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Parameter estimation for SAR micromotion target
based on sparse signal representation
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Abstract

In this article, we address the parameter estimation of micromotion targets in synthetic aperture radar (SAR), where
scattering parameters and micromotion parameters of targets are coupled resulting in a nonlinear parameter
estimation problem. The conventional methods address this nonlinear problem by matched filter, which are
computationally expensive and of lower resolutions. In contrast, we address this problem by linearizing the forward
model as a linear combination of elements of an over-complete dictionary. The essential idea of sparse signal
representation models comes from the fact that SAR micromotion targets are sparsely distributed in the
observation scene. Accordingly, we propose to jointly estimate the target micromotion and scattering parameters
via a Bayesian approach with sparsity-inducing priors. In addition, we present a variational approximation
framework for Bayesian computation. Numerical simulations demonstrate the proposed sparsity-inducing
reconstruction method achieves higher resolution and better performance with smaller measures compared to
conventional methods.
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1 Introduction
Target micromotion and micro-doppler are attracting an
increasingly great interest from the synthetic aperture
radar (SAR) community since they can provide addi-
tional and favorable information for understanding SAR
images. Micromotion is mainly embodied by rotation
and vibration, and typical SAR micromotion targets
include ground/ship-borne search antennas for air traffic
control/surveillance [1], rotor blades of hovering heli-
copters, and vibrating vehicles as well as their tires/
engines. Micromotion parameters, such as the rotating
frequency and radius, record targets’ attributed informa-
tion. Thus their estimation is very important for micro-
motion compensation and refocusing in SAR imagery,
and the estimated results can also be directly used as
signatures for target recognition. However, it’s a huge
challenge for micromotion parameter estimation in
SAR, since (1) micromotion target signals are hard to be
separated from stationary-clutter ones, (2) they are also
distributed over multiple range cells (especially for large

rotating radii), i.e., range cell migration (RCM) occurs,
which is disadvantageous for target energy integration.
Either, it’s not practical to estimate them in the SAR
gray image domain because of defocusing, ghost images
[2] and other energy-spread image characteristics
induced by target micromotion [3].
A few algorithms have been proposed for the estima-

tion of SAR micromotion targets [1,4-6]. All of them
manipulate a single range cell and take micromotion
target azimuthal echoes as sinusoidal frequency modu-
lated (SFM) signals. The cyclic spectral density [4], a
time-frequency method [6], and the adaptive optimal
kernel one [5], have been used to estimate the vibrating
frequency of simulated or real SAR targets. Then in [1],
the wavelet or chirplet decomposition is used to sepa-
rate the signal of a rotating radar dish from that of sta-
tionary clutter and then auto correlation is utilized to
get its rotating frequency. All these methods, however,
haven’t addressed the aforementioned two key problems
ever-present in SAR, i.e., clutter and RCM, which hin-
ders their application in reality. In effect, unlike uni-
formly moving targets, RCM correction is very difficult
for micromotion ones due to their sinusoidal range his-
tory [7].
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Matched filter is commonly used for motion or micro-
motion target imaging [8,9]. It performs the reconstruc-
tion at every pixel for every possible velocity of the
motion, resulting in a huge space-velocity cube [8].
Worse still, for the fact that each slice of the velocity is
estimated independently, it brings in ambiguous results.
To improve this, an adaptive matched filtering method,
called filtered back projection, was proposed by Cheney
[9]. However, all these methods yield high computa-
tional cost and ambiguity unavoidably caused by inde-
pendent estimation. Recently, sparse signal
representation and compressive sensing (CS) have
become a standing interest for SAR imaging [10-13]. A
joint spatial reflectivity signal inversion method based
on an over-complete dictionary of target velocities was
applied to SAR moving targets imaging [10]. However,
large scaled matrix computation is still treated as an
open problem.
Hence we propose to obtain micromotion parameters

