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PARALIND-based blind joint angle and delay
estimation for multipath signals with uniform
linear array
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Abstract

A novel joint angle and delay estimation (JADE) algorithm for multipath signals, based on the PARAllel profiles with
LINear Dependencies (PARALIND) model, is proposed. Capitalizing on the structure property of Vandermonde
matrices, PARALIND model is proved to be unique. Angle and delay of multiple rays of sources can be estimated by
PARALIND decomposition and an ESPRIT-like shift-invariance technique. Simulation results show that the proposed
algorithm outperforms the traditional JADE algorithm. It can automatically distinguish the estimated parameters
between sources, and still be available when the number of rays is larger than the number of receiving antennae.
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Introduction
With mobile communication stepping into the 3rd gener-
ation (3 G), smart antenna technique, which can combat
multipath fading and improve system performance effect-
ively, has already been applied to WCDMA and TD-
SCDMA communication systems [1,2]. In multipath sce-
nario, wireless channel is characterized not only by their
time delays of the different propagation paths, but also by
their direction of arrivals (DOAs). The estimation of
DOAs and time delays of the multipath rays is one major
problem in smart antenna system to effectively locate and
track various types of signals to minimize interference and
maximize intended signal reception [3,4]. The focus of this
article is on the joint estimation of angles and relative
delays of multipath propagation signals emanating from
sources and received by an antenna array. Various max-
imum likelihood (ML) approaches to joint angle and delay
estimation (JADE) problems, such as the Expectation
Maximization algorithm [5] and the Space-Alternating
Generalized Expectation maximization [6] show superior
performance in low signal-to–noise ratio (SNR) scenario
when the number of samples is small or the sources are
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correlated. However, these approaches often require com-
putationally ML searches, which is unattractive in online
process. A number of subspace-based joint parameters
estimation algorithms, which exploit the spatial or/and
temporal structure assumptions and eigenvalue decom-
position method, have also been derived. This type of
JADE algorithms includes Multi-Dimensional Estimation
of Signal Parameters via Rotational Invariance Technique
(MD-ESPRIT) [7], Shift-Invariance Joint Angle and Delay
Estimation (SIJADE) [8], and JADE-ESPRIT [9]. Most
of JADE algorithms focus on single source in multipath
environment and need perfect channel estimation. The
authors of [10] expanded the idea of JADE-ESPRIT and
proposed a blind JADE algorithm. Only a few of them
allow the estimation of more paths than the number of
receiving antennae available. In multiuser scenario, some
traditional algorithms cannot distinguish the estimated
parameters between sources [10].
Parallel factor (PARAFAC) is a subset of multi-way

analysis and has initially been introduced as a data ana-
lysis tool in psychometrics and chemometrics. The
authors of [11] first applied PARAFAC analysis into sig-
nal processing area. Nowadays, PARAFAC has widely
been used in blind multiuser detection for CDMA sys-
tem [12], array signal processing [13], OFDM system
[14], and blind channel estimation [15]. Applications of
PARAFAC analysis in wireless communication often
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assume single path propagation.a. In multipath propaga-
tion scenario, linear dependency factors usually occur in
one or/and two mode matrices of the data model, where
PARAFAC analysis will fail to provide meaningful
results. PARAllel profiles with LINear Dependencies
(PARALIND) is a generalization of PARAFAC and was
developed to extend its usage to problems with linearly
dependent factors [16]. In signal processing and commu-
nication applications of multi-way analysis, data with
PARALIND structure arise in many problems due to
what is known as spatial multipath, and where identical
signals appear with different angles and delays. In these
cases, by capitalizing on additional problem-specific
structure, the associated PARALIND model can be proved
to be unique. The authors of [17] applied PARALIND
analysis in blind multiuser detection in WCDMA systems
with large delay spread. Recently, PARALIND has been
used in blind multiuser detection for smart antennae
CDMA systems [18].
This article applies PARALIND analysis to the blind

JADE problem. The received signals of the uniform linear
array, transmitted through incoherent multipath rays of
sources with distinct angles and delays, are constructed into
PARALIND model. A new blind PARALIND-based JADE
algorithm is proposed. This algorithm can be separated into
two stages. The first stage applies PARALIND decompos-
ition to the receiving data, thereby reducing the multiuser-
multipath parameters estimation problem to a simple
singleuser-multipath parameters estimation problem. Then
an ESPRIT-like shift-invariance technique is used to esti-
mate the angles and delays of all paths corresponding to
each user. The main advantages of our method are

(i) High parameter estimation performance. Simulations
show that the PARALIND-based joint angle and
delay estimator have better performance than
traditional JADE algorithm.

(ii) Automatically distinguishing the estimated
parameters between sources. The proposed estimator
can automatically distinguish the estimated
parameters of each source in multiuser scenario,
which is not achieved, to the best of authors’
knowledge, by traditional algorithms.

(iii) Being still valid when the number of rays is larger
than the number of receiving antennae. The
identifiability results of parameters, discussed in
Section 3, demonstrate that the proposed algorithm
allows the number of multipath to be larger than the
number of receiving antennae.

