 1c. The subsequent demosaicking
algorithm—the process of interpolating to recover the full
RGB representation of the image from the CFA subsam-
pled sensor data—yields the final, lower resolution, less
noisy image.
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(a) Kodak PIXELUX [7] (b) PhaseOne [5] (c) Output

Figure 1 Commonly used binning schemes. Binning refers to the concept of combining the electrical charges of neighboring pixels together to
form a superpixel. (a–b) The numbers over the high resolution Bayer pattern indicate which pixels are combined together. (c) The resultant
superpixel Bayer pattern, where the numbers indicate the relative locations of the combined pixels (for [7] and [5]).

However, it is a common knowledge among the
practitioners and camera manufacturers that binning
introduces pixelization artifacts. An example is shown
in Figure 2. As will be made clear in the sequel, these
artifacts differ from the ones stemming from loss of res-
olution, and therefore it cannot be eliminated simply by
increasing the sensor resolution. In-depth analysis of the
sampling scheme implied by the binning proves that gross
mismatch between binning and demosaicking results is at
fault for the severe pixelization. Hence the right way to
correct this problem is to design a binning-aware demo-
saicking algorithm. The proposedmethod still draws from
the established demosaicking principles, but with pro-
found differences in the way spatially high frequency
components are handled. To the best of the knowledge of
the authors, this is the first major article to examine pixel
binning problem in color image sensors from the signal
processing perspective, and to provide post-capture pro-
cessing solution to correct for the pixelization artifacts.
The remainder of this article is organized as follows. We

begin by briefly reviewing CFA sampling and demosaick-
ing in Section 2. Section 3 provides a rigorous analysis of
binning. A novel binning-aware demosaicking technique
is developed in Section 4. We experimentally verify its

effectiveness in 5 before making concluding remarks in
Section 6.

2 Background
2.1 CFA sampling
Thanks to the seminal work of [18] and further inves-
tigations by [19-21], CFA sampling is well characterized
and understood. The key insight is the two dimensional
Fourier analysis of CFA sampled sensor data, which
reveals that the signal is preserved by an efficient space-
color representation. Specifically, let x : Z

2 → R
3,

where x(n) =[ xr(n), xg(n), xb(n)]T correspond to the
RGB tri-stimulus value at location n ∈ Z

2. Then the CFA
subsampled data has the following form:

y(n) =c(n)Tx(n)

=c(n)T

⎡
⎣1 1 0
1 0 0
1 0 1

⎤
⎦
⎡
⎣0 1 0
1 −1 0
0 −1 1

⎤
⎦ x(n)

= [
1 cα(n) cβ(n)

] ⎡⎣xg(n)

xα(n)

xβ(n)

⎤
⎦ ,

(1)

Figure 2 Binning vs. no binning. Compared to no binning, binning succeeds in reducing noise. However, the pixelization and zippering artifacts
deteriorate the image quality. (a) Reconstruction from full resolution CFA; (b) reconstruction from Kodak PIXELUX scheme of Figure 1a; (c)
reconstruction from PhaseOne scheme of Figure 1b.



Jin and Hirakawa EURASIP Journal on Advances in Signal Processing 2012, 2012:125 Page 3 of 15
http://asp.eurasipjournals.com/content/2012/1/125

where c : Z2 →[ 0, 1]3 denotes the translucency of CFA
at location n. The advantage to the representation is that
the difference images xα = xr−xg and xβ = xb−xg enjoy
rapid spectral decay and can serve as a proxy for chromi-
nance. On the other hand, the “baseband” green image
xg can be taken to approximate luminance. As our even-
tual image recovery task will be to approximate the true
color image triple x(n) from acquired sensor data y(n),
note that recovering either representations ({xr , xg , xb} or
{xg , xα , xβ}) are equivalent. Moreover, the representation
of (1) allows us to re-cast the pure-color sampling struc-
ture in terms of sampling structures cα and cβ associated
with the difference channels xα and xβ . For more exten-
sive investigation on the bandlimitedness assumptions of
{xg , xα , xβ}, see [18-20].
Denote by the uppercase letters the discrete space

Fourier transforms and ω = (ω1,ω2)
T ∈ {R/(2π)}2

(R/(2π) denotes the quotient group of R by the subgroup
2πZ) the two dimensional Fourier index. Then the Fourier
analysis of CFA is:

Cα(ω) =
∑

λ∈πZ2
2

δ(ω − λ)

4
,

Cβ(ω) =
∑

λ∈πZ2
2

ej{λT(11)} δ(ω − λ)

4
,

where δ(·) is the Dirac delta function, and Z2 denotes the
cyclic group of order 2. Note that the phase shift term in
Cβ arises due to the relative position of blue pixels relative
to the red (the origin is assumed to be on a red pixel). The
corresponding Fourier analysis of the sensor data y takes
the following form:

Y (ω) = Xg(ω) + Cα(ω) � Xα(ω) + Cβ(ω) � Xβ(ω)

= Xg(ω) +
∑

λ∈πZ2
2

Xα(ω − λ) + ej{λT(11)}Xβ(ω − λ)

4
, (2)

where � denotes convolution. The Fourier support of the
resultant sensor signal is shown in Figure 3.