from the viewpoint of scattering center estimation,
which circumvents the tough issues mentioned above
via target model priors. The scattering center model,
however, must herein consider target micromotion, and
thus more parameters, besides target position, and
higher dimensions are involved which create adverse
effects on fast and global optimization. Fortunately we
observe finer target s-parsity due to an increase of the
parameter space dimension. Therefore we will exploit
target priors and estimate the model based on sparse
signal reconstruction. We recast the micro-motion tar-
get imaging problem as a problem of signal representa-
tion in an over-complete dictionary. To enforce sparsity,
we consider two Baysian prior models: generalized
Gaussian and Student-t. Then we examine the expres-
sion of posterior laws, either the maximum A poseriori
(MAP) estimator or the posterior means using the varia-
tional Bayes approximation (VBA) [14]. Compared to
conventional methods, besides overcoming two difficul-
ties aforementioned, the advantages of our method
include: (1) putting the micromotion target imaging and
parameter estimation into a unified Bayesian parameter
estimation framework, which could also handle the
hyperparameter estimation; (2) breaking through the
classic Relay resolution’s limit, providing the capability
of super-resolution; (3) being capable of estimating
micromotion parameters from limited observations; (4)
being robust to noise.
The rest of the article is organized as follows. Section

2 presents the SAR signal model of micromotion targets.
In Section 3 we review the different sparse modeling
and optimization criteria. In particular, l 1 regularization
approach conducts us to the Bayesian approach which is
developed in Section 4. We provide two priors as gener-
alized Gaussian priors and Student-t priors, which

enforce the sparsity. Section 5 provides simulation
results and performance analysis. Finally, Section 6 sum-
marizes our conclusions.

2 Wavenumber-domain signal model of SAR
micromotion targets
As illustrated in Figure 1, the radar moves at velocity
Va. Then for slowtime t it moves to

y′ = Vat = Rc tan θ ≈ Rcθ . (1)

We could see that θ has the similar meaning as slow-
time t. Considering an arbitrarily moving target, let vec-
tor ϑ represent the target micromotion parameters, such
as the initial position (x, y), velocity, rotation frequency
etc. Suppose the target moves to (xϑ,θ, yϑ,θ) when radar
is located at y’. f (ϑ) is the scattering coefficient. Thus
the distance model of the target is

Rϑ(θ) =
√
(Rc + xϑ ,θ )

2 + (y′ + yϑ ,θ )
2

≈
√
R2
c + y′2 + xϑ ,θ cos θ + yϑ ,θ sin θ .

(2)

Spotlight SAR echo of the target could be represented
in the wavenumber domain as

s(K, θ ;ϑ) = P(K) exp
[
−jK

√
R2
c + y′2

]
· exp[−jK(xϑ ,θ cos θ + yϑ ,θ sin θ)],

(3)

where P (K) is the Fourier transform (FT) of the trans-
mitted signal. Then the total echoes of all targets are

Stotal(K, θ) =
∫

f (ϑ)s(K, θ ;ϑ)dϑ . (4)

After range compression and motion compensation,
the first two terms of s (⋅) in Equation (3) disappear,
and then the target signal model becomes

G(K, θ) =
∫

f (ϑ) exp[−jK(xϑ ,θ cos θ + yϑ ,θ sin θ)]dϑ . (5)

x

y

cR

ay V t

, ,,x y

o
xK

yK

K

cK

xk

yk

oO

(a) (b)

Figure 1 Micromotion target imaging geometry. (a) The SAR
imaging geometry in slant plane and (b) the corresponding
configuration in wavenumber space.
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When the target experiences micromotion, e.g., rota-
tion or vibration, we have

xϑ ,θ = x + r cos(2π fmt + ϕ0), (6)

yϑ ,θ = y + r sin(2π fmt + ϕ0), (7)

where micromotion parameters compose a parameter
vector

ϑ � (x, y, r, fm,ϕ0) (8)

and (x,y) is the position of the micromotion center, r
is the micromotion amplitude, i.e., rotating radius or
vibrating amplitude, fm is the micromotion frequency,
and �0 is the initial micromotion phase. Substituting
Equations (6) and (7) into (5) leads to

G(K, θ) ≈
∫

f (ϑ) · h(K, θ ;ϑ)dϑ , (9)

where

h(K, θ ;ϑ) � exp(−jK x cos θ − jK y sin θ)

· exp
(

−jK r cos
(
2π fmRc

Va
tan θ + ϕ0

))
.
(10)

We can clearly see that, Equation (10) has an addi-
tional exponential component representing target micro-
motion, compared with the stationary scattering center
model [5].
We now try to discretize Equation (10). Without loss

of generality, suppose there are I rotated targets. Then
for the ith one, let fi denotes the scatter coefficient, ϑi
denotes the micromotion parameter, both of which are
unknown. The model of Equation (9) could be discre-
tized as