The rest of this article is outlined as follows: Section 2
lays out the data model. Section 3 discusses the unique-
ness results of PARALIND, and the identifiability results
of parameters estimation are also provided. Section 4
proposes a new PARALIND-based blind JADE algorithm.
Section 5 gives simulation results for performance evalu-
ation. In the last section, we summarize conclusions.
Some notation conventions will be used in this article.

diag a; b . . .½ �ð Þ denotes the diagonal matrix with diagonal
scalar entries a; b; . . . while block diag A;B . . .½ �ð Þ denotes
the block diagonal matrix with diagonal matrix entries A;

B. . .; �ð ÞT and �ð Þ† stand for transpose and pseudoinverse,
respectively; jj � j 2

F

�� stands for Frobenius norm; vec �ð Þ
stacks the columns of its matrix argument in a vector;
unvec �ð Þ is the inverse operation of vec �ð Þ, unvec c; I; Jð Þ ¼
c 1 : Jð Þ; c J þ 1 : 2Jð Þ; . . . ; c I � 1ð ÞJ : IJð Þ½ � ; � is Kronecker
product; � denotes the Khatri-Rao product, which is a col-
umn-wise Kronecker product. Define A ¼ a1; . . . ; aR½ � 2
CI�RB ¼ b1; . . . ; bR½ � 2 CJ�R. The Khatri-Rao product of A
and B is

A� B ¼ a1 � b1; . . . ; aR � bR½ �

Data model
Consider a schematic communication scenario with
multipath channel, depicted in Figure 1.
M sources are transmitting to an array with K anten-

nae through multipath scattering propagation channel.
Signals of source m follow rm distinct paths on its way
to the receiver, referred to as multipath rays with distinct
direction of arrival, transmitting delay and attenuation.
The multipath fading channel between source m and re-
ceiving antennae array can be characterized as a K � 1
vector hm tð Þ:

hm tð Þ ¼
Xrm
j¼1

a θm;j
� �

βm;j g t � τm;j
� � ð1Þ

In this model, the jth path of source m is parameter-

ized by a triple θm;j; βm;j; τm;j

� �
, whereθm;j is the direction

of arrival, βm;j is the complex path attenuation, τm;j is the

time delay, a(θ) is the array response vector of K×1, corre-
sponding to signals from direction θ. We assume that the
uniform linear array is used in the receiving end and the
distance d between adjacent elements is equal to half
the wavelength of signals. a(θ) has the following form:

a θð Þ ¼
a1 θð Þ
a2 θð Þ
⋮
aK θð Þ

2
664

3
775 ¼

1

e
�j
2πd
λ

sin θð Þ
⋮

e
�j
2π K � 1ð Þd

λ
sin θð Þ

2
666664

3
777775 ð2Þ

g tð Þ is the impulse response which collects all temporal

aspects, such as pulse shaping, transmit filter, and receive
filter. In incoherent multipath with small delay spread, we
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Figure 1 Multipath propagation channel model.
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assume that g(t) is zero outside an interval 0; LgTs
� �

with
Lg < 1, where Ts is the symbol period. The delay spread τ
is relatively small and LgTs þ τ < Ts . This means that the
sample of the received signal is a combination of M and no
more than M sources symbols [10]. At this point, the
received baseband signals at the output of the antenna array
can be expressed as follows

x tð Þ ¼
XM

m¼1
hm tð Þ∗sm tð Þ

¼
XM

m¼1

Xrm

i¼1
a θm;i
� �

βm;i g t � τm;i
� �

sm tð Þ ð3Þ

where sm tð Þ is transmitted signal of mth source at time t.
‘∗’ denotes convolution operator. We oversamplex tð Þ at a
rate of P times of symbol rate. Collect samples during N
symbol periods and construct a KP � N space–time data
matrix

X ¼

x 0ð Þx 1ð Þ . . . x N � 1ð Þ
x

1
P

	 

x 1þ 1

P

	 

. . . x N � 1þ 1

P

	 

⋮ ⋮ ⋮ ⋮

x
P � 1
P

	 

x 1þ P � 1

P

	 

. . . x N� 1þ P � 1

P

	 


2
666664

3
777775

ð4Þ
Define r ¼PM

m¼1rm is the total number of paths of
all sources. Let us conveniently index the rays from 1 to r,
starting with all rays associated with the first source and
then rays associated with the second source, and so on.
Define the array manifold matrix Aθ, time manifold matrix
Gτ , and path attenuation matrix Γ as follows
Aθ ¼ a θ1ð Þ; . . . ; a θr1ð Þ; . . . ; a θrð Þ½ � 2 CK�r

Γ ¼ diag β1; . . . βr1 ; . . . ; βr
� � 2 Cr�r

Gτ ¼ g τ1ð Þ; . . . ; g τr1ð Þ; . . . ; g τrð Þ½ � 2 CP�r
ð5Þ

where g τð Þ ¼ g 1
P � τ
� �

; . . . ; g 1� 1
P � τ

� �� �T 2 CP�1 is
“time manifold” of signals with delay τ. Equation (4) can
be simplified to the following formulation [19]