2.2 Demosaicking
Most demosaicking algorithms described in the literature
make use (either implicitly or explicitly) of correlation
structure in the spatial frequency domain, often in the
form of local sparsity or directional filtering [14,19,21-23].
As noted in our earlier discussion, the set of carrier fre-
quencies induced by cα and cβ include [π , 0]T and [ 0,π ]T ,
locations that are particularly susceptible to aliasing by
horizontal and vertical edges. Figures 3b,c indicates these
scenarios, respectively; it may be seen that in contrast to
the radially symmetric baseband spectrum of Figure 3a,
chrominance–luminance aliasing occurs along one of
either the horizontal or vertical axes. However, success-
ful reconstruction can still occur if a noncorrupted copy
of this chrominance information is recovered, thereby
explaining the popularity of (nonlinear) directional fil-
tering steps [19,21-23]. We can, therefore, view the CFA
design problem as one of spatial-frequency multiplexing,
and the CFA demosaicking problem as one of demulti-
plexing to recover subcarriers, with spectral aliasing given
the interpretation of “cross talk” [19].
In order to carry out this demultiplexing, signal-

adaptive demosaicking methods take the scenarios of
Figure 3a–c into account. Typically, this is carried out by
first filtering in both horizontal and vertical directions to
yield reconstructions x̂h and x̂v, respectively. Taking their
convex combination to yield the final result:

x̂τ (n) = τ(n)x̂h(n) + (1 − τ(n))x̂v(n), (3)

where τ ∈[ 0, 1] is a set of weights. Based on models of
a “natural image” behavior, various policies for deter-
mining the appropriate weights have been developed

(a) Radially symmetric (b) Vertical feature (c) Horizontal feature

Figure 3 Idealized spectral support of a color image acquired under the Bayer pattern. In each figure, the horizontal and vertical axes span
[−π ,π)2 of Fourier index, and the DC is located at the center of the figure. Solid lines indicate the baseband signals, while replicated spectra with
the dashed lines arises as a result of CFA sampling. Black and red lines correspond to the support of luminance and chrominance images,
respectively. Alias-inducing chrominance replications are shown with (a) Radially symmetric luminance, (b) vertical feature luminance,
(c) horizontal feature luminance.
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[14,19,21-23]. For example, the weight combination
should maximize the homogeneity ux̂(n)—defined as a
percentage of pixels in the neighborhood of n (denoted
η(n)) that are similar to x(n) [22]:

ux̂(n) = #{m ∈ η(n) : d(x̂(n), x̂(m)) < ε}
#{η(n)} (4)

where d(·, ·) is some distance metric and ε is a tolerance
parameter.

3 Analysis of binning
Let us rigorously analyze the effects that binning has on
the acquired sensor data. We begin in Section 3.1 with a
brief review of the signal-to-noise ratio (SNR) gains that
binning is expected to improve [24]—the main motiva-
tion behind binning. An in-depth analysis in Section 3.2
will prove that a combination of binning and demosaick-
ing results in a loss of resolution that is far worse than
commonly believed. Section 3.3 offers an alternative per-
spective that paves a path towards recovering artifact-free
images.

3.1 Signal measurement uncertainty
There are at least three types of noise that contribute to
the overall error. “Shot noise” is due to the stochasticity
of the photon arrival process, and it is well modeled by
Poisson distribution. The dark current stemming from
in-circuit electron excitation results in “thermal noise,”
whose power is proportional to the exposure time. Finally,
the source follower and analog-to-digital converter
introduce the homoscedastic noise that is known as the
“read noise.” The overall SNR of captured image is well
modeled by:

SNRpix := 20 log10(Q·t ·y)−10 log10(Q·t ·y+D·t+N),
(5)

where t is the exposure time, Q is the quantum efficiency
constant,D is the dark current constant, andN is the read
noise power.
Owing to the fact that the image sensor resolution

exceeds the optical resolution in many applications, bin-
ning is an attractive way to trade off the excess spatial res-
olution for gains in SNR. It is instructive first to consider
summing M pixel values digitally, post-acquisition. The
signal y is boostedM-fold while the noise power increases
M times, resulting in an overall 10 log10(M) dB gain:

SNRsum :=20 log10(M · Q · t · y)
− 10 log10(M · Q · t · y+M · D · t+M · N)

=SNRpix + 10 log10(M) ≥ SNRpix.
(6)

Combining electrical charges of neighboring pixels to
form a superpixel in hardware offers advantages over sim-
ply summing pixels digitally. The main difference is that
when the electrical charges are combined before source
follower and analog-to-digital converter, the uncertainty
due to read noise remains constant. The corresponding
SNR is:

SNRbin =20 log10(M · Q · t · y)
− 10 log10(M · Q · t · y + M · D · t + N)

≥SNRsum.
(7)

As illustrated by the example in Figure 4, the differences
between SNRbin and SNRsum are more noticeable when
the signal intensity y becomes small and read noise
N become dominant—meaning that binning is most
effective in the low light ranges.

3.2 Binning “sampling”
Due to the fact that binning combines M electric charges
of neighboring pixels, each pixel cannot be shared by
more than one superpixel. Moreover, the charges can be
combined by summation only (i.e. no fractional combina-
tions). As such, the options for binning schemes are fairly
limited. Furthermore, the superpixels produced by pixel
binning in color image sensors form a Bayer pattern that
requires the additional step of demosaicking to recover the
full color low resolution image. We will show that super-
pixel Bayer pattern suffers from many problems that the
pixel-level Bayer pattern does not, leading to the conclu-
sion that combining pixel binning and demosaicking is the
wrong approach.
Consider Kodak PIXELUX, the most widely used bin-

ning scheme illustrated in Figure 1a,c [7]. It combines four
neighboring pixel values together to form one superpixel.