G(K, θ) =
I∑

i=1

fi. h(K, θ ;ϑi) + εi(K, θ), (11)

where noise has been added via �i (K, θ). Note K and θ
can also be discretized into M and N values respectively,
and therefore Equation (11) can be expressed in a
matrix form as

g = Hf + ε, (12)

where

g = [G(K1, θ1), . . . ,G(K1, θN),G(K2, θ1), . . . ,G(K2, θN), . . . ,G(KM, θ1), . . . ,G(KM, θN)]T (13)

is a vector of size M N representing the data,

ε = [ε(K1, θ1), . . . , ε(K1, θN), ε(K2, θ1), . . . , ε(K2, θN), . . . , ε(KM, θ1), . . . , ε(KM, θN)]T (14)

is a vector of size M N representing the errors (model-
ing and measurement),

H =

⎡
⎢⎢⎢⎣
h(K1, θ1; x1, y1, r1, fm1,ϕ0

1) h(K1, θ1; x1, y1, r1, fm1,ϕ0
2 . . . h(K1, θ1; xNx, yNy, rP , fQ,ϕ

0
J

h(K1, θ2; x1, y1, r1, fm1,ϕ0
1 h(K1, θ2; x1, y1, r1, fm1,ϕ0

2 . . . h(K1, θ2; xNx, yNy, rP , fQ,ϕ
0
J

...
...

. . .
...

h(KM, θN; x1, y1, r1, fm1,ϕ0
1 h(KM, θN; x1, y1, r1, fm1,ϕ0

2 . . . h(KM, θN; xNx, yNy, rP , fQ,ϕ
0
J

⎤
⎥⎥⎥⎦ (15)

is a matrix of dimensions M N × NxNyPQJ represent-
ing the forward modeling matrix system and

f = {[A(xnx , xny , rp, fq,ϕ0
j )], nx = 1, . . . ,Nx,ny = 1, . . . ,Ny, p = 1, . . . ,P, q = 1, . . . ,Q, j = 1, . . . , J} (16)

is a vector of size NxNyPQJ of parameters representing
targets in the scene. In this expression
A(xnx , yny , rp, fq,ϕ

0
j ) is the coefficient at position (xnx , yny)

with micromotion frequency fq, micromotion range rp
and initial micromotion phase ϕ0

j

To this end, the problem of scattering and micromo-
tion parameter estimation can be reformulated as a lin-
ear inversion problem subject to sparsity constraints.

3 Sparse signal representation and deterministic
optimization
The main idea behind sparse signal representation is, to
find the most compact representation of a signal as a
linear combination of a few elements (or atoms), in an
over-complete dictionary [15-18]. Compared with the
conventional orthogonal transform representation, this
most parsimonious representation of a signal over a
redundant collection of generated basis offers efficient
capability of signal modeling. Finding such a sparse
representation of a signal involves solving an optimiza-
tion problem. Mathematically, it can be formulated as
follows. For Equation (2), assume g = H f in absence of
noise where g Î ℂM × 1 is a vector of data, H Î ℂM × N

a matrix whose elements can be considered as an over-
complete dictionary as its columns and f Î ℂN × 1 the
corresponding linear coefficients. In particular, M ≪ N
leads the null space of F to be non-empty such that
there are many different possibilities to represent g with
the elements in H. The problem of sparse representation
is then to find the coefficients f with the most few non-
zero elements, i.e., ||f||0 is minimized while g = H f.
Formally,

min
f

‖ f‖0 s.t g = Hf (17)

where ||f||0 is the l0 norm which is the cardinality of f.
However, the combinatorial optimization problem Equa-
tion (17) is NP-hard and intractable. A large body of
approximation methods are proposed to address this
optimization problem, such as greedy pursuit [19] based
methods like matching pursuit [20], or convex-relaxa-
tion [21] based methods that replace the l0 with the l1
norm,

min
f

‖ f‖1 s.t g = Hf (18)
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Candes et al. [22] show that for K-sparsity signal that
only has K non-zero element in f, the reconstruction of
f with M ≥ O(K log (N/K)) [15] measures can be
achieved with high probability by l1 norm minimization.
Moreover, to efficiently reconstruct f, the mapping
matrix H should satisfy the restricted isometry property
(RIP) [23] which requires that