X ¼

Aθdiag g τ1ð Þð Þ
Aθdiag g τ2ð Þð Þ
⋮

Aθdiag g τrð Þð Þ

2
6664

3
7775Γ SJð ÞT ¼ Gr � Aθð ÞΓ SJð ÞT

ð6Þ
where

S ¼
s1 0ð Þ; s2 0ð Þ . . . ; sM 0ð Þ
⋮ ⋮ ⋮
s1 N � 1ð Þ; s2 N � 1ð Þ . . . ; sM N � 1ð Þ

2
4

3
5 2 CN�M

is the transmitted signal matrix and

J ¼
1Tr1 0; . . . ; 0
0 1Tr2 ; . . . ; 0
⋮ ⋱
0 0; . . . ; 1TrM

2
664

3
775 ð7Þ

is a selection matrix that joins multipath associated
with a given source. 1m denotes an m� 1 vector with
elements 1.
The time delay τ is usually difficult to estimate from

g t � τð Þ directly. Here we map delay τ into phase shift ϕ
in the frequency domain by using DFT method. This is a
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classical approach and has been considered in [8]. As-
sume that g(t) is band limited and the sample rate is at
or above the Nyquist rate. Take P points DFT of each
antenna output over a single symbol period, and then
the follow model is obtained [10]

�X ¼ Fϕ � Aθ

� �
Γ SJð ÞT ð8Þ

where

Fϕ ¼
1 1 . . . 1
ϕ1 ϕ2 . . . ϕr

⋮ ⋮ ⋮ ⋮
ϕP�1
1 ϕP�1

2 . . .ϕP�1
r

2
664

3
775;ϕi ¼ e�j2πτi=P ð9Þ

Note that, by using the DFT method, the delay matrix
Gτ is converted to a Vandermonde matrix.
According to [16], Equation (8) can be viewed as

PARALIND model, of which Fϕ , Aθ , and S are three
mode matrices. The selection matrix J can be viewed as
the linear dependence matrix in PARALIND model. Re-
call that the array response Aθ and delay matrix Fϕ are
both Vandermonde matrices with distinct generator (dis-
tinct angle and delay assumption). With the uniqueness
property of PARALIND model and the structure prop-
erty of Vandermonde matrices, Fϕ and Aθ can be
uniquely determined from received data matrix �X , and
DOA and time delay information can be estimated from
Fϕ and Aθ.

Uniqueness results
Partial uniqueness of PARALIND
The uniqueness of the data model (8) lays the founda-
tion of its applications in parameters estimation. Al-
though PARALIND model can be viewed as an extension
of PARAFAC model, uniqueness of PARALIND does not
follow directly from the uniqueness property of PARAFAC
because of the linear dependence of the loading vectors.
PARALIND model usually has only partial uniqueness,
which depends on the specifics of the imposed depend-
ency structure along with the adequacy of the factor vari-
ation information provided by a given set of data [16,20].
Since attenuation matrix Γ only leads to the column scal-
ing of Aθ and Fϕ , which does not affect the uniqueness
property of the model. Therefore, we simplify Γ to be an
identity matrix during the following discussion. Then the
date model can be written as:

�X ¼ Fϕ � Aθ

� �
SJð ÞT ð10Þ

We also use a set of matrices X;A;B;C;Hð Þ to play
the role of �X; Fϕ ;Aθ; S; J

� �
, respectively, to simplify the
formulations. Equation (10) is converted to the following
formulation:

X ¼ A� Bð Þ CHð ÞT ð11Þ

PARALIND model has only partial uniqueness, which
was first presented in [16]. De Lathauwer has given an
essential uniqueness theorem of PARALIND decompos-

ition more quantitatively [21]. The following two con-
cepts are needed.
Definition 1 (k-rank) [22]: Consider a matrix B 2 CI�J .

If rank Bð Þ ¼ r , then B contains a collection of r linearly
independent columns. Moreover, if every l < J columns
of B are linearly independent, but this does not hold for
every l þ 1 columns, then B has k-rank kB ¼ l. Note that
kB < rank Bð Þ;8B.
Definition 2 (k’-rank) [23]: Assume a partitioned

matrix A ¼ A1; . . . ;AM½ � . The k’-rank of A, denoted by
rankk 0 Að Þ or k 0A, is the maximal number r such that any
set of r sub-matrices of A yields a set of linearly inde-
pendent columns.
Note that k’-rank can be viewed as the sub-matrix ver-

sion of k-rank.
Theorem 1 [21]: Let A;B;Cð Þ represent a decomposition

ofX in (11), whereA ¼ A1; . . . ;AM½ �,B ¼ B1; . . . ;BM½ � are
partitioned matrices with sub-matrices Am 2 CP�rm ;