Figure 4 SNR as a function of signal intensity. Here,M = 4,
Q = 0.70, t = 1/100 s, D = 0.1 electrons/pixel/second, and N = 10
electrons rms/pixel [24]. See (5-7).
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This process of combining neighboring pixels to form a
single superpixel is equivalent to applying a convolution
operator followed by downsampling:

• filtering: let hbin denote the filter coefficients

hbin(n) =�

(
n −

(
1
1

))
+ �

(
n −

(
1

−1

))

+ �

(
n −

(−1
1

))
+ �

(
n −

(−1
−1

))
,

(8)

where �(·) denotes the Kronecker delta function.
Then the charge summation in PIXELUX is

ybin(n) =y(n) � hbin(n).

• downsampling: to yield the superpixel Bayer pattern
data s, do

s(2n) =ybin(4n)

s
(
2n +

(
0
1

))
=ybin

(
4n +

(
0
1

))

s
(
2n +

(
1
0

))
=ybin

(
4n +

(
1
0

))

s
(
2n +

(
1
1

))
=ybin

(
4n +

(
1
1

))
.

(9)

Note that downsampling implied by (9) is non-uniform—
the spatial relationships between samples are changed by
the different relative shifts applied to each super pixels
(contrast this to (11) below). The Fourier transform of s is
(derived in Appendix 2):

S(ω) ≈
∑

λ∈πZ2
2

⎛
⎝Xα

(
ω − λ

2

)

+ ej(
ω
2 )

T
(11)︸ ︷︷ ︸

unwanted filter

ej
(

λ
2

)T
(11)Xβ

(
ω − λ

2

)⎞⎠

+
∑
θ∈Z2

2

ej(
ω
2 )

T
θHbin

(
ω
2
)

16︸ ︷︷ ︸
unwanted filter

Xg
(ω

2

)

+
∑

λ∈ π
2 Z

2
4\(00)

∑
θ∈Z2

2

ej(
ω
2 +λ)

T
θHbin

(
ω
2 − λ

)
16︸ ︷︷ ︸

antialias filter

Xg
(ω

2
− λ

)
︸ ︷︷ ︸

aliasing

.

(10)

The corresponding Fourier support of S(ω) is shown in
Figure 5. Note that the unwanted filter will boost Xg to 16

Figure 5 Idealized spectral support of binning sampled data
S(ω) in (10), corresponding to Figure 1. As before, solid lines
indicate the baseband signals, while spectra with the dashed lines
arises as a result of CFA sampling. Black and red lines correspond to
the support of luminance and chrominance images, respectively. The
blue box represents the original sampling rate.

at the DC. The approximate relation above is admitted by
the bandlimitedness assumptions of Xα and Xβ :

Hbin(ω)Xα(ω − λ) ≈4Xα(ω − λ)

Hbin(ω)Xβ(ω − λ) ≈4Xβ(ω − λ).

The main advantage of binning in (9) over (2) is that
the signal strength of the baseband Xg and the chromi-
nance components Xα and Xβ are boosted by four times—
consistent with the SNR analysis in the previous section.
As evidenced by Figure 5a, the Fourier support of (9)
closely resembles the Bayer pattern of Figure 3a. Super-
pixel Bayer pattern data in (10) is far from an ideal Bayer
pattern representation of the true image x(n) we hope to
recover from s(n), however. One distortion we see is the
unwanted filtering term

∑
θ∈Z2

2
ejωT θ/2 that degrades the

baseband luminance/green signal Xg(ω). Another compli-
cation is that the antialiasing is only partially effective,
allowing aliasing to corrupt the baseband Xg(ω) near ω =
±[ 0, π

4 ]
T ,±[ π

4 , 0]
T ,±[ π

4 ,
π
4 ]

T ,±[ π
4 ,

−π
4 ]T .

Contrary to the popular belief that Kodak PIXELUX
binning results in 2 × 2 reduction in resolution, the main
conclusion we draw from (9) is that the “Nyquist rate” of
this binning scheme is π/4 due to high risk of aliasing—
implying that the actual resolution loss is 4 × 4, far worse
than the presumed 2× 2. Even if this Nyquist rate did not
cause problems (e.g. increase sensor resolution), s does
not escape the unwanted filtering term in (9)—this can-
not be eliminated simply by increasing sensor resolution.
Hence when a demosaicking algorithm is applied to the
superpixel Bayer pattern data s, what is expected is a
filtered and aliased image that we have already seen in
Figure 2.

3.3 Binning “subsampling”
Below, we offer an alternative perspective to the analy-
sis of Section 3.2. The analytical results contained herein
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will provide the basis for the proposed binning-aware
demosaicking algorithm. Continuing with the analysis of
PIXELUX, consider Figure 6a which displays data equiv-
alent to the superpixels of Figure 1c. The superpixels are
placed at the center of the four averaged pixels, denot-
ing the implied superpixel positions. Other locations are
given 0 value. This data can be represented by applying a
convolution operator followed by subsampling, as follows:

• filtering: The charge summation in PIXELUX is

ybin(n) =y(n) � hbin(n).

• subsampling: to yield the binning subsampling data t,
do

t(4n) =ybin(4n)

t
(
4n +

(
0
1

))
=ybin

(
4n +

(
0
1

))

t
(
4n +

(
1
0

))
=ybin

(
4n +

(
1
0

))

t
(
4n +

(
1
1

))
=ybin

(
4n +

(
1
1

))
t(n) =0 otherwise.