(1 − δs) ‖ f ‖22≤‖ Hf ‖22≤ (1 + δs) ‖ f ‖22 (19)

This RIP of H is connected to the mutual coherence
between the atoms of the dictionary which is defined as

μ(H) = max
i�=j

| < ai, aj > |
‖ ai ‖‖ aj ‖ (20)

where the ai is the ith column of H. Large mutual
coherence indicates that there are two atoms that are
closely related will degrade the reconstruction algorithm.
Hence, the dictionary is required to have low coherence
so that the submatrix H with K atoms is nearly orthogo-
nal [18].
If the observation g is noisy, the problem of the sparse

representation for a noisy signal can be formulated as

min
f

‖ f ‖1 s.t ‖ g − Hf ‖22≤ δ, (21)

where δ is a noise allowance. Equivalently, the Equa-
tion (21) can be reformulated to minimize the following
objective function

L(f ;λ) =‖ g − Hf ‖22 +λ ‖ f‖1, (22)

where l > 0 is the regularization parameter that bal-
ances the trade-off between the reconstruction error
and the sparsity of f. The formulation Equation (22) can
also be interpreted as the MAP estimation in the Baye-
sian philosophy as we will see in the next section.
To this end, the micromotion parameter estimation is

now cast as the sparse reconstruction of f associated
with the parameter hypothesis at the position of non-
zero elements of f. There are a large number of methods
to solve the Equations (21) or (22), such as the method
of compressive sampling matching pursuit (CoSaMP)
presented in [24] which has been widely used for its
simplification and effectiveness. Here, we will compare
our proposed method with this method.

4 Bayesian approach to sparse reconstruction
Even if the sparse representation has originally been
introduced as an optimization problem such as Equa-
tions (17), (18), (21), or (22), it can also be presented as
a Bayesian MAP estimation problem [25,26]:

f̂ = argmax
f

{p(f |g)}, (23)

where

p(f |g) = p(g|f )p(f )
p(g)

∝ p(g|f )p(f ), (24)

To understand this, firstly let us assume the error � in
Equation (12) is centered, Gaussian and white:
ε ∼ N (ε|0, vεI). It brings us to the expression of the
likelihood:

p(g|f ) = N (Hf , vεI) ∝ exp
{
− 1
2vε

‖ g − Hf‖2
}

(25)

Secondly, choose the separable double exponential
probability density [27] as the prior of f:

p(f ) ∝ exp

{
−α

∑
j

|fj|
}
, (26)

it is then easy to see that the MAP estimation with
this prior becomes

f̂ = argmax
f

{p(f |g)} = argmin
f

{−ln p(f |g)} = argmin
f

{J(f )} (27)

with

J(f ) =‖ g − Hf ‖22 +λ ‖ f‖1, (28)

which can be compared to Equation (22).
The prior information that the targets are sparsely dis-

tributed in the observation scene can be modeled by the
two following probability density functions (PDF) [14]:

• Generalized Gaussian priors:

p(f ) ∝ exp

⎧⎨
⎩−α

∑
j

|fj|β
⎫⎬
⎭ , (29)

which give the double exponential for b = 1 and
Gaussian for b = 2 and are also more useful for
sparse representation with 0 <b < 1. With these
priors, the MAP estimate can be computed by
optimizing the following criterion:

J(f ) =
1

2vε2
‖ g − Hf ‖2 + α

∑
j

|fj|β , (30)

which can be done with any gradient based algo-
rithm when 1 <b ≤ 2. There also exist appropri-
ate algorithms for b = 1 and 0 <b < 1. In this
article, we used a gradient based algorithm.
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• Student-t priors:

p(f |ν) =
∏
j

St(fj|ν) ∝ exp

⎧⎨
⎩−ν + 1

2

∑
j

log (1 + f 2j /ν)

⎫⎬
⎭(31)

where

St(fj|ν) = 1√
πν

�((ν + 1)/2)
�(ν/2)

(1 + f 2j /ν)
−(ν+1)/2. (32)

These priors are interesting due to its link to l1 regu-
larization and secondly due to the mixture of Gaussian
representation of the Student-t probability density:

St(fj|ν) =
∞∫
0

N (fj|0, 1/τj)G(τj|ν/2, ν/2)dτj (33)

which gives the possibility of proposing a hierarchical
model via the positive hidden variables τj :⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p(f |τ) = ∏
j
p(fj|τj) =