Bm 2 CK�rm ; m¼ 1; . . . ;M. C¼ c1; . . . ; cM½ � is of N �M
with cm 2 CN�1;m ¼ 1; . . . ;M. Suppose the condition:

k 0A þ k 0B þ kC ≥ 2M þ 2 ð12Þ

holds and that we have an alternative decomposition of X,

represented by Â; B̂; Ĉ
� �

withk 0
Â

and k 0
B̂
maximal under

the given dimensionality constraints. Then there holdsÂ ¼
AΠaΔa and B̂ ¼ BΠbΔb, in which Πa,b are block permuta-
tion matrices and Δa,b are square non-singular block-
diagonal matrix, compatible with the block structure of A
and B. It also holds that Ĉ ¼ CΠcΔc , in which Πc is a per-
mutation matrix and Δc is a diagonal matrix.
Consider Theorem 1 in sub-matrix condition. The am-

biguity matrices ΠaΔa and ΠbΔb , given in Theorem 1,
can be written as

ΠaΔa ¼ blockdiag U1; . . . ;UMð Þ
ΠbΔb ¼ blockdiag V1; . . . ;VMð Þ

where Um 2 Crm�rm ;Vm 2 Crm�rm ; m ¼ 1; . . . ;M are 2M

non-singular square matrices. Partition Â and B̂ to be

compatible with the block structure of A and B, as Â ¼
Â1; . . . ; ÂM

� �
, B̂ ¼ B̂1; . . . ; B̂M

� �
. According to Theorem

1, it follows
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Â1; . . . ; ÂM
� � ¼ A1; . . . ;AM½ �ΠaΔa

¼ A1; . . . ;AM½ � blockdiag U1; . . . ;UMð Þ
B̂1; . . . ; B̂M
� � ¼ B1; . . . ;BM½ �ΠbΔb

¼ B1; . . . ;BM½ � blockdiag V1; . . . ;VMð Þ

and then

Âm ¼ AmUm; B̂m ¼ BmVm;m ¼ 1; . . .M

Ĉ ¼ CΠcΔc

Structure uniqueness
Recalling to data model (10), Fϕ , Aθ , and S play the roles
of A, B, and C, respectively. According to the partial
uniqueness property of PARALIND model, signal matrix S
can be uniquely determined from �X up to the permutation
and scaling ambiguity. But the array manifold matrix Aθ

and delay matrix Fϕ suffer from rotation ambiguity, which
means that Aθ and Fϕ cannot be uniquely determined with-
out any prior knowledge. Parameters in these two matrices,
such as the DOA and the delay information, will not be
identifiable directly. But the study [16] has pointed out that
PARALIND model can give uniqueness results if some of
its mode matrices have theoretically motivated structural
constraints. This uniqueness property of PARALIND model
is called “structural uniqueness”. Since both Aθ and Fϕ have
Vandermonde structure with distinct non-zero generators,
the following theorem gives the sufficient condition to re-
store uniqueness of PARALIND decomposition by capital-
izing the property of Vandermonde structure.
Theorem 2 (Structural uniqueness of PARALIND model).

Assume that Aθ ¼ a1θ; . . . ; a
r1
θ ; . . . ; a

r
θ

� � 2 CK�r , Fϕ ¼
f1ϕ ; . . . ; f

r1
ϕ ; . . . ; f

r
ϕ

h i
2 CP�r are Vandermonde matrices

with distinct nonzero generators, and S ¼ s1; . . . ; sM½ � 2
CN�M . Fϕ ;Aθ; S

� �
represents a decomposition of �X in

the following formulation:

�X ¼ Fϕ � Aθ

� �
SJð ÞT

where J is the dependence matrix given in (7). Aθ and Fϕ
are partitioned to M sub-matrices: Aθ ¼ A1

θ; . . . ;A
M
θ

� �
,

Fϕ ¼ F1ϕ ; . . . ; F
M
ϕ

h i
, where Am

θ ¼
"
a

Pm�1

t¼1

rtþ1

θ ; . . . ; a

Pm
t¼1

rt

θ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}rm
#

Fmϕ ¼
"
f

Pm�1

t¼1

rtþ1

ϕ ; . . . ; f

Pm
t¼1

rt

ϕ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl} rm
#
. Supposed the conditions:

k 0Aθ
þ k 0Fϕ þ kS ≥ 2M þ 2 ð13Þ

hold and then we have an alternative decomposition

of �X , represented by F̂ϕ ; Âθ; Ŝ
� �

with Vandermonde

matrices F̂ϕ and Âθ . Partition F̂ϕ and Âθ as:
F̂ϕ ¼ F̂
1
ϕ ; . . . ; F̂

M
ϕ

h i
, Âθ ¼ Â

1
θ; . . . ; Â

M
θ

h i
, compatible with

the block structure of Fϕ and Aθ. Then the follow-

ing relationship between Fϕ ;Aθ; S
� �

and F̂ϕ ; Âθ; Ŝ
� �

holds

Ŝ ¼ SΠSΔSÂ
m
θ ¼ Am

θ Π
m
Aθ
Δm
Aθ
; F̂

m
ϕ

¼ FmϕΠ
m
FϕΔ

m
Fϕ m ¼ 1; . . . ;M

ð14Þ

where Πm
Aθ
;Πm

Fϕ and ΠS are permutation matrices. Δm
Aθ
;Δm

Fϕ

and ΔS are diagonal scaling matrices.