(11)

With arithmetic, the Fourier transform of t is deduced
to:

T(ω) ≈
∑

λ∈ π
2 Z

2
4

Xα(ω − λ) + ej{λT(11)}Xβ(ω − λ)

4

+
∑

λ∈ π
2 Z

2
4

∑
θ∈Z2

2

ej{λT θ}Hbin(ω − λ)Xg(ω − λ)

16
.

(12)

(a) subsampling (b) Fourier support

Figure 6 Binning subsampling is an alternative interpretation to
the binning sampling in Figure 1. (a) Subsampled data t(n) in (11)
equivalent to the superpixel Bayer pattern of Figure 1c. (b) Idealized
spectral support of binning subsampled data T(ω) in (12). The
baseband signal Xg is free of aliasing in the shaded region. As before,
solid lines indicate the baseband signals, while spectra with the
dashed lines arises as a result of CFA sampling. Black and red lines
correspond to the support of luminance and chrominance images,
respectively.

Note that the summation over λ suggests 16 modulations.
However, except λ ∈ π

2Z
2
3, other λ results in

∑
θ∈Z2

2
ej{λT θ}

is 0, as shown in Figure 7. The support of this transform
is illustrated in Figure 6b.a As evidenced by this figure, the
modulated baseband signal components Xg(ω − λ) over-
lap each other almost entirely—that is, they are aliased.
However, the shaded regions of Figure 6b are still free of
aliasing. Indeed, this uncorrupted portion of the Fourier
support is the key to post-binning processing that is the
subject of next section.

4 Binning-aware demosaicking
Motivated by the analysis of pixel binning subsampling
in (12), we now present a novel binning-aware demo-
saicking aimed at recovering full-color image x without
introducing binning artifacts. We accomplish this in three
stages.

Step 1: Chrominance estimation
Drawing parallels to [19], we assume that local image fea-
tures are either vertically or horizontally oriented (approx-
imately). If this assumption holds, certain subsets of the
modulated chrominances in (11) are assumed to be alias-
free conditional under the vertically or horizontally ori-
ented image features—this is illustrated in Figures 8a.
For example, assuming horizontal feature, an amplitude
demodulation recovers the desired chrominance images
xα and xβ :

[
x̂α,h
x̂β,h

]
=

⎡
⎢⎢⎣
1 1
1 −1
1 −j
1 j

⎤
⎥⎥⎦
†

︸ ︷︷ ︸
from (12)

⎡
⎢⎢⎢⎢⎢⎢⎣

h0(n) �
(
t(n) · ej{nT(π

π)}
)

h0(n) �
(
t(n) · ej{nT(0π)}

)
h0(n) �

(
t(n) · ej{nT(−π/2

π )}
)

h0(n) �
(
t(n) · ej{nT(π/2

π )}
)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
demodulation

,

(13)

where (·)† denotes a pseudo inverse matrix and h0 is a
lowpass filter whose passbands matches the support of Xα

and Xβ . The reconstruction of vertically oriented image

Figure 7 Fourier transform of
∑

θ∈Z2
2
ej{λT θ }Mbin(ω).
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ω ω ω ω ω ωω ω

Figure 8 Idealized spectral support of binning subsampled data, at various stages of binning-aware demosaicking. Shaded regions denote
filter support. See text.

feature (denoted x̂α,v, x̂β,v) is same as (13) but with 90°
rotation.

Step 2: Luminance filtering
Once the x̂α,h and x̂β,h are recovered, we compute the
green image x̂g,h. Subtracting∑

m∈4Z2

x̂α,h(m)�(m−n)+x̂β,h(m+
(
1
1

)
)�(m+

(
1
1

)
−n)

from subsampled binning data t(n) results a Fourier trans-
form that is comprised only of xg : (from (12))

Tg(ω) =
∑

λ∈ π
2 Z

2
4

∑
θ∈Z2

2

ej{λTθ}Hbin(ω − λ)Xg(ω − λ)

16
.

(14)

This is illustrated in Figure 8b. To reconstruct the green
image x̂g,h from the unaliased (shaded in Figure 8b) por-
tions of tg , we carry out a standard demodulation, as
follows:

x̂g,h = h2(n) � {
modulation︷ ︸︸ ︷

f (n) · {h1(n) � tg(n)︸ ︷︷ ︸
isolate unaliased

}}
︸ ︷︷ ︸

isolate signal

,

where h1 and h2 are lowpass and highpass filters, respec-
tively; and f is a sum of sinusoids intended for modulation,
as follows:

H1(ω) =
{
1 if |ω1| > π

2 and |ω2| > π
2

0 else

H2(ω) =
{
1 if |ω1| < π

2 and |ω2| < π
2

0 else

F(ω) =
∑

λ∈
{
(±π
±π)/4

}
δ (ω + λ)∑
θ∈Z2

2
ej{λT θ} .

(15)

As illustrated in Figure 8c,d, the modulation by f (n) not
only shifts the spectrums, but also creates additional alias-
ing copies. Hence, the filter h2 is needed to attenuate
them. The same procedure can be used to find the green
image x̂g,v based on x̂α,v and x̂β,v.