∏
j
N (fj|0, 1)τj

∝ exp

{
−1
2

∑
j

τjf 2j

}

p(τj|a, b) = G(τj|a, b) ∝ τ
(α−1)
j exp{−βτj}

with α = β = ν/2

(34)

Using this hierarchical model, we can write the joint
prior of f and τ

p(f , τ ) =
∏
j

p(fj|τj)p(τj) =
∏
j

N (fj|0, 1/τj)p(τj)

∝ exp

⎧⎨
⎩−1

2

∑
j

τjf 2j + (α − 1) ln τj − βτj

⎫⎬
⎭
(35)

we obtain:

p(f , τ |g) ∝ p(g|f )p(f , τ ) ∝ exp{−J(f , τ )} (36)

where

J(f , τ ) =
1
2vε

‖ g − Hf ‖2 +
∑
j

1
2

τjf 2j − (α − 1) ln τj + βτj (37)

which is summarized as follows:

Joint optimization of this criterion, alternatively with
respect to f (with fixed τ)

f̂ = argminf {J(f , τ )}

= argminf

⎧⎨
⎩ 1
2vε

‖ g − Hf‖2 +
∑
j

1
2

τjf 2j

⎫⎬
⎭

(38)

and with respect to τ (with fixed f)

τ̂ = argminτ {J(f , τ )}

= argminτ

⎧⎨
⎩

∑
j

1
2

τjf 2j − (α − 1) ln τj + βτj

⎫⎬
⎭ (39)

results in the following iterative algorithm:
⎧⎪⎪⎨
⎪⎪⎩
f̂ = [H′H + vεD(τ̂)]−1 H′g = D(τ̂)H′(HD(τ̂)H′ + vεI)

−1g

τ̂j = φ(f̂j) =
a

f̂ 2j + b
D(τ̂ ) = diag [1/τ̂j, j = 1, . . . ,n]

(40)

Note that τj is inverse of a variance and we have
1/τj = f 2j + β/α . We can interpret this as an iterative

quadratic regularization inversion followed by the esti-
mates of variances τj which are used in the next itera-
tion to define the variance matrix D(τ). This algorithm
is simple to implement. However, we are not sure about
its convergency. To obtain a better solution and at the
same time to be able to estimate the variance of the
noise, we propose to use the VBA [28-30] which con-
sists in approximating the joint posterior by a separable
one and then using it to do the inference.
Here we summarize this approach:

• Model for the noise:{
p(g|f , vε) = N (g|Hf , vεI), τε = 1/vε
p(τε) = G(τε|αε0,βε0)

(41)

• Model for the sparse signal:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p(f |v) = ∏

j
p(fj|vj) =

∏
j
N (fj|0, vj) = N (f |0,V)

V = diag [v], τj = 1/vj, τ = diag [τ ] = V−1

p(τ ) =
∏
j
G(τj|α0,β0)

(42)

• Joint posterior:

p(f , τ , τ ε|g) ∝ p(g|f , τ ε)p(f |τ )p(τ)p(τ ε) (43)
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• VBA: p(f,τ,τ�|g) is approximated by

q(f , τ , τε) = q(f )
∏
j

q(τj)q(τε) (44)

where
⎧⎪⎨
⎪⎩
q(f) = N (f|μ̃, �̃)

μ̃ = �̃H′g = ṼH′(HṼH′ + τ̃εI
)−1

g

�̃ = (τ̃εH′H + Ṽ)
−1

= Ṽ − ṼH′(HṼH′ + τ̃εI
)−1

HṼ, with Ṽ = diag[ṽ],
(45)

⎧⎪⎪⎨
⎪⎪⎩
q(τε) = G(τε|α̃ε , β̃ε)
α̃ε = αε0 + (n + 1)/2
β̃ε = βε0 + 1/2
τ̃ε = α̃ε/β̃ε,

(46)

⎧⎪⎪⎨
⎪⎪⎩
q(τj) = G(τj|α̃j, β̃j)
α̃j = α00 + 1/2
β̃j = β00+ < f 2j > /2
ṽj = β̃j/α̃j

(47)

and the expressions of the needed expectations are:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

< f >= μ̃

< ff ′
>= � + μμ′

< f 2j >= [�]jj + μ2
j

< τ >= τ̃ = α̃τ /β̃τ

< aj >= α̃j = α̃j/β̃j

(48)