Proof
Lemma 1 (uniqueness of matrix decomposition with
Vandermonde structure) [24]:
Consider a matrix decomposition problem of X ¼ ABT ,

in whichA 2 CI�F is a Vandermonde matrix and B 2 CJ�F

is a non-singular square matrix. Supposed the condition:
I≥F þ 1 is hold and then we have an alternative decompos-

ition of X, represented by X ¼ �A�BT with Vandermonde
matrix �A and non-singular matrix �B. Then there holds:

�A ¼ AΠaΔa; �B ¼ BΠbΔb

where Πa;Πb are permutation matrices and Δa,Δb are di-
agonal scaling matrices with nonzero elements.
According to Theorem 1, if condition k 0Aθ

þ k 0Fϕ þ
kS ≥ 2M þ 2 is satisfied, it holds:

Âθm ¼ Am
θ Um; F̂ϕm ¼ FmϕVm;m ¼ 1; . . .M

Since Am
θ and Fmϕ are Vandermonde matrices, Um and

Vm are non-singular square matrices, Lemma 1 provides

that Am
θ can be uniquely decomposed from Â

m
θ up to the

permutation and scaling ambiguity if K≥rm þ 1. Similarly,

Fmϕ can be uniquely decomposed from F̂
m
ϕ if P≥rm þ 1. De-

fine rmax ¼ maxm¼1;...;M rmð Þ. When the conditions:

K ≥ rmax þ 1
P ≥ rmax þ 1

�
ð15Þ

are satisfied, all of 2M matrices, A1
θ;F

1
ϕ ; . . . ;A

M
θ ; F

M
ϕ , can

uniquely determined from Â
1
θ; F̂

1
ϕ ; . . . ; Â

M
θ ; F̂

M
ϕ .

Now we will show that (13) is a sufficient condition for
(15). Recalling the definitions of k-rank and k’-rank, the
maximal k’-rank of Aθ and Fϕ is M and the maximal
k-rank of S is also M. According to condition (13), it
requires that any of k 0Aθ

, k 0Fϕ , or kS should be larger than

two. By capitalizing on the structure property of Vander-
monde matrix, the k’-rank of Aθ and Fϕ can be deter-
mined easily. Take Aθ for example, partition Aθ to M
sub-matrices: Aθ ¼ A1

θ; . . . ;A
M
θ

� �
with Am

θ 2 CK�rm ; m ¼
1; . . . ;M . Reorder rm from large to small and assume



Table 1 PARALIND decomposition algorithm

Step 1: Initialization

Initialize matrices J 0ð Þ ,A 0ð Þ
θ ,F 0ð Þ

ϕ and S 0ð Þ ,k ¼ 0

Step 2: k¼kþ1
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ri≥riþ1; i ¼ 1; . . . ;M � 1. The k’-rank of Aθ is:

k
0
Aθ

¼ I; where
XI

m¼1
rm ≤ K ≤

XIþ1

m¼1
rm ð16Þ

With the former assumption, r1 is the maximum of
r1; . . . ; rM , as: rmax ¼ r1. If conditions k 0Aθ

≥ 2 and k 0Fϕ ≥ 2

are hold, it follows that:

K ≥
X2
m¼1

rm ¼ r1 þ r2 ¼ rmax þ r2

P ≥
X2
m¼1

rm ¼ r1 þ r2 ¼ rmax þ r2

ð17Þ

8>>>><
>>>>:

Since r2 is not less than one (multiple sources as-
sumption), it means that (13) is a sufficient condition
for (15). Therefore, (14) is obtained when condition
(13) is satisfied.
Notices that in (14), the inherent permutation and

scaling ambiguity are still involved, characterized by per-
mutation matrices Πm

Aθ
;Πm

Fϕ and diagonal scaling matri-

ces Δm
Aθ
;Δm

Fϕ . Since the elements of the first row of both

Aθ and Fϕ are equal to one, the scaling ambiguity can be
easily resolved by normalizing the elements of Aθ and
Fϕ with respect to elements of the first row. The permu-
tation ambiguity will not affect the angle and delay esti-
mation in the proposed algorithm.

Blind JADE algorithm
In this section, we propose a new blind JADE algorithm
based on PARALIND model. The algorithm first uses
PARALIND decomposition algorithm to estimate the
column space of the sub-matrices of the array mani-
fold matrix Aθ and delay matrix Fϕ . An ESPRIT-like
shift-invariance method is then applied to estimate angle
and delay parameters.
Step 3: Update J based on (21), given S kð Þ; F kð Þ
ϕ and A kð Þ

θ :

j kþ1ð Þ ¼ S kð Þ�F kð Þ
ϕ � A kð Þ

θ

� �y
�x

J kþ1ð Þ ¼ unvec j kþ1ð Þ
� �

Step 4: Update S based on (22), given F kð Þ
ϕ ;A kð Þ

θ and J kþ1ð Þ :

S kþ1ð Þ ¼ F kð Þ
ϕ � A kð Þ

θ

� �
J kþ1ð Þ� �T� �†

�X

Step 5: Update Fϕ based on (23), given A kð Þ
θ ; S kþ1ð Þ and J kþ1ð Þ :

F kþ1ð Þ
ϕ ¼ A kð Þ

θ � S kþ1ð ÞJ kþ1ð Þ� �� �†
�Z

Step 6: Update Aθ based on (24), given S kþ1ð Þ; J kþ1ð Þ and F kþ1ð Þ
ϕ :