Step 3: Directional selection
Once x̂h = {x̂g,h, x̂α,h, x̂β,h} and x̂v = {x̂g,v, x̂α,v, x̂β,v}
are found, they must be combined to yield the final esti-
mate, x̂t = {x̂g , x̂α , x̂β} via the convex combination (3).
As already mentioned, the directional selection variable
τ has received considerable attention in research and
many techniques are available. However, these studies
often lack analysis under noise—although binning reduces
noise considerably, most directional selection variables
are nevertheless sensitive to random perturbations.
To address the problem of directional selection under

noise, wemodified the τ criteria used in the popular adap-
tive homogeneity directed (AHD) demosaicking method
as follows:

τ̂ (n) = arg max
τ∈[0,1]

ux̂τ
(n) (16)

x̂t(n) =x̂τ̂ (n)(n), (17)

where x̂τ and ux̂ are as defined in (3) and (4), respectively.
Contrast this to the original AHD formulation which
selected either x̂h or x̂v (i.e. τ ∈ {0, 1} instead of τ ∈
[ 0, 1]) as the final output x̂t . The modified strategy of (16)
behaves similarly to the original AHD near the edges of an
image, but encourages averaging in the flat regions of the
image. It was found empirically to be far more robust to
directional selection under noise.

5 Experimental validation
5.1 Setup
The proposed binning-aware demosaicking x̂t(n) in (16)
is compared to four available alternatives (x̂s(n), x̂p(n),
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x̂y(n), and x̂y′(n)). The first is a state-of-the-art demo-
saicking method [19] applied to superpixels s(n) (i.e. out-
put from PIXELUX binning):

x̂s(n) = demosaicking(s(n)).

The second is the same demosaickingmethod [19] applied
to PhaseOne binning superpixels p(n):

x̂p(n) = demosaicking(p(n)).

The third is the application of the same demosaicking
method [19] to a full resolution CFA y(n) (i.e. without
binning):

x̂y(n) = demosaicking(y(n)).

The fourth is a simulation of a lower resolution sensor.
Let x′(n) denote the downsampled version of the ideal
lowpassed (antialiased) image:

x′(n) = {h2 � x}(2n). (18)

The CFA subsampled data captured by this lower resolu-
tion sensor is then

y′(n) = c(n)Tx′(n),

where c : Z2 →[ 0, 1]3 is same the translucency of CFA
used in (1). The application of the same demosaicking
method [19] to lower resolution CFA y′(n) is:

x̂y′(n) = demosaicking(y′(n)).

The output images from the proposed method (x̂t) and
the full resolution demosaicking (x̂y) have the same size as
the original image x. On the other hand, the conventional
binning processing are based on superpixel sampling, so
the pixel density of x̂s and x̂p is just a quarter of the original
image (same is true also for x̂y′). Hence when we compare
all results (Figures 9, 10, 11, 12, 13; Table 1), we downsam-
ple x̂t and x̂y′ by 2 × 2 (in the same manner as (18)) such
that all results have the same pixel density as the lower
resolution image x′.
The linear images used in this simulation study are

a part of the collection of [25,26], examples of which
are shown in Figure 9. Numerical scores in Table 1 and
Figure 13 were obtained by averaging performance over
84 images. Noise is simulated by adding pseudorandom

white Gaussian noise to the CFA data y(n), the superpixel
CFA data s(n) and p(n), and the lower resolution CFA
data y′(n). In the experiments, the 12 bit image data in
[25,26] were renormalized to ranges 0–1—meaning noise
standard deviation σn = 0.01 correspond to standard
deviation of 40.96 in a 12 bit camera processing pipeline,
etc. Considering the noise models in (5–7), one may ask if
such a simplified noise model is appropriate. As evidenced
by the analysis in (7), however, the difference between
SNR and SNRsum is M (the number of pixels combined
together); and the difference between SNRsum and SNRbin
is the read noise powerN . Hence the SNR gains in binning
is attributed only to the signal-independent portion of the
noise, and not on the signal dependent portion. Further-
more, the read noise dominates in the low light regime.
Hence simulated additive whiteGaussian noise suffices for
experimental verification. The binning subsample signal
t(n) represents the same data as s(n) and is computed by
upsampling s(n) (insert zeros where necessary).

5.2 Results
Example outputs from four different methods (x̂y′ , x̂y,
x̂s, x̂p, x̂t) are shown in Figures 10, 11 and 12. As expected,
demosaicking applied to a full resolution CFA (x̂y) has
a noisy appearance due to low SNR of individual pix-
els. However, edges and image features are clearly defined
even after downsampling thanks to the full resolution
description. Demosaicking applied to superpixel CFAs
(x̂s, x̂p), on the other hand, yields the opposite qualities—
the noise is significantly reduced owing to high SNR of
binning, but the image suffers from severe artifacts stem-
ming from aliasing in (10). More specifically, the aliasing
in Kodak PIXELUX binning manifests itself as a pixeliza-
tion artifact, while PhaseOne binning results in zippering
artifacts. However, one may argue that the aliasing arti-
facts in x̂p become less bothersome at the highest level
of noise because the zippering and noise become less
distinguishable. By contrast, the proposed binning-aware
demosaicking method (x̂t) succeeds in suppressing noise
while preserving the image features. Of particular inter-
est is the comparison between x̂s and x̂t , since they both
use Kodak PIXELUX binning but the proposed method

Figure 9 Example of images used in experiment (zoomed).
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Figure 10 Reconstructed images with various noise levels. Demosaicking method used for comparison is that of [19]. Here, LR� low resolution,
DS� downsample, PO� PhaseOne [5], K� Kodak PIXELUX [7].
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Figure 11 Reconstructed images with various noise levels. Demosaicking method used for comparison is that of [19]. Here, LR� low resolution,
DS� downsample, PO� PhaseOne [5], K� Kodak PIXELUX [7].
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Figure 12 Reconstructed images with various noise levels. Demosaicking method used for comparison is that of [19]. Here, LR� low resolution,
DS� downsample, PO� PhaseOne [5], K� Kodak PIXELUX [7].
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Figure 13 PSNR (red/green/blue pixels are combined) of each
methods, Kodak and PhaseOne refers to the binning methods of
[7] and [5], respectively. Demosaicking method used for
comparison is that of [19].