This algorithm can be summarized as follows:

• Initialization: τ̃ ε = 0.1, Ṽ = diag[τ̃j/τ̃ε] with τ̃j = 1
• Iterations:

compute �̃ =
[
τεH’H + Ṽ

]−1
and μ̃ = �H’g

compute < f 2j >= �̃jj + μ̃2
j

compute α̃ε , β̃ε and so τ̃ε = α̃ε/β̃ε

compute α̃j, β̃j and so τ̃j = α̃j/β̃j

The only difficult and costly part is the estimation of

�̃ and μ̃ . Due to the fact that we only need μ̃ and �̃jj,
we propose the following approximation:

μ̃ is computed through the optimization of

J(f ) = τε ‖ g − Hf‖2 + 1
2�jτjf 2j with respect to f and �̃jj

which is the variance of fj is approximated by the
empirical variance of fj during the iterations of the opti-
mization algorithm.
This is the method we implemented, tested and com-

pared to other classical methods.

5 Numerical experiments
In this section, we conduct several numerical experi-
ments to demonstrate our method based on the sparse
signal representation. The imaging geometry is shown in
Figure 1. The range R0 from the original to the center
of the target is 10 km, and the velocity of the platform
Va is 200 m/s. The central frequency fc is 10 GHz with
bandwidth B = 400 MHz associated with the Rayleigh
resolution along the range direction 0.375 m, and the
angular extent of azimuth is 10° with cross-range resolu-
tion 0.0861 m.
Based on the compressive sensing principle, the tar-

gets can be recovered with a smaller randomly sampled
measures. Figure 2 shows that sampling pattern in the
wavenumber domain, the uniform sampling in Figure 2a
and the randomly sampling in Figure 2b. Two targets
are located at (0,0), (5,1), respectively. With the ran-
domly sampled measures, Figure 3 compares the recon-
struction results between the traditional method of fast
FT (FFT), the CoSaMP and the Bayesian sparse method
when no micromotion is present. It is shown that the
CoSaMP and the proposed Bayesian method come out
with clearer images and are capable to recover the true
position of scatters, compared with the traditional
method of FFT, even with smaller randomly measures.
When targets experience micromotion, the initial

phases are assumed to be both zeros. The micromotion
frequencies are 0.5, 1Hz, respectively, and the micromo-
tion range is 1 and 0.5, respectively. In Figure 4b, the
range profile appears clearly in the micromotion pattern
compared with Figure 3b. The presentation of micromo-
tion blurs the reconstruction images without motion
compensation as shown in Figure 4a, while our joint
parameter estimation method gains a well-focused
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Figure 2 Sampling pattern in wavenumber space. (a) The uniform sampling pattern and (b) the random sampling pattern.
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image in Figure 4d recovering the true parameters

(x̂, ŷ, r̂, f̂m, φ̂0) = (0, 0, 1, 0.5, 0), and (5,1,0.5,1,0) for the
two scatter points, respectively. Figure 4c illustrates the
reconstruction result via the CoSaMP method.
We then set the micromotion range 0.5 and initial

phase 0 for both targets but the micromotion frequen-
cies are 0.5 and 1 Hz, respectively. We adopt the
matched filtering in the 3D range-Azimuth-micromotion

frequency space by scanning a large number of possible
scatterer positions and micromotion frequencies, result-
ing in a large space-micromotion frequency cube. Figure
5a shows the 3D data cube. Figure 5b,c illustrate the
two slices after matched filtering at micromotion fre-
quencies fm = 1 Hz and fm = 0.5 Hz, respectively. It is
computationally expensive and not well focused being of
low resolution. In addition, it is rather difficult to per-
form RCM such that the position cannot be estimated
accurately. In contrast, our method can overcome these
drawbacks of traditional methods and yield a more pre-
cise estimate.
Figure 6 shows that our proposed method resolves the