A kþ1ð Þ
θ ¼ S kþ1ð ÞJ kþ1ð Þ� �� F kþ1ð Þ

ϕ

� �†
�Y

Step 7: Calculate the fitting residual value:

ε kþ1ð Þ ¼ jj F kþ1ð Þ
� � A kþ1ð Þ

θ

� �
S kþ1ð ÞJ kþ1ð Þ� �T �

F kð Þ
ϕ � A kð Þ

θ

� �
S kð ÞJ kð Þ� �T j Fj

repeat step 2-7 until ε kþ1ð Þ � ε kð Þ�� �� < 1e�8 .
PARALIND decomposition algorithm
PARALIND decomposition algorithm is an iterative
algorithm based on trilinear alternate least square,
which is commonly used to estimate mode matrices
of PARAFAC model [25]. The main difference be-
tween PARALIND decomposition and PARAFAC de-
composition is that the former needs to estimate the
dependence matrix J in (10) if the number of multi-
path of each source is unknown. The cost function
of matrix variables A, Fϕ , S and J is formulated as

f J; S; Fϕ ;Aθ

� � ¼ jj�X� Fϕ � Aθ

� �
SJð ÞT j Fj ð18Þ

Note that the scaling ambiguity matrix Γ has been sim-
plified to an identity matrix. This simplification will not
affect the decomposition results. By rearranging the
received signal matrix �X , the following two equivalent
formulations of PARALIND model are obtained:

�Y ¼ SJð Þ � Fϕ
� �

AT
θ ð19Þ

�Z ¼ Aθ � SJð Þð ÞFT
ϕ ð20Þ

According to (10), rearrange �X to a vector:

�x ¼ vec �Xð Þ ¼ vec Fϕ � Aθ

� �
JTST

� �
¼ S�Fϕ � Aθ

� �
vec JT
� �

Here, we have used the general relation: vec ABCð Þ ¼
CT�A
� �

vec Bð Þ . Then J can be obtained in least square
sense:

J ¼ arg min
J

jj�x� S�Fϕ � Aθ

� �
vec JT
� �j Fj ð21Þ

Similarly, S,Fϕ and Aθ can be obtained based on (10),
(19), and (20)

S ¼ arg min
S

jj�X� Fϕ � Aθ

� �
SJð ÞT j Fj ð22Þ

Fϕ ¼ arg min
Fϕ

jj�Z� Aθ � SJð Þð ÞFT
ϕ j Fj ð23Þ



Table 2 Angle estimation procedure

Loop: m=1 to M

Construct sub-matrices Â
m
θ;1 and Â

m
θ;2

Â
m
θ;1 ¼ Â

m

θ
1 : K � 1; :ð ÞÂm

θ;2
¼ Â

m

θ
2 : K ; :ð Þ

Calculate eigenvalue of Â
m
θ;1

� �†
Â

m
θ;2 D̂m

¼ eigs Â
m
θ;1

� �†
Â

m

θ;2

	 

Calculate the estimation of angles

θ̂m ¼ θ̂m;1; . . . ; θ̂m;rm

h iT
¼ arcsin

imag � In D̂m
� �� �

λ
2πd

 !

end loop
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Aθ ¼ arg min
Aθ

jj�Y� SJð Þ � Fϕ
� �

AT
θ j Fj ð24Þ

J, S, Fϕ and Aθ are updated alternatively in least square

sense until results converge. Assume that ðÞ kð Þ stands for
the value of the kth iteration. Let j ¼ vec Jð Þ. PARALIND
decomposition algorithm is presented in Table 1.
In the noisy condition, the estimation of the dependent

matrix, denoted as Ĵ , is not a strict selection matrix with
elements of 1 and 0. There are two methods to recon-
struct Ĵ to be a standard selection matrix. A simple
method to resolve this problem is to define a threshold
and use hard decision to reconstruct Ĵ . If the element of Ĵ
is more than the threshold, project it to 1, while if the
element is less than the threshold, project it to 0. This
method is simple and has good performance in high
SNR condition. But, in low SNR condition, the vari-
ance of estimation is large and the value of threshold
is hard to be determined. Note that the main work of
J is to provide the structure of the multipath of each
user. Therefore, we only need to recovery this struc-
ture from Ĵ (not to determine its the elements). Many
clustering methods can be used to recovery the struc-
ture. Simulation results show that this method can
work well in both low and high SNR conditions.

ESPRIT-like shift-invariance technique
According to the partial uniqueness theorem of
PARALIND decomposition, when PARALIND decompos-
ition algorithm is finished, data matrix S can be obtained
from received signal matrix �X . Array manifold matrix Aθ

and delay matrix Fϕ still suffer from rotation ambiguity.