Figure 14 Binning sampling filtermbin(n).

yield drastically improved outcomes. Overall, the pro-
posed method has better visual quality than x̂s and x̂p for
σn < 0.03; but proposed has a slightly noisier appear-
ance at the highest level of noise (σn = 0.03). Finally,
the output from the low resolution camera x̂y′ is both
robust to noise and aliasing. This is expected, as lower
resolution CFA data y′(n) does not share the problems
that superpixel CFAs p(n), s(n), t(n) have. However, x̂y has
superior reconstruction over x̂y′ without noise (σn = 0).

Table 1 Reconstruction performance in PSNR with various noise levels

Noise (σn) Color LR-CFA HR-CFA HR-CFA+binning

[19] [19] +DS PO+ [19] K + [19] K+ Proposed

0.000 R 48.1787 51.4671 45.2485 45.3275 47.8061

G 51.8147 54.7110 46.5344 47.1429 48.6259

B 46.5116 50.9532 43.6715 44.5752 45.5689

0.005 R 47.1788 46.5149 44.6596 44.7572 46.8994

G 50.1223 48.5953 46.3633 41.5903 47.6607

B 45.6221 45.2237 43.1426 43.9331 44.6091

0.010 R 45.4430 42.1931 43.4914 43.5929 45.2686

G 47.6553 43.9223 44.5383 44.9318 45.9540

B 44.0420 40.7293 42.0733 42.7001 42.9732

0.015 R 43.7677 39.1858 42.2368 42.3349 43.6632

G 45.5264 40.7919 4.18183 43.4857 44.3119

B 42.4968 37.6716 40.9172 41.4211 41.3987

0.020 R 42.2672 36.9118 41.0434 41.1293 42.2202

G 43.7388 38.4621 41.9128 42.1503 42.8488

B 41.0955 35.3795 39.8064 40,2189 39.9910

0.025 R 40.9430 35.0944 39.9375 40.0160 40.9391

G 42.2200 36.6133 40.7530 40.9454 41.5568

B 39.8450 33.5524 38.7712 39.1164 38.7417

0.030 R 39.7693 33.5816 38.9267 38.9959 39.7997

G 40.9107 35.0803.9327 39.7008 39.8595 40.4102

B 38.7310 32.0235.3426 37.8168 38.1076 37.6279

Demosaicking method used for comparison is that of [19]. Here, LR� low resolution, HR� high resolution, DS� downsample, PO� PhaseOne [5], K� Kodak
PIXELUX [7] (assumes pixel range [0,1]).
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Figure 12 shows an example where none of the reconstruc-
tion methods produced a satisfactory output (except for
x̂y under no noise).
The performance is evaluated also in terms of peak

SNR, using the downsampled version of the ideal low-
passed (antialiased) image x′ in (18) as their reference.
The results are summarized in Table 1. When there is no
noise (σn = 0), ordinary demosaicking reconstruction x̂y
and lower resolution sensor x̂y′ yields the best results, as
expected. However, the proposed x̂t is a very close third,
yielding comparably satisfactory results. Binning result x̂s
is worst by far due to binning artifacts.
When noise is taken into consideration, the quality of

x̂y suffers greatly as expected. Even with noise variance as
little as σn = 0.005, the performance of x̂y deteriorates
significantly, while performance of x̂s, x̂p, x̂t , and x̂y′ in
terms of PSNR are far less sensitive to noise. With mod-
erate noise levels (σn < 0.03) the proposed binning-aware
demosaicking clearly outperforms the artifact-plagued
demosaicking of superpixels. With the largest noise level
considered (σn = 0.03), PSNR performances of x̂s, x̂p,
and x̂t are closer to each other because deteriorations in
output images are dominated by noise (rather than by
artifacts).
The analysis in Figures 10, 11, 12, 13 and Table 1

sheds a light on the decades-old debate about resolution
versus noise. On one hand, the lower resolution sensor
delivers consistent performance under noise (x̂y′). How-
ever, Figure 11 shows that under no noise, extra sensor
resolution is still desirable. Consider Figure 13. The com-
parison between green (low resolution) and red (high
resolution) curves is consitent with the image quality of
Figures 10 and 11. With the availability of pixel binning,
we would compare the green curve with the “max func-
tion” over the red and blue (binning) curves in Figure 13.
Hence one can think of binning as a way to narrow the
gap between the red and green curves in noise, with-
out making sacrifices to the advantages of higher spatial
resolution.

6 Conclusion
In this article, we proved via a rigorous analysis of binning
sampling that Kodak PIXELUX binning scheme results
in 4 × 4 reduction in image resolution—contrary to the
popular belief that binning of four pixels should result in
2 × 2 reduction in resolution. We proposed a binning-
aware demosaicking algorithm based on the Fourier anal-
ysis of binning subsampling to combine unaliased copies
of the Fourier spectra together via the demodulation.
The resultant method succeeds in reconstructing the
color image with only 2 × 2 resolution loss—or increas-
ing the resolution by 2 × 2 over the traditional approach
of applying demosaicking to superpixels. The binning-
aware demosaicking also succeeds in suppressing noise

and preserving image details. We verified experimen-
tally that the binning-aware demosaicking outperforms
the alternatives.