two very closely spaced micromo-tion targets localized
at positions of (0, 0) and (0.25, 0.25), respectively. The
reconstruction image by FFT is illustrated in Figure 6a
and the corresponding range profile in Figure 6b. It
shows that the range profiles of the two targets are
overlapped so that the two targets cannot be discerned.
Figure 6c,d present the imaging result of CoSaMP and
our proposed Bayesian method. In contrast to the fail of
conventional method as FFT, the results in Figure 6d
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Figure 3 Reconstruction results when no micromotion is
present. (a) The reconstruction image by traditional FFT in absence
of micromotion and (b) is the range profile. (c,d) The results by the
CoSaMP method and the proposed Bayesian method, respectively.
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Figure 4 Reconstruction results when micromotion is present.
When micromotion is present, the reconstruction image by FFT is
illustrated in (a) and the corresponding range profile is illustrated in
(b). The reconstruction results by the CoSaMP method and the
proposed Bayesian method are illustrated in (c) and (d), respectively.
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Figure 5 Reconstruction results with matched filtering,
CoSaMP, and the proposed Bayesian method when
micromotion is present. (a) The 3D space-micromotion frequency
data volume. (b,c) The slices at fm = 1Hz and fm = 0.5 Hz,
respectively after matched filtering. (d,e) The results by the CoSaMP
method and the proposed Bayesian method, respectively.
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prove the super-resolution capability of the proposed
method.
Figure 7 depicts the estimation root mean square

(RMS) error varies with SNR which demonstrates our
method can recover the targets signature parameters
accurately. It can be observed that the RMS decreases
sharply as the SNR increases and arrives at high

precision estimations after 0dB, indicating the robust-
ness of our method to loss and noise of measurement.

6 Conclusions
In this article, we proposed a sparsity-inducing method
to estimate the scattering and mi-cromotion parameters
of SAR targets jointly and further formatted it in the
Bayesian framework. It was done by formulating the ori-
ginal nonlinear problem as a sparse representation pro-
blem over an over-complete dictionary. In addition, an
efficient computation algorithm as VBA estimator was
applied to the hierarchical Bayesian models. The pro-
posed method can exactly recover the scattering and
micromotion parameters of targets, even for near spa-
cing targets, achieving good performance, as demon-
strated by the simulation experiments.
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Appendix
CoSaMP algorithm
The basic idea of CoSaMP [24] algorithm is that: for S-
sparse signal f with S non zero elements, the z = H⋆H f
can serve as a proxy for the signal where H⋆ is the Her-
mitian transpose of H, since the energy in each set of S
components of z approximates the energy in the corre-
sponding components of f. In particular, the largest S
entries of the proxy z point toward the largest S entries
of the signal f.a The basic steps are (appendix table):

(1) Identification: Compute z ¬ H⋆y to find a proxy
of the residual from the current samples and locate
the largest components Ω = supp(z2S) of the proxy
z;
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Figure 6 Reconstruction of two close targets when
micromotion is present. For two closely localized micromotion
targets, the reconstruction image by FFT is illustrated in (a) and the
corresponding range profile in (b). The reconstruction results by the
CoSaMP method and the proposed Bayesian method are illustrated
in (c) and (d), respectively.

−15 −10 −5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

 

 
SoCaMP
Bayesian Method

−15 −10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 
SoCaMP
Bayesian Method

−15 −10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 
SoCaMP
Bayesian Method

−15 −10 −5 0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 
SoCaMP
Bayesian Method

−15 −10 −5 0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 
SoCaMP
Bayesian Method

(a)

(b) (c)

(d) (e)

R
M

S

R
M

S
R

M
S

R
M

S
R

M
S

SNR

SNR SNR

SNRSNR
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Appendix table The flow of CoSaMP algorithm

Input: H,g, K

Output: f̂
f0 = 0

y = g

k = 0

Repeat k ¬ k + 1

z ¬H⋆y

Ω ¬ supp(z2S)

T ¬ Ω ∪ supp(fk-1)

b|T ← H†
Tg

b|Tc ← 0
fk ¬ bS
y¬g-Hfk

Until convergence
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(2) Support merger: The set of newly identified com-
ponents Ω is united with the set of the components
that appear in the previous approximation supp(fk-1),
i.e., T = Ω ∪ supp(fk-1);
(3) Estimation: Solve a least-square problem to
approximate the target signal on the merged set T of
component, b|T ← H†

Tg
(4) Pruning: Obtain a new approximation by retain-
ing only the largest entries in this least-square signal
approximation, fk¬ bS;
(5) Sample update: Finally, update the residual g - H
fk.

Endnote
asupp(z2S) represents the index set of the largest 2S ele-
ments in z. H† is the Moore-Penrose pseudo-inverse of
H.
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