Assume that Âθ; F̂ϕ and Ŝ are the estimation of Aθ,Fϕ

and S. Partition F̂ϕ and Âθ as F̂ϕ ¼ F̂
1
ϕ ; . . . ; F̂

M
ϕ

h i
, Âθ ¼

Â
1
θ; . . . ; Â

M
θ

h i
, compatible with the block structure of Fϕ

and Aθ. Rewrite (14)

Ŝ ¼ SΠΔ Âθm ¼ Am
θ Um; F̂

m
ϕ ¼ FmϕVm;m ¼ 1; . . .M

Capitalizing on the Vandermonde structure of Am
θ and

Fmϕ , θ, and τ can be uniquely determined from Â
m
θ and

F̂
m
ϕ when Theorem 2 is satisfied. Here, we use an

ESPRIT-like shift-invariance technique and eigenvalue
decomposition method to estimate angle and delay of
the multiray from each source. Take the angle estimation
procedure for example. We collect the first K � 1 and

the last K � 1 rows of Â
m
θ to construct two sub-matrix

Â
m
θ;1 and Â

m
θ;2 . Define Am

θ;1 as the sub-matrix including
first K � 1 rows of Am

θ . According to the shift-invariance

property of date model: Â
m
θ ¼ Am

θ Um , we have the
following results:

Â
m
θ;1 ¼ Am

θ;1Um Â
m
θ;2 ¼ Am

θ;1 diag Dmð ÞUm

where

Dm ¼ e�j2πdλ sin θm;1ð Þ; . . . ; e�j2πdλ sin θm;rmð Þh iT
is a vector that includes angle information of all rm paths
of source m. Angles of paths from source m can be esti-
mated from as follows

θ̂m ¼ θ̂m;1; . . . ; θ̂m;rm

h iT
¼ arcsin

imag � In D̂m
� �� �

λ

2πd

 !

D̂m is the estimation of Dm. Now the problem is simpli-

fied to one that how to estimate D̂m from Â
m
θ;1 and Â

m
θ;2 .

Let

Â
m
θ;1

� �†
Â

m
θ;2 ¼ U�1

m diag Dmð ÞUm

According to the definition of eigenvalue decompos-

ition, Dm is the eigenvalue of Â
m
θ;1

� �†
Â

m
θ;2, formulated as

D̂m ¼ eigs Â
m
θ;1

� �†
Âθ;2

m
	 


where eigsðÞ is the eigenvalue decomposition operator.
The delay estimation procedure is similar to the angle es-
timation. The angle and delay estimation procedure are
presented in Tables 2 and 3.
Note that the angles and delays of rays of each source

can be estimated separately based on

Â
m
θ ¼ Am

θ Um; F̂
m
ϕ ¼ FmϕVm;m ¼ 1; . . .M



Table 4 Angles and delays of multipath rays of sources

Number of
multipath

Angle and delay of each
path (angle, delay)

Source 1 Three paths (5o,0.5Tp), (15o,1.5Tp), (25o,2.5Tp)

Source 2 Two paths (35o,3.5Tp), (45o,4.5Tp)

Source 3 Two paths (55o,5.5Tp), (65o,6.5Tp)

Table 3 Delay estimation procedure

Loop: m=1 to M

Construct sub-matrices F̂
m
�;1 and F̂

m
θ;2

F̂
m
�;1 ¼ F̂

m

�
1 : K � 1; :ð Þ

F̂
m
�;2 ¼ F̂

m

�
2 : K; :ð Þ

Calculate eigenvalue of F̂
m
�;1

� �†
F̂
m
�;2 D̂m ¼ eigs F̂

m
�;1

� �†
F̂
m

�;2

	 


Calculate the estimation of delays τ̂m ¼ τ̂m;1; . . . ; τ̂m;rm

� �T
¼ P

� imag In D̂m
� �� �

2π

end loop
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which implies that the PARALIND decomposition
method can convert the multiuser-multipath parameters
estimation problem to a simple singleuser-multipath
problem. Therefore, the proposed PARALIND-based
estimation algorithm can distinguish the estimated para-
meters of each source automatically, which is usually
not obtained in conventional JADE algorithm.

Simulations
In this section, we evaluate the performance of proposed
algorithm, referred to as PARALIND-based angle and
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Figure 2 Delay-angle scatter of PARALIND-JADE algorithm, SNR=30 d
delay estimation algorithm (PARALIND–JADE). Com-
plex additive Gaussian white noise EX is added

�X ¼ Fϕ � Aθ

� �
Γ JSð ÞT þ EX ð25Þ

SNR is defined in terms of the noisy data model (25):

SNR ¼ 10 log10 j �X�� �� 2
F=
�� ��jEX j 2

FdB
��

M ¼ 3 sources are used in the following simulation.
There are totally seven rays in the receiving end. The
parameters of the multiple rays of each source are listed
in Table 4. where Tp is the sampling time interval.
Oversampling factor P is equal to 10 in the following
simulations. Some other simulation parameters, such as
the number of snapshots N, the number of antennae K,
and SNR, are varied in each simulation. Traditional
blind JADE algorithm proposed in [10] is also simulated
for comparison, which is refered here as Expanded
JADE-ESPRIT (E-JADE-ESPRIT). E-JADE-ESPRIT is a
type of subspace-based algorithm which uses temporal/
spatial smoothing and joint diagonalization to achieve
angle and delay estimation.