Appendix 1: Proof of Fourier Representation of
binning subsampling
We provide the proof for Equation (12). Let Hbin be the
Fourier transform of (8). Then the combination of charges
can be represented as:

Xrbin(ω) � Xr(ω)Hbin(ω)

Xgbin(ω) � Xg(ω)Hbin(ω)

Xbbin(ω) � Xb(ω)Hbin(ω).

Due to band limitedness of Xα and Xβ , the following
approximation hold:

Xαbin(ω)�Xrbin(ω)−Xgbin(ω)=Hbin(ω)Xα(ω) ≈4Xα(ω)

Xβbin(ω)�Xbbin(ω)−Xgbin(ω)=Hbin(ω)Xβ(ω) ≈4Xβ(ω).
(19)

where we used the fact thatHbin(0) = 4.
Define mbin(n) = ∑

θ∈Z2
4
�(n − θ), as illustrated in

Figure 14. The binning subsampling data t(n) refers to
the concept of combining the electrial charges of four
neighboring pixels together to form a superpixel. The pro-
cess is illustrated in Figure 6a. Mathmatically, t(n) can be
written as:

t(n) =mbin(n)xrbin(n) + mbin

(
n +

(
1
0

))
xgbin(n)

+ mbin

(
n +

(
0
1

))
xgbin(n) + mbin

(
n +

(
1
1

))
xbbin (n)

=mbin(n)xαbin(n) + mbin

(
n +

(
1
1

))
xβbin (n)

+
∑
θ∈Z2

2

mbin(n + θ)xgbin (n).

In the Fourier domain, t(n) can be expressed as

T(ω)=Mbin(ω) � Xαbin(ω)+(ej{ωT(11)}Mbin(ω)) � Xβbin(ω)

+
∑
θ∈Z2

2

ej{λT θ}Mbin(ω) � Xgbin(ω)

where

Mbin(ω) =
∑

λ∈ π
2 Z

2
4

δ(ω − λ)

16
.

With arithmetic and approximation of (19), the Fourier
transform of t(n) simplifies to:

T(ω) ≈
∑

λ∈ π
2 Z

2
4

Xα(ω − λ) + ej{λT(11)}Xβ(ω − λ)

4

+
∑

λ∈ π
2 Z

2
4

∑
θ∈Z2

2

ej{λT θ}Hbin(ω − λ)Xg(ω − λ)

16
.
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The Fourier support of T(ω) is illustrated in Figure 6b.
Note that the summation over λ suggests that bin-
ning subsampling will result in 16 modulations. How-
ever,

∑
θ∈Z2

2
ej{λT θ} is 0 for many values of λ, as shown

in Figure 7. As a result, there are only nine actual
modulations.

Appendix 2: Proof of Fourier representation of
binning sampling
We provide the proof for Equation (10). The binning sam-
pling data s(n) refers to the concept of combining the
electrial charges of four neighboring pixels together to
form a superpixel Bayer pattern. The process is illus-
trated in Figures 1a,c. Similar to binning subsampling (see
Appendix 1, binning sampling s(n) has the following rep-
resentation (it is mathmatically convenint to consider s(n2 )

for n even, rather than s(n) directly);

s
(n
2

)
=mbin(n)xrbin(n) + mbin

(
n +

(
2
0

))
xgbin

(
n +

(
1
0

))

+ mbin

(
n +

(
0
2

))
xgbin

(
n +

(
0
1

))

+ mbin

(
n +

(
2
2

))
xbbin

(
n +

(
1
1

))

=mbin(n)xαbin(n) + mbin

(
n +

(
2
2

))
xβbin

(
n +

(
1
1

))

+ mbin(n)xgbin(n) + mbin

(
n +

(
2
0

))
xgbin

(
n +

(
1
0

))

+ mbin

(
n +

(
0
2

))
xgbin

(
n +

(
0
1

))

+ mbin

(
n +

(
2
2

))
xgbin

(
n +

(
1
1

))
.

In Fourier domain,

S(2ω) =Mbin(ω) ∗ Xαbin(ω) +
(
ej
{
ωT(22)

}
Mbin (ω)

)

∗
(
ej
{
ωT(11)

}
Xβbin (ω)

)
+ Mbin(ω) ∗ Xgbin(ω)

+
(
ej
{
ωT(20)

}
Mbin(ω)

)
∗
(
ej
{
ωT(10)

}
Xgbin(ω)

)

+
(
ej
{
ωT(02)

}
Mbin(ω)

)
∗
(
ej
{
ωT(01)

}
Xgbin(ω)

)

+
(
ej
{
ωT(22)

}
Mbin(ω)

)
∗
(
ej
{
ωT(11)

}
Xgbin(ω)

)

=
∑

λ∈ π
2 Z

2
4

Xαbin(ω − λ) + ej
{
(ω+λ)T (11)

}
Xβbin (ω − λ)

16

+
∑

λ∈ π
2 Z

2
4

∑
θ∈Z2

2

ej{(ω+λ)T θXgbin(ω − λ)

16
.

Separating the Xgbin(ω − λ) to two parts, λ = (0
0
)
and λ �=(0

0
)
and downsampling (2ω 	→ ω), we have

S(ω) =
∑

λ∈πZ2
2

⎛
⎝Xαbin

(
ω−λ
2
)+ e

j
{(

ω+λ
2

)T
(11)

}
Xβbin

(
ω−λ
2
)⎞⎠

4

+
∑
θ∈Z2

2

ej(
ω
2 )

T
θXgbin

(
ω
2
)

16

+
∑

λ∈ π
2 Z

2
4\(00)

∑
θ∈Z2

2

ej{( ω
2 +λ)T θXgbin(

ω
2 − λ)

16
,

where the 1/4 term on Xαbin and Xβbin comes from
exchanging Z

2
4 with Z

2
2. With arithmetic and approxi-

mation of (19), the Fourier transform of s(n) simplifies
to:

S(ω) ≈
∑

λ∈πZ2
2

⎛
⎝Xα

(
ω − λ

2

)

+ ej(
ω
2 )

T(11)︸ ︷︷ ︸
unwanted filter

ej
(

λ
2

)T
(11)Xβ

(
ω − λ

2

)⎞⎠

+
∑
θ∈Z2

2

ej(
ω
2 )

T
θHbin

(
ω
2
)

16︸ ︷︷ ︸
unwanted filter

Xg
(ω

2

)

+
∑

λ∈ π
2 Z

2
4\(00)

∑
θ∈Z2

2

ej(
ω
2 +λ)T θHbin

(
ω
2 − λ

)
16︸ ︷︷ ︸

antialias filter

Xg
(ω

2
− λ

)
︸ ︷︷ ︸

aliasing

7 Endnote
aFilter hbin is a combination of highpass and lowpass.
However, binning takes advantage of the fact that the sen-
sor resolution exceeds optical resolution, meaning hbin is
taken to be a lowpass/antialiasing filter on xg .

Competing interests
The authors declare that they have no competing interests.

Acknowledgement
This work was funded in part by Texas Instruments.

Received: 11 October 2011 Accepted: 29 May 2012
Published: 21 June 2012

References
1. H Yamanakam, Method and apparatus for producing ultra-thin

semiconductor chip and method and apparatus for producing ultra-thin
back illuminated solid-state image pickup device. US Patent 7,521,335
(2006)

2. T Edwards, R Pennypacker, Manufacture of Thinned Substrate Imagers. US
Patent 4,226, 334 (1981)



Jin and Hirakawa EURASIP Journal on Advances in Signal Processing 2012, 2012:125 Page 15 of 15
http://asp.eurasipjournals.com/content/2012/1/125

3. J Compton, J Hamilton, Image sensor with improved light sensitivity. US
Patent 2007/0024931 (2007)

4. U Barnhofer, J DiCarlo, B Olding, B Wandell, in Proceedings of the SPIE .
Color estimation error trade-offs, (2003), pp. vol. 5027, 263–273

5. W Borchenko, Phase One Patent Pending Sensor+Explained. http://www.
phaseone.com/Digital-Backs/P65//media/Phase%20One/Reviews/
Review%20pdfs/Backs/Phase-One-Sensorplus.ashx

6. Z Zhou, B Pain, E Fossum, Frame-transfer CMOS active pixel sensor with
pixel binning. IEEE Trans. Electron. Dev. 44(10), 1764–1768 (1997)

7. F Chu, Improving CMOS image sensor performance with combined pixels
(2005). http://www.eetimes.com/design/embedded/4013011/
Improving-CMOS-image-sensor-performance-with-combined-pixels

8. K Dabov, A Foi, V Katkovnik, K Egiazarian, Image denoising by sparse 3-D
transform-domain collaborative filtering. IEEE Trans. Image Process.
16(8), 2080–2095 (2007)

9. J Portilla, V Strela, M Wainwright, E Simoncelli, Image denoising using
scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image
Process. 12(11), 1338–1351 (2003)

10. K Hirakawa, F Baqai, P Wolfe, in Proc. SPIE , Electronic Imaging, vol. 7246.
Wavelet-based Poisson rate estimation using the Skellam distribution ,
(2009)

11. L Zhang, R Lukac, X Wu, D Zhang, PCA-based spatially adaptive denoising
of CFA images for single-sensor digital cameras. IEEE Trans. Image
Process. 18(4), 797–812 (2009)

12. K Hirakawa, T Parks, Joint demosaicing and denoising. IEEE Trans. Image
Process. 15(8), 2146–2157 (2006)

13. L Zhang, X Wu, D Zhang, Color reproduction from noisy CFA data of
single sensor digital cameras. IEEE Trans. Image Process.
16(9), 2184–2197 (2007)

14. K Hirakawa, X Meng, P Wolfe, in IEEE International Conference on Acoustics,
Speech and Signal Processing 2007. ICASSP 2007. A framework for
wavelet-based analysis and processing of color filter array images with
applications to denoising and demosaicing, (2007), pp. vol. 1, pp. I–597

15. R Fergus, B Singh, A Hertzmann, S Roweis, W Freeman, Removing camera
shake from a single photograph. ACM Trans. Graph. (TOG).
25(3), 787–794 (2006)

16. A Levin, P Sand, T Cho, F Durand, W Freeman, in ACM SIGGRAPH 2008
papers, ACM. Motion-invariant photography, (2008), pp. 1–9

17. K Hirakawa, P Simon, in IEEE International Conference on Computer Vision.
Single-shot high dynamic range imaging with conventional camera
hardware, (2011), p. vol. 1
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