Simulation 1
The performances of angle and delay estimation of
PARALIND-JADE and E-JADE-ESPRITalgorithms are eval-
uated in this simulation. The number of receiving antennae
K ¼ 10 , oversampling factor P=10 and the number of
snapshotsN ¼ 100. Five hundred independent Monte Carlo
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Figure 3 Delay-angle scatter of E-JADE-ESPRIT algorithm, SNR=30 dB.
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Figure 4 RMSE curve of angle estimation versus SNR.
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runs are used to evaluate the performance. Figures 2 and 3
present the delay-angle scatter diagram of PARALIND-
JADE and E-JADE-ESPRIT algorithms (SNR=30 dB). The
X coordinate stands for delay and the Y coordinate stands
for angle. The left sub-figure of each depicts the estimated
angle-delay diagram of all seven paths, and the right four
sub-figures, titled as (a), (b), (c), (d), are the zoom-in dia-
grams of angle and delay estimation of four paths with para-
meters (15°, 1.5Tp), (25°, 2.5Tp), (45°, 4.5Tp) and (55°,
5.5Tp), respectively. It is clear that the degree of divergence
of the diagrams in Figure 2 is smaller than that in Figure 3.
Therefore, the proposed algorithm performs better than E-
JADE-ESPRIT in parameters estimation.

Simulation 2
This experiment evaluates the root mean squared error
(RMSE) of the two algorithms in angle and delay estima-
tion. Here, we order all multipath rays listed in Table 4
as 1–7. The RMSE values of the estimated angle and
delay of the jth ray are calculated as follows:

RMSE
jð Þ
angle ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q

XQ

i
θ̂

jð Þ
i � θ jð Þ

� �2
2
F ; j ¼ 1; . . . ; 7
����s
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Figure 5 RMSE curve of delay estimation versus SNR.
RMSE
jð Þ
delay ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q

XQ

i
τ̂ jð Þ
i � τ jð Þ

� �2
2
F ; j ¼ 1; . . . ; 7
����r

where θ̂i jð Þ and τ̂i jð Þ are the estimation of angle θ jð Þ

and delay τ jð Þ of jth ray in ith simulation. Q is the
number of Monte Carlo simulations. There are 10 an-
tennae in the receiving antennae array, and the number
of snapshots N ¼ 100 . SNR varies from 10 to 30 dB.
Five hundred independent Monte Carlo runs are simu-
lated. Figures 4 and 5 present the RMSE curve of angle
and delay estimations versus SNR. Four sub-figures of
each figure, titled as (a), (b), (c), (d), depict perform-
ance of four rays with parameters (15°, 1.5Tp), (25°,
2.5Tp), (45°, 4.5Tp), and (55°, 5.5Tp). The RMSE values
of parameter estimation of PARALIND-JADE are less
than that of E-JADE-ESPRIT. It implies that the pro-
posed algorithm has better accuracy in parameter
estimation.

Simulation 3
The RMSE performances of angle and delay estima-
tions with different number of snapshots are evaluated
in this simulation. The number of snapshots N varies
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Figure 6 RMSE curve of angle and delay estimation versus the number of snapshots.
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from 20 to 200. The number of antennae K ¼ 10 and
SNR= 30 dB. Take the second ray with parameters
(25°, 2.5Tp) for example (the performance of other rays
is similar), Figure 6 depicts the simulation results. It
is shown that the RMSE performance of PARALIND-
JADE algorithm is improved and always better than
10 15 20 25 30
10

-2

10
-1

10
0

10
1

SNR/dB

R
M

S
E

a           
K=6, =25o

PARALIND-JADE

E-JADE-ESPRIT

10 15 20 25 30
10

-2

10
-1

10
0

10
1

SNR/dB

R
M

S
E

c             
K=10, =25o

PARALIND-JADE

E-JADE-ESPRIT

Figure 7 RMSE curve of angle estimation versus SNR (K=6, 8, 10, 12)
that of E-JADE-ESPRIT algorithm as the number of
snapshots increases.

Simulation 4
In the last simulation, we evaluate the RMSE perfor-
mances of angle and delay estimation with different
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Figure 8 RMSE curve of delay estimation versus SNR (K=6, 8, 10, 12).
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number of receiving antennae. The number of antennae
varies from 6 to 12. The number of snapshots N ¼ 100
and SNR varies from 10 to 30 dB. Figure 7 depicts the
RMSE curve of angle estimation versus SNR of the ray
with parameters (25°, 2.5Tp) in different number of receiv-
ing antennae scenario ( K ¼ 6; 8; 10; 12 ), and Figure 8
gives the related RMSE curve of delay estimation. Notice
that the proposed algorithm still works well when the
number of multiple rays is larger than the number of
receiving antennae (K ¼ 6).
Conclusions
This article links the blind JADE problem to PARALIND
analysis. A new PARALIND-based JADE algorithm
(PARALIND-JADE) is proposed based on the PARALIND
decomposition algorithm and an ESPRIT-like shift-
invariance technique. The structural uniqueness result of
PARALIND model with Vandermonde structure is also
presented. Simulation shows that the proposed algorithm
performs better than traditional JADE algorithm. It can
automatically distinguish the estimated parameters of each
source and still work well when the number of rays is lar-
ger than the number of receiving antennae.
Endnote
aAlthough PARAFAC analysis is still available to multi-
path CDMA signals, it should follow the assumption
that the multipath delay should much smaller than the
symbol period [11].
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